
A Proof of Theorem 3.3

Proof. Assume p is multivariate normal N (µ, Q−1) where Q is the inverse covariance matrix. We
have ∇x log p(x) = −Q(x − µ). Since k(x,x′) = x>x′ + 1, the functions in F∗ should have a
form of

f(x) =

n∑
i=1

a>i [−Q(x− µ)(x>i x+ 1) + xi] + b

= x>Wx+ v>x+ c,

where

W = −
n∑
i=1

xia
>
i Q,

v =

n∑
i=1

(µ>xi − 1)Qai

c = b+

n∑
i=1

a>i (Qµ+ xi).

Denote byX = [x1, . . . ,xn] the (d×n) matrix, A = [a1, . . . ,an] the (d×n) matrix, andB = QA.
We have

W = −XB>, (17)

v> = (µ>X − e>)B>, (18)

c = b+ e>B>µ+ tr(XA>), (19)

where e is the Rd-vector of all ones. Eq. (17) and (18) are equivalent to[
−X

µ>X − e

]
B =

[
W
v>

]
(20)

We just need to show that for any value of W ∈ Rd×d, v ∈ Rd and c ∈ R there exists A =
[a1, . . . ,an] and b that satisfies the above equation. This is equivalent to[

−I, 0
µ>,−1

]
ΦB =

[
W
v>

]

Since
[
−I, 0
µ>,−1

]
is always full rank, if Φ has a rank at least d+ 1, then (20) exits a solution for B.

We can then get A = Q−1B and solve b from (19).

B Proof of Theorem 3.5

Proof. A loss function is H-smooth iff its derivative is H-Lipschitz. For twice differentiable φ, this
just means |φ′′| ≤ H . The following result from Srebro et al. (2010) is key to our proof.

Theorem B.1 (Srebro et al. (2010) Theorem 1). For an H-smooth non-negative loss φ, such that
∀x,y,h|φ(h(x), y)| ≤ b, for any δ > 0, we have with probability at least 1− δ over a random sample
of size n that, for any h ∈ H, we have

L(h) ≤ L̂(h)+K

[√
L̂(h)

(√
H log1.5 nRn(H)+

√
b log(1/δ)

n

)
+H log3 nR2

n(H)+
b log(1/δ)

n

]
.

where K is a numerical constant that satisfies K < 105.
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We now apply this result to bound kernelized Stein discrepancy. Take φ(x, y) = (x − y)2, then
H = 2. Define gX,j(w) = Eµ̂X

[Pxjφ(x,w)] and Gj = {gX,j : ∀X ∈ Xn}. Recall that the Stein
discrepancy can be viewed as the sum of mean square losses of fitting gX,j to the zero-valued line:

D2
k(µ̂X || p) =

d∑
j=1

Lj(gX,j), where Lj(gX,j) = Ew∼pw [(gX,j(w)− 0)2],

D2
k̂
(µ̂X || p) =

d∑
j=1

L̂j(gX,j), where L̂j(gX,j) =
1

m

m∑
`=1

[(gX,j(w`)− 0)2].

We now apply Theorem B.1 to each bound the difference between the expected loss Lj(gX,j) and the
empirical loss L̂j(gX,j). From Assumption 3.4.2, we have supX,w |gX,j(w)| ≤Mj . This is because

|gX,j(w)| = | 1
n

n∑
i=1

Pxjφ(x,w)| ≤ 1

n

n∑
i=1

|Pxjφ(x,w)| ≤Mj .

Using Theorem B.1, we have with probability 1− δ, for any X ,

Lj(gX,j) ≤ L̂j(gX,j) +K

[
L̂j(gX,j)

(√
2 log1.5mRm(Gj) +

√
M2
j log(1/δ)

m

)
+ 2 log3mR2

m(Gj) +
M2
j log(1/δ)

m

]
.

By Assumption 3.4.1, |gX∗,j(w`)| ≤ εj√
m

for ∀` = 1, . . . ,m at the approximate fixed point X∗. We

have L̂j(gX,j) ≤ εj√
m

. By Assumption 3.4.3, we haveRm(Gj) ≤ Rj/
√
m. Therefore,

Lj(gX∗,j) ≤
ε2j
m

+K

[
εj√
m

(√
2 log1.5m

Rj√
m

+

√
M2
j log(1/δ)

m

)
+2 log3m

R2
j

m
+
M2
j log(1/δ)

m

]
.

Summing across j = 1, . . . , d, we get

D2
k(µ̂X∗ || p)

≤ 1

m

d∑
j=1

[
ε2j +K

(√
2Rjεj log1.5m+Mjεj

√
log(1/δ) + 2R2

j log3m+M2
j log(1/δ)

)]

≤ 1

m

[
ε2 +K

(√
2Rε log1.5m+Mε

√
log(1/δ) + 2R2 log3m+M2 log(1/δ)

)]
≤ C2

m

[
ε2 + log3m+ log(1/δ)

]
,

where C2 = max{1 + 1√
2
KR+ 1

2M, 1√
2
KR+ 2KR2, 1

2KM +KM2}.

C Proof of Theorem 3.6

Proof. By Stein’s identity Ex∼p[Pxφ(x,w)] = 0, we have Epf = 0 for ∀f ∈ F∞. This is because,
assuming f(x) = Ew∼pw [v(w)>Pxφ(x,w)],

Epf = Ex∼pEw∼pw [v(w)>Pxφ(x,w)] = Epw [v(w)>Ex∼p[Pxφ(x,w)]] = 0.

Therefore,

Eµ̂X∗ f − Epf = Ex∼µ̂X∗ [f(x)] = Ew∼pw [Ex∼µ̂X∗ [v(w)>Pxφ(x,w)]].

12



This gives

|Eµ̂X∗ f − Epf | =

∣∣∣∣∣∣
d∑
j=1

Ew∼pw [Ex∼µ̂X∗ [vj(w)Pxjφ(x,w)]]

∣∣∣∣∣∣
≤

d∑
j=1

|Ew∼pw [Ex∼µ̂X∗ [vj(w)Pxjφ(x,w)]]|

=

d∑
j=1

|Ew∼pw [vj(w)gX∗,j(w)]| .

Let hX,j(w) = vj(w)gX,j(w). Then Assumption 3.4.1-2 gives supw |hX∗,j(w`)| ≤ εjMj√
m

, ∀j =

1, . . . ,m. We have

|Ew∼pw [hX∗,j(w)]| ≤ |Ew∼pw [hX∗,j(w)]− 1

m

m∑
`=1

hX∗,j(w`)| + | 1
m

m∑
`=1

hX∗(w`)|

≤ sup
hX,j∈vjGj

|Ew∼pw [hX,j(w)]− 1

m

m∑
`=1

hX,j(w`)| +
εjMj√
m
,

where vjGj = {w 7→ vj(w)gX,j(w) : X ∈ Xn}. Therefore, we just need bound

∆`(w1, . . .wm)
def
= sup

hX,j∈vjGj
|Ew∼pw [hX,j(w)]− 1

m

m∑
`=1

hX,j(w`)|.

This can be done using standard techniques in uniform concentration bounds. To do this, note that
any w` and w′`,

|∆`(w1, . . . ,w`, . . . ,wm)−∆`(w1, . . . ,w
′
`, . . . ,wm)|

≤
2 suphX,j∈vjGj supw |hX,j(w)|

m
≤ 2VjMj

m

where we assume supw |vj(w)| = Vj . By Mcdiarmid’s inequality, we have

Pr(∆`(w1, . . . ,wm) > E[∆`(w1, . . . ,wm)] + t) ≤ exp(− mt2

2V 2
j M

2
j

).

On the other hand, the expectation E[∆`(w1, . . . ,wm)] can be bounded by Rademacher complexity
of vjGj :

E[∆`(w1, . . . ,wm)] ≤ 2Rm(vjGj).
Restating the result, we have with probability 1− δ, for ∀δ > 0,

sup
hX,j∈vjGj

∣∣∣∣∣Ew∼pw [hX,j(w)]− 1

m

m∑
`=1

hX,j(w`)

∣∣∣∣∣ ≤ 2Rm(vjGj) + VjMj

√
2 log(1/δ)

m
.

Overall, this gives

|Eµ̂X∗ f − Epf | =
d∑
j=1

|Ew∼pw [hX∗,j(w)]|

≤
d∑
j=1

(
2Rm(vjGj) + VjMj

√
2 log(1/δ)

m
+
εjMj√
m

)
.

=
1√
m

(
VM

√
2 log(1/δ) + εM

)
+ 2

d∑
j=1

Rm(vjGj),

where we use the fact that V 2 =
∑d
j=1 V

2
j , M2 =

∑d
j=1M

2
j and ε2 =

∑d
j=1 ε

2
j .
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We just need to bound the Rademacher complexityRm(vjGj). This requires recalling some properties
of Rademacher complexity. Let {Fj : j = 1, . . . , n} be a set of function sets, and 1

n

∑n
j=1 Fi be

the set of functions consisting of functions of form 1
n

∑n
j=1 fi, ∀fi ∈ Fi. Then we have (see, e.g.,

Bartlett & Mendelson (2002))

Rm(
1

n

n∑
j=1

Fi) ≤
1

n

n∑
i=1

Rm(Fi).

Applying this to Gj , we have

Rm(Gj) ≤ Rm(PjΦ) ≤ Rj√
m
.

Further, applying Lemma C.1.5) below, we have

Rm(vjGj) ≤ 2(Rm(Gj)+
Vj√
m

)(Mj +Vj) ≤
2√
m

(Rj +Vj)(Mj +Vj) ≤
2√
m

(R2
j +2Vj

2 +M2
j )

Therefore,
d∑
j=1

Rm(vjGj) ≤
2√
m

(R2 + 2V 2 +M2).

Putting everything together, we get

|Eµ̂X∗ f − Epf | ≤
1√
m

(
VM

√
2 log(1/δ) + εM + 2R2 + 4V 2 + 2M2

)
.

This concludes the proof.

C.1 Rademacher Complexity

The following Lemma collects some basic properties of Rademacher complexity. See Bartlett &
Mendelson (2002) for more information.

For a function set F , its Rademacher complexity is defined as

Rm(F) = E

[
sup
f∈F

∣∣∣∣∣ 1

m

m∑
i=1

σif(xi)

∣∣∣∣∣
]
,

where the expectation is taken when σi are i.i.d. uniform {±1}-valued random variables and xi
are i.i.d. random variables from some underlying distribution. A basic property of Rademacher
complexity is that

E

[
sup
f∈F

∣∣∣∣∣ 1

m

m∑
i=1

f(xi)− Ef

∣∣∣∣∣
]
≤ 2Rm(F).

Proof.

E

[
sup
f∈F

∣∣∣∣∣ 1

m

m∑
`=1

f(xi)− Ef

∣∣∣∣∣
]
≤ E

[
sup
f∈F

∣∣∣∣∣ 1

m

m∑
i=1

(f(xi)− f(x′i))

∣∣∣∣∣
]

= E

[
sup
f∈F

∣∣∣∣∣ 1

m

m∑
i=1

σi(f(xi)− f(x′i))

∣∣∣∣∣
]

≤ 2E

[
sup
f∈F

∣∣∣∣∣ 1

m

m∑
i=1

σif(xi)

∣∣∣∣∣
]

= 2Rm[F ].
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Lemma C.1. Let F , F1 and F2 are real-valued function classes.

1) Define F1 + F2 = {f + g : f ∈ F1, g ∈ F2}. We have

Rm(F1 + F2) ≤ Rm(F1) +Rm(F2).

2) Let φ : R→ R be an Lφ-Lipschitz function. Define φ ◦ F = {φ ◦ f : ∀f ∈ F}. We have

Rm(φ ◦ F) ≤ 2LφRm(F) +
φ(0)

m
.

3) For any uniformly bounded function g, we have

Rm(F + g) ≤ Rm(F) +
||g||∞√
m

.

4) For constant c ∈ R and cF = {x 7→ cf(x) : ∀f ∈ F},

Rm(cF) = |c|Rm(F).

5) Define gF = {x 7→ f(x)g(x) : ∀f ∈ F}. Assume ||F||∞ := supf∈F ||f ||∞ <∞, we have

Rm(gF) ≤ 2(Rm[F ] +
||g||∞√
m

)(||F||∞ + ||g||∞).

Proof. 1) - 4) are standard results; see Theorem 12 in Bartlett & Mendelson (2002).

For 5), note that

fg =
1

4
(f + g)2 − 1

4
(f − g)2.

3) gives

Rm(F ± g) ≤ Rm[F ] +
||g||∞√
m

Further, note that φ(x) = x2 is 2(||F ||∞+ ||g||∞)-Lipschitz on interval [−||F ||∞−||g||∞, ||F ||∞+
||g||∞]. Applying 2) and then 1) and 4) gives

Rm(gF) ≤ 2(||F||∞ + ||g||∞)(Rm(F) +
||g||∞√
m

).

Our results require bounding the Rademacher complexity Rm(PjΦ) of the Steinalized features,
PjΦ = {w 7→ Pxjφ(x, w) : x ∈ X}. The following result bounds the Rademacher complexity of
the Steinalized set using the complexity of the original feature set and its gradient set.

Lemma C.2. Define Φ = {w 7→ φ(x,w) : ∀x ∈ X} and ∇jΦ = {w 7→ ∇xjφ(x,w) : ∀x ∈ X}.
Then

Rm(PjΦ) ≤ ||∇x`
log p||∞Rm(Φ) +Rm(∇jΦ),

where ||∇x`
log p||∞ = supx∈X |∇x`

log p(x)|.

D Empirical Experiments

Our results show that linear features allow us to obtain accurate estimates of the first and second mo-
ments for Gaussian-like distributions, while random features can obtain a good overall distributional
approximation with high probability. To test these theoretical observations empirically, we design a
“linear+random” kernel:

k(x,x′) = α(1 + x>x′) + β

n∑
`=d+2

φ(x,w`)φ(x′,w`),
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Figure 1: Results on standard Gaussian distribution (d = 100). (a)-(b) show the MSE when using
the obtained particles to estimate the mean and second order moments of each dimension, averaged
across the dimensions. (c) shows the maximum mean discrepancy between the particle distribution
and true distribution. (d) shows the average values of the estimated variance (the true variance is 1).
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Figure 2: (a)-(b) Results on random 100 dimensional non-spherical Gaussian distributions whose
covariance matrix has a conditional number of λmax/λmin = 10. (c)-(d) The performance on random
non-spherical Gaussian distributions with different conditional numbers. Results averaged on 20
random models.

where we take α = 1/(d+ 1) and β = 1/(n− d− 1) in our experiments. In the case when there
are fewer particles than dimension plus one (n≤d+ 1), we have k(x,x′) = 1 + x>x′, which only
include the linear features, and when n > (d+ 1), additional random features are added, so that the
total number of features matches the number of particles.

We take φ(x,w) to be the random cosine feature in (6) to approximate the Gaussian RBF kernel.
Note that in our method, the random parameters {w`} are drawn in the beginning and fixed across the
iterations of the algorithm, but we adopt the bandwidth h across the iterations using the median trick.
We compare exact Monte Carlo with SVGD with different kernels, including the standard Gaussian
RBF kernel, the linear kernel k(x,x′) = 1 + x>x′, and the linear+random kernel defined above.

Gaussian Models We start with verifying our theory on a simple standard Gaussian distribution
p(x) = N (x, 0, I) with d = 100 dimensions. In Figure 1, we can see that all SVGD methods
estimate the mean parameters exceptionally well (Figure 1(a)). Variance estimation is more difficult
for SVGD in general, but both the Linear+Random and Linear kernels perform well as the theory
predicts: the errors drop quickly as n approaches d+ 1 (the minimum particle size needed to recover
mean and covariance matrices), and only the numerical error is left when n > d+ 1.

To examine the variance estimation more closely, we show in Figure 1(d) the value of the estimated
variance (averaged across the dimensions) on the same 100-dimensional standard Gaussian distri-
bution. We find that all the variants of SVGD tend to underestimate the variance when there is
insufficient number of particles (in particular, when n < d+ 1), but the kernels that include linear
features give (near) exact estimation once n ≥ d+ 1.

Figure 2 shows a similar plot for 100-dimensional non-spherical Gaussian distributions when the
conditional number of the covariance matrix varies. In particular, we set p(x) = N (x; µ,Σ) where
µ ∼ Unif([−3, 3]) and Σ = I + αΛΛ>, with the elements of Λ drawn from N (0, 1) and α adjusted
to make the conditional number λmax/λmin of Σ equal specific numbers. When the condition number
equals 1, we should have Σ = I .

Figure 2(a)-(b) show the estimation of the first and second order moments when the conditional
number equals 10, in which SVGD(linear+random) and SVGD(linear) again show a near exact
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recovery after n > d + 1. Figure 2(c)-(d) show that as the conditional number increases, the
accuracy of all the methods decreases, but SVGD(linear+random) and SVGD(linear) still significantly
outperform Monte Carlo estimation. The increased errors in SVGD(linear+random) and SVGD(linear)
are caused by the increase of numerical error because it is more difficult to satisfy the fixed point
equation with high accuracy when the conditional number is large.

R
el

at
iv

e
M

SE

0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

R
el

at
iv

e
M

SE

0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

R
el

at
iv

e
M

M
D

0 1 2 3 4 5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6 SVGD(RBF)
SVGD(Linear+Random)
SVGD(Linear)
Monte Carlo

Gaussianity α Gaussianity α Gaussianity α
E(x) E(x2) MMD

Figure 3: Results on Gaussian mixture models p(x) =
∑15
k=1N (αµk, I), where µk ∼

Uniform([0, 1]) and α controls the Gaussianity of p (when α = 0, p is standard Gaussian). All the
results are the relative performance w.r.t. exact Monte Carlo sampling method with the sample size
(we fix for all the methods). We fix n = 100 for all the methods and average the result over 20
random models.
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Figure 4: Results on randomly generated Gaussian-Bernoulli RBM, averaged on 20 trials.

Gaussian Mixture Models We consider a Gaussian mixture model with density fucntion p(x) =
1
15

∑15
j=1N (x;αµj , I), where µj is randomly drawn from Unifrom([0, 1]), and α can be viewed

as controlling the Gaussianity of p(x): when α equals zero, p(x) reduces to the standard Gaussian
distribution, while when α is large, p(x) would be highly multimodal with mixture components far
away from each other.

Figure D shows the relative performance of SVGD with different kernels compared to exact Monte
Carlo sampling. We find that SVGD methods generally outperform Monte Carlo unless α is very
large. In Figure D(b), we can see that SVGD(Linear) outperforms SVGD(RBF) when p is close to
Gaussian (small α), and performs worse than SVGD(RBF) when p is highly non-Gaussian (large
α). SVGD(Linear+Random) combines the advantages of both and tends to match the best of
SVGD(Linear) and SVGD(RBF) in all the range of α.

Gaussian-Bernoulli RBM Gaussian-Bernoulli RBM is a hidden variable model consisting of a
continuous observable variable x ∈ Rd and a binary hidden variable h ∈ {±1}d′ with probability

p(x,h) ∝
∑

h∈{±}d′
exp(x>Bh+ b>x+ c>h− 1

2
||x||22),

where we randomly draw b and c from N (0, I), and the elements of B from Uniform({±0.1}).
We use d = 100 observable variables and d′ = 10 hidden variables, so p(x) is effectively a
Gaussian mixture with 210 components. The results are shown in Figure D, where we find that
SVGD(Linear+Random) again achieves the best performance in terms of all the evaluation metrics.
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