Computing Higher Order Derivatives of Matrix and Tensor
Expressions (supplemental material)

Section 3: Tensor calculus (example reverse mode)

In the paper we have demonstrated forward mode automatic differentiation on the example of computing
first and second order derivatives of the expression f = (z ' A)x with respect to x, see Figure 1 in the paper
for the corresponding expression DAG. Here, we show all the steps for computing first and second order
derivatives of f by reverse mode automatic differentiation with respect to xz and also with respect to A.
Table 1 shows the individual steps for computing the gradients and Table 2 shows the individual steps for
computing second order derivatives.

First order derivatives. From Table 1 we can read off the derivative with respect to z and also with
respect to A. The table states that z[0] = 27 A; 8 +x; A% Taking the transpose of this expression yields the
gradient with respect to z, i.e., A5x7 0,6 +x; A} 6 = Alad + A} 66,2, or in matrix notation Az+ AT .
We get the derivative with respect to A from zZ[1] = a'z). Taking the transpose of this expression and

transforming it into matrix notation yields zz " for the derivative with respect to A.

Table 1: Individual steps of the reverse mode automatic differentiation for " Ax.

Forward trace Reverse trace

(0] = a7 (0] = o[0)6i5], + Gl0Jv[2]d], = 2T Aldi + wi A
zll]= A% _ z[1] = v[2Jv[1]6}4} =zl

v[l]= v[0]dy; = x; . o[1] = v[2]x[1] = xJA;

vf2] = o[l]z[l] = z;4; 9[2) = g[0]z[0] =z’

y[0] = v[2]z[0] = x;A%z? glo]=1

Second order derivatives. As examples for second order derivatives, we compute the derivative of
Aé?xj + A};ékkéiixi, see Figure 2 in the paper for the corresponding expression DAG, with respect to !
and also with respect to AL . Table 2 shows the individual steps of the reverse mode, where we have replaced
the expression A% §**dii by (A%)T for a more succinct representation.

Note that the derivative with respect to 2! yields the Hessian of f with respect to . From Z[0] in the first
row in the second column of Table 2 we can read off this Hessian as AF + (AL)T. Translating this expression
back to matrix notation and taking the transpose yields the expected result A+ AT.

The second order derivative % can be read off from Z[1] in the second row in the second column

of Table 2 as 5{“:107" + 2;6%™. This derivative is a third order tensor that cannot be represented in standard
matrix notation.

Table 2: Individual steps of the forward mode for the Hessian of 2T Az with respect to x.

Forward trace Reverse trace
2[0]= 27 b 2[0)= o[3Jo[1]s] +o[0)ois] = Af + (4})7
all]= A% ' z[1)= o[1)670;67" + 0[2]67%0;,6;07 = a™Of + a6
v[0] = «[0]d; =z v[0] = v[4]v[2] = (4)7
o[l] = x[1)6F = AF o[1] = v[3]z[0] = a’
v[2] = z[1]67%6;; = (A}C)T 7[2] = v[4]v[0] =z
v[3] = z[0Jv[1] = A?xj _ 7[3] = g[0] - 1 =1
o4l =ol0] = (ADTe | ol4)=gl0]-1 1
0= o8l 4 vle] = Abad (ATt | glo]=1

Section 4: Experiments

Here we provide the missing results for the first set of experiments, where we measured the time for evaluating
function values and gradients for the example problems (quadratic function, logistic regression, and matrix
factorization). We also report the results for the second set of experiments, namely the running times for
evaluating Hessians on the GPU.

For the general set up of the experiments please refer to the paper. Here we only want to add that in
order to account for outliers and noise, the reported running times were obtained as follows: Each experiment
was run in ten batches of five runs each. The running times for each batch were averaged, and the three
batches with the worst average running times were not considered. Hence, the reported running times are
the average of the average running times of the seven best batches. Such a setup also removes the overhead
that is caused by TensorFlow of optimizing the execution of the expression graph on the GPU. The first
few evaluations of the expression graph can be slower than consecutive ones because TensorFlow optimizes
the execution schedule based on the first runs. Hence, we automatically take only the optimized runs into
account.

First set of experiments. The measured running times for evaluating function values and gradients on
the CPU are shown in Figure 1 and reported in Table 3, and the corresponding running times on the GPU
are shown in Figure 2 and reported in Table 4.

Second set of experiments. The measured running times for evaluating Hessians on the CPU are shown
in Figure 3 (in the paper) and reported in Table 5, and the corresponding running times on the GPU are
shown in Figure 3 and reported Table 6.

Discussion. As we have already discussed in the paper, in general we observe that all frameworks perform
roughly similarly when evaluating function values and gradients on the CPU, see Figure 1. For the quadratic
function and the logistic function the difference in speed between the fastest and the slowest framework is
about a factor of two. For the matrix factorization problem our approach is roughly three times faster than
the best competing framework. Still, we would call all frameworks equally fast. On the GPU all frameworks
also perform similarly good when computing function values and gradients as can be observed in Figure 2.
Our framework is now about a factor of two slower than the fastest framework. This is not surprising since
the GPU support of our framework is simply through CuPy without any tuning. However, in this paper we
focus on the algorithmic improvement and not on an engineering improvement.

The situation changes when we consider higher order derivatives, here more specifically the evaluation
of Hessians. Our approach is up to two orders of magnitude more efficient than the existing frameworks
for evaluating Hessians on the CPU. The advantage of our approach is even more pronounced on the GPU,
where we observe a speed up of up to three orders of magnitude. As we have pointed out in the paper the
reason for this comes from the fact, that our approach is able to produce compact matrix expressions that
can be mapped to efficient BLAS implementations as opposed to large expression graphs.

Figures for function value and gradient experiments on the CPU and GPU

= our approach
= tensorflow

= our approach
= tensorflow

= our approach
= tensorflow

107

= theano = theano | theano
= pytorch = pytorch 10 = pytorch
= gutograd = autograd

time /s
time /s

V
10 /
1072

10% 2x10% 3x10% 104 2x10% %107 6x10° 7x10° 8x10° 9x10° 104
m m m

Figure 1: Log-log plot of the running times for evaluating the function value and gradient on the CPU for
the quadratic function (left), logistic regression (middle), and matrix factorization (right).

== our approach = our approach = our approach
=~ tensorflow =~ tensorflow =~ tensorflow
= theano = theano

pytorch

= pytorch

= pytorch

— theano
1072
6x1073
4x10°?
3x1073

104 2x10% 3x10% 4x10% 6x10% 10* 2x10% 6x10% 7x10° 8x10° 9x10° 10¢
m m m

time /s
time /s
time /s

Figure 2: Log-log plot of the running times on the GPU for evaluating the function value and gradient for
the quadratic function (left), logistic regression (middle), and matrix factorization (right)

Figures for Hessian experiments on the GPU

= Our approach
= tensorflow

= theano
= pytorch

10t

100 /

10°

\\

w 0w 0
o = our approach o o = Our approach
£ ~— tensorflow £ £ ~— tensorflow
02| ™ theano 107t = theano
= pytorch 1072 === pytorch

-2
10 10-2

\

-//

2x10% 3x10° 4x10° 6x10° 104 2x10% 3x10° 4x10° 6x10% 104 2x102 3x102 4x10? 6 x 102 10°
m m m

1074

Figure 3: Log-log plot of the running times on the GPU for evaluating the Hessian for the quadratic function
(left), logistic regression (middle), and matrix factorization (right).

Tables for function value and gradient experiments on the CPU

Table 3: Running times for evaluating function value and gradient on the CPU

Quadratic function with z € R™ and A € R™*™

m our approach TensorFlow Theano PyTorch autograd

10,000 0.020 0.034 0.030 0.021 0.055
15,000 0.047 0.081 0.070 0.064 0.075
20,000 0.084 0.150 0.124 0.150 0.127
25,000 0.129 0.228 0.192 0.236 0.193
30,000 0.189 0.344 0.285 0.349 0.287

Logistic regression with X € R™*" w € R", and y € {£1}™

m n our approach TensorFlow Theano PyTorch autograd
10,000 5,000 0.0097 0.0199 0.0152 0.0109 0.0152
12,000 6,000 0.0142 0.0328 0.0217 0.0151 0.0219
14,000 7,000 0.0196 0.0421 0.0300 0.0213 0.0298
16,000 8,000 0.0261 0.0467 0.0390 0.0274 0.0391
18,000 9,000 0.0332 0.0613 0.0499 0.0305 0.0497
20,000 10,000 0.0408 0.0790 0.0605 0.0474 0.0607
22,000 11,000 0.0498 0.0851 0.0750 0.0511 0.0738
24,000 12,000 0.0597 0.1009 0.0914 0.0612 0.0882

Matrix factorization with U € R™** V e R*™** T € R™*" and k=5

m =mn our approach TensorFlow Theano PyTorch autograd

5,000 0.050 0.209 0.402 0.140 0.150
6,000 0.074 0.301 0.582 0.168 0.216
7,000 0.101 0.408 0.791 0.222 0.292
8,000 0.132 0.532 1.035 0.364 0.382
9,000 0.167 0.673 1.310 0.474 0.481
10,000 0.208 0.830 1.649 0.573 0.594

Tables for function value and gradient experiments on the GPU

Table 4: Running times for evaluating function value and gradient on the GPU

Quadratic function with z € R™ and A € R™*™

m our approach TensorFlow Theano PyTorch
10,000 0.0016 0.0015 0.0015 0.0013
20,000 0.0087 0.0043 0.0056 0.0038
30,000 0.0200 0.0096 0.0132 0.0086
40,000 0.0346 0.0157 0.0224 0.0152

Logistic regression with X € R™*" w € R", and y € {£1}™

m n our approach TensorFlow Theano PyTorch
10,000 5,000 0.0010 0.0010 0.0008 0.0009
20,000 10,000 0.0049 0.0024 0.0028 0.0021
30,000 15,000 0.0112 0.0052 0.0068 0.0047
40,000 20,000 0.0272 0.0084 0.0112 0.0076

Matrix factorization with U € R™** V e R*™** T ¢ R™*" and k=5

m =mn our approach TensorFlow Theano PyTorch
6,000 0.00037 0.0035 0.00018 0.0026
8,000 0.00037 0.0063 0.00017 0.0045

10,000 0.00038 0.0092 0.00017 0.0089

12,000 0.00038 0.0129 0.00017 0.0123

Tables for Hessian experiments on the CPU

Table 5: Running times for evaluating Hessians on the CPU

Quadratic function with z € R™ and A € R™*™

m our approach TensorFlow Theano PyTorch autograd
1,000 0.0015 0.0750 0.0995 0.2644 0.4626
2,000 0.0073 0.5356 0.6261 0.9883 1.5680
3,000 0.0299 1.8064 2.2292 2.8921 4.1246
4,000 0.0758 4.8774 11.260 12.283 14.510
5,000 0.1184 9.6634 24.555 26.322 28.919

Logistic regression with X € R™*" w € R", and y € {£1}™

m n our approach TensorFlow Theano PyTorch autograd
2,000 1,000 0.015 0.145 0.170 0.346 0.500
4,000 2,000 0.127 1.063 1.227 1.585 2.183
6,000 3,000 0.416 4.417 9.996 10.72 12.07
8,000 4,000 0.902 10.20 25.67 26.38 28.06

10,000 5,000 1.727 20.31 52.26 52.89 56.20

Matrix factorization with U € R™*F vV € R™*F T € R™*" and k=5

m =mn our approach TensorFlow Theano PyTorch autograd
100 0.0015 0.0501 0.0561 0.1470 0.2426
200 0.0057 0.3425 0.3217 0.4787 0.6541
300 0.0130 1.0306 1.0273 1.1085 1.3250
400 0.0250 2.4542 2.3589 1.1996 2.2952
500 0.0480 4.7998 4.9174 2.1030 3.8720

Tables for Hessian experiments on the GPU

Table 6: Running times for evaluating Hessians on the GPU

Quadratic function with z € R™ and A € R™*™

m our approach TensorFlow Theano PyTorch

2,000 0.0001 0.1620 0.1836 0.6968
4,000 0.0003 0.7360 0.8391 1.6399
6,000 0.0008 2.2008 2.3612 4.4334
8,000 0.0017 4.9623 5.1882 7.5246
10,000 0.0029 9.4902 9.8004 13.584

Logistic regression with X € R™*" w € R", and y € {£1}™

m n our approach TensorFlow Theano PyTorch
4,000 2,000 0.0026 0.2645 0.2889 0.8191
8,000 4,000 0.0202 1.3833 1.4549 2.3199

12,000 6,000 0.0611 4.4498 4.5821 10.3117
16,000 8,000 0.1389 9.7879 9.9819 11.2283
20,000 10,000 0.2760 18.8960 19.1196 20.7802

Matrix factorization with U € R™*F vV € R™*F T € R™*" and k=5

m =mn our approach TensorFlow Theano PyTorch
200 0.0005 0.2079 0.1695 0.6208
400 0.0007 0.4093 0.3750 1.1400
600 0.0007 0.6544 0.6645 1.7858
800 0.0008 0.8818 1.0033 2.3074

1000 0.0012 1.1191 1.4180 3.1574

