A Proof of Theorem

Proof. Assume p is multivariate normal N'(p, Q1) where Q is the inverse covariance matrix. We
have V, logp(x) = —Q(x — p). Since k(z,z') = "2’ + 1, the functions in F* should have a
form of

f@)=> al[-Q@—p) (o +1)+a]+b
i=1
=z Wa+v'z+e,
where

n
.
W =— E xz;a; Q,
i=1

n

v = Z(NT%‘ -1)Qa;

i=1

c=b+ > al (Qu+ ).

i=1

Denote by X = [x1,...,x,] the (d X n) matrix, A = [aq, ..., ay] the (d X n) matrix, and B = QA.
We have

W=-XB", 17)
v =(p' X -e")BT, (18)
c=b+e' B pu+tr(XAT), (19)

where e is the R%-vector of all ones. Eq. and (T8) are equivalent to

-X w
[“TX _ e] B = LT} (20)
We just need to show that for any value of W € R4 v € R? and ¢ € R there exists A =
[a1,...,a,] and b that satisfies the above equation. This is equivalent to

-1,0 4
o= 1]
. —1,0 | . . . .
Since HT | s always full rank, if ® has a rank at least d + 1, then @]) exits a solution for B.
We can then get A = Q' B and solve b from (T9). O

B Proof of Theorem 3.3

Proof. A loss function is H-smooth iff its derivative is H-Lipschitz. For twice differentiable ¢, this
just means |¢'| < H. The following result from |Srebro et al.[(2010) is key to our proof.

Theorem B.1 (Srebro et al.| (2010) Theorem 1). For an H-smooth non-negative loss ¢, such that
Vaunl@(h(z),y)| < b, for any & > 0, we have with probability at least 1 — & over a random sample
of size n that, for any h € ‘H, we have

L(h) < L(h)+K [\/ L(h) (\/ﬁlogl'5 nRn(H)+1/ blogfll/é))—&—H log® anL(/H)—l—blogT(l/é) :

where K is a numerical constant that satisfies K < 10°.
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We now apply this result to bound kernelized Stein discrepancy. Take ¢(z,y) = (z — y)?, then
H = 2. Define gx j(w) = E; [Prid(x,w)] and G; = {gx ;j: VX € X™}. Recall that the Stein
discrepancy can be viewed as the sum of mean square losses of fitting gx ; to the zero-valued line:

d
D} (fx | p) = Lilgx ), where Lj(9x.5) = Euwnpy, [(9x,5(w) = 0)7],
j=1
- d R 1 m )
D2 (iix | p) = D Lilgx.), where i(9x.,5) = > lgx.i(we) —0)%).
Jj=1 =1

We now apply Theorem [B.1]to each bound the difference between the expected loss L;(gx ;) and the
empirical loss L; (gx,j)- rom Assumptlon EZ we have supy ,, |9x,;(w)| < M. This is because

|9 (w)| = I*Z%qﬁ z,w)| < — Z\%aﬁ z, w)| < M;.

Using Theorem[B.1] we have with probability 1 — 4, for any X,

) ) i M2 log(1/5
Li(gx,;) < Lj(9x5) + K |:Lj(gX,j) (\@logl"’ mRm(Gj) + J(:i(/))
2
+ 2log® mR2,(G;) + Aalii(l/é)}

By Assumptionl, lgx+ j(wp)] < \7% for ¥/ = 1,...,m at the approximate fixed point X *. We
have L;(gx,;) < \;7% By Assumption[3.413, we have R,,,(G;) < R;/+/m. Therefore,

2 2 2 2
€; R, M?1log(1/6) R:  M?log(1/9)
L; <S4k |l (Valogt ml | L)y otogBm L 4 —d ST
(gX,7)_m [ﬁ(\fog m\/ﬁ—i— p- +2log"m—"+ =
Summing across j = 1,...,d, we get
D (fix- || p)

IN

d

1

- Z |:63 + K(\@Rjej log'® m + Mje;+/log(1/5) + 2R§ log® m + J\/[J2 10g(1/6)>}
i=1

IN

1
- |:62 + K(\@Re log'® m 4+ Mey/log(1/68) + 2R%log® m + M? log(1/6)>}

2

C
< — [€? +1og® m + log(1/4)] ,
where 02 = max{l + = KR+ M, LKR+2KR?, KM + KM?}, O

C Proof of Theorem

Proof. By Stein’s identity Ep,[Pr¢(x, w)] = 0, we have E, f = 0 for Vf € F,. This is because,
assuming f(z) = Bup, [0(w) Py, w)),

Epf = EznpEwnp, [U(w) Pzo(z, w)] = E,,, [U(w)TEwNP[Pw¢($vw)]] =0.

Therefore,

E,&X* f - ]Epf = ]Emwﬂx* [f(.’l))] = Ewpr [ECBN[LX* [U(w)TPm¢(wv w)H
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This gives

-

|Eﬂx* f= Epf‘ = E’wNPw [EwNﬂx* [Uj (w)PxJ (b(:c, w)”

j=1

Eaonpay By« [0 (w) Pas o, w)]|

-

j=1

Il
,M&

Eapnpy, [0 (w) g+ (w)]] -

J

Let hx j(w) = vj(w)gx, ;(w). Then Assumption1-2 gives sup,, |hx- j(we)| < Ej]\ij , V)=
1,...,m. We have

ﬁ

m m

Euwrepy, [ (W] < Bawnp, [hx  (w)] = — g hx+ i(we)| + |‘ ZhX* wy)|
€; M,
< sup |Eyep, lhx,j(w)] — hxj(wy)] + =L,
W (B [ () m; s(wo)l + L

where v;G; = {w — vj(w)gx, ;j(w): X € X™}. Therefore, we just need bound

def
Ag('wl,...'wm) ; sup |Ewpr[hX7J — thX] ’wg
hx,j€v;G;

This can be done using standard techniques in uniform concentration bounds. To do this, note that
any wy and wy,

|Ap(w, ...y we, .. W) — Ap(wr, ..., Wy, . W)
< 2811phx,j€ngj Supw |h‘XJ (w)| < 2‘/JMJ
- m - m

where we assume sup,, |v;(w)| = V;. By Mcdiarmid’s inequality, we have

mt?

Pr(Ag(wy,...,wp) > E[A(wy,...,wy)]+1t) < exp(—W).
i

On the other hand, the expectation E[A(wy, ...
of v;G;:

, Wy, )] can be bounded by Rademacher complexity

Restating the result, we have with probability 1 — §, for V§ > 0,

1 — 21og(1/6
D [Eupnp ()] = = 3 iy (w0)| < 2Ron(03G5) + Vi | 2280/,
hx, j€v;G; m4 mn
Overall, this gives
d
|Eﬂx*f_Epf Z wrpe (M5 (W)]|
d
210g(1/(5) Gij
M; .
;( m(v;G;) +V; - + Jm

L
G

where we use the fact that V2 = ZJ VP M? = Z] y M7 and € —25:1 €.

d
(VMJW+ eM) +23 R (v; ),
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We just need to bound the Rademacher complexity R, (v;G;). This requires recalling some properties
of Rademacher complexity. Let {F;: j = 1,...,n} be a set of function sets, and + > 5= Fi be

the set of functions consisting of functions of form %L Z?Zl fi,» Vfi; € F;. Then we have (see, e.g.,
Bartlett & Mendelson|(2002))

Applying this to G;, we have
Ron(Gj) < Ron(P;®) < —L.

Further, applying Lemma|[C.1]5) below, we have

Vi

\F)(M i+V) <

(Rj +V;)(M; +V;) <

Rm(ngj) S Z(Rm(gj) f

f
Iheref()re,
d

ZRm(Ujgj) <

Jj=1

(R? +2V? + M?).

Bk

Putting everything together, we get

1
B/~ Bpfl < o (VM\/Zlog(l/é) +eM + 2R +4V2 4 2M2) .
m

This concludes the proof. O
C.1 Rademacher Complexity

The following Lemma collects some basic properties of Rademacher complexity. See Bartlett &
Mendelson| (2002)) for more information.

For a function set F, its Rademacher complexity is defined as

Zazf

where the expectation is taken when o; are i.i.d. uniform {£1}-valued random variables and x;
are i.i.d. random variables from some underlying distribution. A basic property of Rademacher
complexity is that

Rm(F) =

sup
feF

i < 2R, (F).
]Sflelg Zf T; <2 (F)
Proof.
1 & 1 & /
E[Jggg a;f(:m)*]Ef <E sup m;(f(xi)f(%))H
=E ;161[})_ ;;Uz(f(ﬂfz) f(xé))H
1 m
E — i f (i
<= o)
= 2R [F]
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Lemma C.1. Let F, F1 and F> are real-valued function classes.
1) Define F1 + Fo ={f +g: f € F1, g € Fa}. We have

2) Let ¢: R — R be an L-Lipschitz function. Define p o F = {¢p o f: Vf € F}. We have

Ron (0 F) < 2LyRon (F) + %

3) For any uniformly bounded function g, we have

Ron(F +g) < Ron(F) + 19lle.

vm
4) For constant ¢ € R and ¢cF = {x — cf(z): Vf € F},
R (cF) = |c|Rm (F).
5) Define gF = {z — f(z)g(x): Vf € F}. Assume ||F||oc = supser || flloc < 00, we have

Run(9F) < 2(Ron 7] + 12y 21 4 gl

vm

Proof. 1) - 4) are standard results; see Theorem 12 in |Bartlett & Mendelson| (2002).
For 5), note that

1 1
fg= Z(f+g)2 - Z(f -9)%
3) gives
gl
Rm(]:ig) < Rm[}—] + W

Further, note that ¢(z) = 22 is 2(||F||oo + ||9l|o0 )-Lipschitz on interval [—|| F||so — ||9]] o0, || F'||oo +
[|9|]sc]- Applying 2) and then 1) and 4) gives

Ron(6F) < 2| Flloc + llallc) Ron(F) + 1012

Jm
O

Our results require bounding the Rademacher complexity R.,,,(P;®) of the Steinalized features,
P;® ={w— Pyd(x,w): x € X}. The following result bounds the Rademacher complexity of
the Steinalized set using the complexity of the original feature set and its gradient set.

Lemma C.2. Define ® = {w — ¢(x,w): V& € X} and V;® = {w — V i¢(x,w): Vo € X}
Then
R (Pj®) < [|Va, logpllooRim (@) + Rin(V; @),

where ||V, 10g p||oc = supgex |Va, logp(z)].

D Empirical Experiments

Our results show that linear features allow us to obtain accurate estimates of the first and second mo-
ments for Gaussian-like distributions, while random features can obtain a good overall distributional

approximation with high probability. To test these theoretical observations empirically, we design a
“linear+random” kernel:

k(@ o) = a(l+z'a)+ 8 ) dla, w)d(a,wy),

L=d+2
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Figure 1: Results on standard Gaussian distribution (d = 100). (a)-(b) show the MSE when using
the obtained particles to estimate the mean and second order moments of each dimension, averaged
across the dimensions. (c¢) shows the maximum mean discrepancy between the particle distribution
and true distribution. (d) shows the average values of the estimated variance (the true variance is 1).
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Figure 2: (a)-(b) Results on random 100 dimensional non-spherical Gaussian distributions whose
covariance matrix has a conditional number of Apax /Amin = 10. (¢)-(d) The performance on random
non-spherical Gaussian distributions with different conditional numbers. Results averaged on 20
random models.

where we take « = 1/(d + 1) and § = 1/(n — d — 1) in our experiments. In the case when there
are fewer particles than dimension plus one (n<d + 1), we have k(x,z’) = 1 + = "2/, which only
include the linear features, and when n > (d + 1), additional random features are added, so that the
total number of features matches the number of particles.

We take ¢(x, w) to be the random cosine feature in (6) to approximate the Gaussian RBF kernel.
Note that in our method, the random parameters {wy } are drawn in the beginning and fixed across the
iterations of the algorithm, but we adopt the bandwidth h across the iterations using the median trick.
We compare exact Monte Carlo with SVGD with different kernels, including the standard Gaussian
RBF kernel, the linear kernel k(z, ') = 1+ x " 2/, and the linear+random kernel defined above.

Gaussian Models We start with verifying our theory on a simple standard Gaussian distribution
p(x) = N(,0,I) with d = 100 dimensions. In Figure |1} we can see that all SVGD methods
estimate the mean parameters exceptionally well (Figure[I[(a)). Variance estimation is more difficult
for SVGD in general, but both the Linear+Random and Linear kernels perform well as the theory
predicts: the errors drop quickly as n approaches d + 1 (the minimum particle size needed to recover
mean and covariance matrices), and only the numerical error is left when n > d + 1.

To examine the variance estimation more closely, we show in Figure[I(d) the value of the estimated
variance (averaged across the dimensions) on the same 100-dimensional standard Gaussian distri-
bution. We find that all the variants of SVGD tend to underestimate the variance when there is
insufficient number of particles (in particular, when n < d + 1), but the kernels that include linear
features give (near) exact estimation once n > d + 1.

Figure [2] shows a similar plot for 100-dimensional non-spherical Gaussian distributions when the
conditional number of the covariance matrix varies. In particular, we set p(x) = N (x; p,Y) where
p ~ Unif([-3,3]) and © = I + aAA T, with the elements of A drawn from N(0, 1) and « adjusted
to make the conditional number Ay ax/Amin 0f ¥ equal specific numbers. When the condition number
equals 1, we should have > = .

Figure 2Ja)-(b) show the estimation of the first and second order moments when the conditional
number equals 10, in which SVGD(linear+random) and SVGD(linear) again show a near exact
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recovery after n > d + 1. Figure |ch)-(d) show that as the conditional number increases, the
accuracy of all the methods decreases, but SVGD(linear+random) and SVGD(linear) still significantly
outperform Monte Carlo estimation. The increased errors in SVGD(linear+random) and SVGD(linear)
are caused by the increase of numerical error because it is more difficult to satisfy the fixed point
equation with high accuracy when the conditional number is large.

1 > 1 0.6 % - SVGD(RBF)
_c Ja) %~ SVGD(L!nean—Random)

a 05 /x -2 5.1) 5 = 0.4 " . X SlVG(D((ISmTar)
S o - o - Sl B o k = S o2 ; > X Monte Carlo
q>)70>5 % -q>), .g 0t>7~077£-77)3'; - %
9 [TIR O 0.4 o
& 15 & RN
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Gaussianity o Gaussianity o Gaussianity o

E(zx) E(x?) MMD
} . . 15
Figure 3:  Results on Gaussian mixture models p(x) = > ,” N(ap,,I), where p; ~

Uniform([0, 1]) and « controls the Gaussianity of p (when oo = 0, p is standard Gaussian). All the
results are the relative performance w.r.t. exact Monte Carlo sampling method with the sample size
(we fix for all the methods). We fix n = 100 for all the methods and average the result over 20
random models.
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Figure 4: Results on randomly generated Gaussian-Bernoulli RBM, averaged on 20 trials.

Gaussian Mixture Models We consider a Gaussian mixture model with density fucntion p(x) =
= Z;il N(x;ap;, I), where p; is randomly drawn from Unifrom([0, 1]), and « can be viewed
as controlling the Gaussianity of p(x): when « equals zero, p(x) reduces to the standard Gaussian

distribution, while when « is large, p(2) would be highly multimodal with mixture components far
away from each other.

Figure D]shows the relative performance of SVGD with different kernels compared to exact Monte
Carlo sampling. We find that SVGD methods generally outperform Monte Carlo unless « is very
large. In Figure Dkb), we can see that SVGD(Linear) outperforms SVGD(RBF) when p is close to
Gaussian (small «), and performs worse than SVGD(RBF) when p is highly non-Gaussian (large
a). SVGD(Linear+Random) combines the advantages of both and tends to match the best of
SVGD(Linear) and SVGD(RBF) in all the range of a.

Gaussian-Bernoulli RBM  Gaussian-Bernoulli RBM is a hidden variable model consisting of a
continuous observable variable € R and a binary hidden variable h € { :I:l}d/ with probability

1
p(x, h) x Z exp(' Bh+b 'z +c h— 5“.@”%),
he{+}¥
where we randomly draw b and ¢ from A(0, I), and the elements of B from Uniform({=£0.1}).
We use d = 100 observable variables and d’ = 10 hidden variables, scl)ﬁ(w) is effectively a

Gaussian mixture with 2'© components. The results are shown in Figure [D| where we find that
SVGD(Linear+Random) again achieves the best performance in terms of all the evaluation metrics.
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