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Abstract

We consider a generalization of mixed regression where the response is an additive
combination of several mixture components. Standard mixed regression is a special
case where each response is generated from exactly one component. Typical
approaches to the mixture regression problem employ local search methods such
as Expectation Maximization (EM) that are prone to spurious local optima. On the
other hand, a number of recent theoretically-motivated Tensor-based methods either
have high sample complexity, or require the knowledge of the input distribution,
which is not available in most of practical situations. In this work, we study a novel
convex estimator MixLasso for the estimation of generalized mixed regression,
based on an atomic norm specifically constructed to regularize the number of
mixture components. Our algorithm gives a risk bound that trades off between
prediction accuracy and model sparsity without imposing stringent assumptions on
the input/output distribution, and can be easily adapted to the case of non-linear
functions. In our numerical experiments on mixtures of linear as well as nonlinear
regressions, the proposed method yields high-quality solutions in a wider range of
settings than existing approaches.

1 Introduction

The Mixed Regression (MR) problem considers the estimation of K functions from a collection of
input-output samples, where for each sample, the output is generated by one of the K regression
functions. When fitting linear functions in a noiseless setting, this is equivalent to solving K
linear systems, while at the same time, identifying which system each equation belongs to. The
MR formulation can be employed as an approach to decompose a complicated function into K
simpler ones, by splitting the observations into K classes. Variants of regression families such as
piecewise-linear regression can be viewed as special cases of MR.

However, the MR problem is NP-hard in general [1] due to the simultaneous fitting of the discrete
class labels as well as the regression functions. Standard approaches to the mixture problem employ
local search methods such as Expectation Maximization (EM) [2] and Variational Bayes [3] that are
prone to spurious local optima. There have thus been several lines of recent work studying estimation
of mixed regression models with strong statistical guarantees under additional statistical assumptions.
For the special case of linear function with K=2 components, [4] propose a convex nuclear norm
minimization formulation that is guaranteed to estimate the two functions with minimax-optimal rates
when given a sub-Gaussian design matrix. With the additional conditions of zero noise and isotropic
Gaussian inputs, [1] propose an initialization for the EM algorithm to guarantee exact recovery of
the true parameters. However, in addition to the stringent statistical assumptions, these methods and
results are specialized to the case of two components, and seem non-trivial to generalize.
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For problems with more than two components, most of the existing approaches [5, 6, 7, 8] rely
on the Tensor Methods. In particular, for a D-dimensional linear MR problem, [6] propose a
convex optimization formulation using a third-order tensor, which results in a computational cost
of O(ND12) and a sample complexity of O(D6/ε2), limiting its application to problems of small
dimension. The Tensor Decomposition approach proposed in [5] has a sample complexity of only
O(D3K4/ε2) and is computationally efficient. However, it requires the knowledge of the input
probability distribution in order to derive the score function used in their algorithm, which might not
be available, and estimating the density over the D-dimensional input variables could be an even
harder problem than MR itself. Other recent work [7, 8] show that in the noiseless setting with
isotropic Gaussian inputs, an Alternating Minimization algorithm initialized with the Tensor Method
leads to exact recovery of the true parameters. These latter methods have sample complexities linear
inD, but withO(KK), O(K10) dependencies inK respectively. Finally, [9] observed that, under the
assumption of well-separated data, one can use a guaranteed clustering algorithm to find the mixture
assignment of each observation, and thus solves the MR problem as a by-product. However, the data
distribution considered in MR, such as those assumed in [5, 6, 7, 8], are usually not well-separated
(see our Figure 3 as an example).

In this work, we address a generalized version of Mixed Regression where the output can be an
additive combination of several mixture components. Our approach follows the general meta-approach
emerging in the recent years of addressing latent-variable model estimation from the perspective of
high-dimensional sparse estimation [10, 11, 12]. We propose a novel convex estimator MixLasso for
the mixed regression problem, which enforces the mixture structure through minimizing a carefully
constructed atomic norm that acts as a surrogate function for the number of mixture components.
We then propose a greedy algorithm that generates a steepest-descent component at each iteration
through solving a sub-problem similar to MAX-CUT. Our analysis of the algorithm gives a risk
bound that trades off prediction accuracy and model sparsity, with a sample complexity that is linear
in both D and K, and without imposing any stringent assumptions on, or assuming knowledge of, the
input/output distribution beyond that of boundedness, and even allowing for model mis-specification.
This makes our MixLasso algorithm a theoretically sound method for a wide range of practical
settings. Moreover, we also show how our proposed method can be easily extended to the nonlinear
regression setting, to regression functions lying in a Reproducing Kernel Hilbert Space (RKHS).
Our experiments with both generalized MR and standard MR show that the proposed method finds
high-quality solutions in a wider range of settings when compared to existing approaches.

2 Generalized Mixed Regression

In Generalized Mixed Regression, the response y ∈ R, given covariates x ∈ X , is specified as:

y =

K∑
k=1

zkfk(x) + ω (1)

where zk ∈ {0, 1}, k = 1, . . . ,K is a latent binary vector indicating the presence or absence of each
component, and fk(xi) : RD → R is the regression function of k-th component. The standard mixed
regression is a special case of (1) with additional constraint ‖z‖0 = 1. Here ω ∈ R is a noise term
with both bias and variance. In other words, we consider the very general setting where we allow
for model mis-specification, and in general E[ω|x, z] 6= 0. This makes our problem setting in (1)
very practically plausible, especially when the regression functions {fk(x)}Kk=1 lie in some restricted
family such as linear functions. Our goal is to find F := {fk(x)}Kk=1 minimizing the risk

r(F) := E

[
min

z∈{0,1}K
1

2
(y −

K∑
k=1

zkfk(x))2

]
, (2)

while keeping the number of components K as small as possible. This yields a trade-off between
r(F) and K. While one can always have a small risk with K → ∞, we would like to find the
smallest K that achieves such risk.

3 MixLasso: Convex Estimation via Atomic Norm

In the following, we will first focus on the linear case fk(x) := 〈wk,x〉 and consider extension
to nonlinear functions in Section 4.2. Given a collection of i.i.d. samples {(xi, yi)}Ni=1, the `2-
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regularized Empirical Risk Minimization (ERM) problem for our task (2) is

min
W∈RK×D,zi∈{0,1}K

1

2N

N∑
i=1

(yi − zTiWxi)2 +
τ

2
‖W‖2F . (3)

(3) is a hard optimization problem in general due to the simultaneous minimization w.r.t. parameters
W and binary hidden variables {zi}Ni=1 [1]. However, given hidden variables, the problem is convex
w.r.t. W , and thus, from the duality theory (3) is equivalent to

min
Z∈{0,1}N×K

max
α∈RN

−1

N

N∑
i=1

L∗(yi,−αi)−
1

2N2τ
tr(D(α)XXTD(α)ZZT) (4)

where Z := (zi)
N
i=1, D(α) is a diagonal matrix formed by vector α, and L∗(y, α) = yTα+ 1

2‖α‖
2

is the convex conjugate of square loss L(y, ξ) = 1
2 (y − ξ)2. The maximizer α∗ of (4) and minimizer

W ∗ of (3) are related by W ∗ = 1
Nτ

∑N
i=1 α

∗
i (zix

T
i ) = 1

NτZ
TD(α∗)X .

A key observation for our formulation is that, although (4) is non-convex w.r.t. Z, it is a convex
function of M := ZZT (since it is a maximum over linear functions of M ). Therefore, the
intractability of (4) only lies in the combinatorial constraint M = ZZT for some Z ∈ {0, 1}N×K .
To relax such constraint, we introduce an atomic norm [13] of the form

‖M‖S := min
c≥0

∑
a∈S

ca s.t. M =
∑
a∈S

caa. (5)

where S := {zzT|z ∈ {0, 1}N}. Note if ca takes integer values {0, 1}, M =
∑
a∈S caa = ZZT

for some Z ∈ {0, 1}N×K and ‖M‖S = K. When ca is allowed to be any nonnegative number, (5)
serves as a convex approximation to the number of components K in a sense similar to `1-norm
as a convex approximation for the number of non-zero elements in Lasso [14]. Then the MixLasso
estimator minimizes minM∈RN×N

+
g(M) + λ‖M‖S where

g(M) := max
α∈RN

− 1

2N2τ
tr(D(α)XXTD(α)M)− 1

N

N∑
i=1

L∗(yi,−αi) (6)

4 Algorithm

The convex formulation (6) is still a challenging optimization problem since it involves an atomic
norm defined over K̄ := 2N atoms. An equivalent formulation expresses (6) as the minimizatioin of

F (c) := g

( K̄∑
k=1

ckz
kzkT

)
+ λ‖c‖1 (7)

w.r.t. c ∈ RK̄+ , where {zk}K̄k=1 enumerates ∀z ∈ {0, 1}N . We introduce a greedy algorithm
(Algorithm 1) for MixLasso, which maintains a sparse set of active components and adds one more
active component zkzkT at each iteration corresponding to the steepest descent direction

min
z∈{0,1}N

〈∇g(M), zzT〉 = − 1

2N2τ
max

z∈{0,1}N
〈D(α∗)XXTD(α∗), zzT〉, (8)

where α∗ is the maximizer in (6). As we show in Section 4.1, (8) is equivalent to a MAX-CUT
like problem that can be solved efficiently with a constant-ratio approximation guarantee. Then
we minimize (7) w.r.t. coefficients corresponding to the active components through a sequence of
proximal gradient updates:

cs+1
k ←

[
csk −

1

γ|A|
(zkT∇g(Ms)zk + λ)

]
+

(9)

for k ∈ A, and s = 1 . . . S, where γ is the Lipschitz-continuous parameter of the coordinate-wise
gradient zkT∇g(M)zk. The evaluation of ∇g(Ms) involves finding the maximizer α∗, which can
be obtained by solving the least-square problem:

W ∗ := argmin
W∈R|A|×D

1

2N

N∑
i=1

(yi − zTiWxi)2 +
τ

2
tr(WTD−1(cA)W ) (10)
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Algorithm 1 A Greedy Algorithm for MixLasso (6)

Initialize A = ∅, c = 0.
for t = 1...T do

1. Find a greedy component zzT by solving (8).
2. Add zzT to the active set A.
3. Minimize (7) w.r.t. coordinates cA in the active set A through updates (9).
4. Eliminate {zkzkT|ck = 0} from A.

end for.

and compute α∗i = (yi − zTiW ∗xi). Let E be the N × (|A|D) design matrix of the least-square
problem (10). By maintaining E, ETE whenever the active set A changes, solving the least-square
problem (10) costs O(D3|A|3) amortizedly.

4.1 Greedy Generation of Components

Problem (8) for finding the steepest descent direction is a convex maximization problem with binary-
valued variables and is hard in general. However, we show that it is equivalent to a Boolean Quadratic
Maximization problem similar to MAX-CUT, where constant-ratio approximate algorithm exists
through a Semidefinite Relaxation [15]. Furthermore, the Semidefinie Relaxation of this type has
scalable solver that requires only complexity linear to the coefficient matrix [16, 17].

Let C = D(α∗)XXTD(α∗). The greedy step (8) solves a problem of the form
maxz∈{0,1}N 〈C, zzT〉, which can be reduced to a problem of binary variables v ∈ {−1, 1}N
via a transformation v = 2z − 1:

max
v∈{−1,1}N

1

4

(
〈C,vvT〉+ 2〈C,1vT〉+ 〈C,11T〉

)
. (11)

where 1 denotes N -dimensional vector of all 1s. By introducing a dummy variable v0, (11) is
equivalent to

max
(v0;v)∈{−1,1}N+1

1

4

[
v0

v

]T [
1TC1 1TC
C1 C

] [
v0

v

]
. (12)

Note one can always find a solution of v0 = 1 by flipping signs of the solution since this does not
change the objective value. Let the matrix in (12) be Ĉ. Problem of form (12) is a Boolean Quadratic
problem similar to MAX-CUT, for which there is Semidefinite relaxation of the form

max
V ∈SN

〈Ĉ, V 〉

s.t. V � 0, diag(V ) = 1
(13)

and rounding from which guarantees a solution v̂ to (12) satisfying h − h(v̂) ≤ ρ(h − h) with
ρ = 2/5 [15], where h(v) denotes the objective function of (12) and h, h denote the maximum and
minimum of the objective in (12) respectively. Note this result holds for any symmetric matrix Ĉ.
Since our problem has a positive-semidefinite matrix Ĉ, we have h = 0 and therefore the component
zk found this way satisfies

−zkT∇g(M)zk = h(v̂) ≥ µh = µ max
z∈{0,1}N

−zT∇g(M)z (14)

with µ = 1− ρ = 3/5. Semidefinite Programming of the form (13) allows specialized solver with
iteration cost linear to the matrix size nnz(Ĉ) [16, 17]. And it is worth mentioning that, since our
matrix Ĉ has low-rank structure (8), our implementation of the SDP solver [17] can further reduce
the complexity per iteration from nnz(Ĉ) to nnz(X).

4.2 Nonlinear Extension

A simple way to consider a nonlinear version of the MixLasso estimator is to consider each component
fk(x) lying in a Reproducing Kernel Hilbert Space (RKHS)H with respect to some Mercer kernel
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K(·, ·). In this setting, given {zi}Ni=1, the minimizer {f∗k}Kk=1 of

min
fk∈H

1

2N

N∑
i=1

(
yi −

K∑
k=1

zikfk(xi)

)2

+
τ

2

K∑
k=1

‖fk‖2H (15)

satisfies the condition of the Representer Theorem that ensures an expression of the form f∗k (x) =∑N
i=1 αizikK(xi,x), k ∈ [K], for the minimizer, and results in a MixLasso estimator (6) with

g(M) := max
α∈RN

− 1

2N2τ
tr(D(α)QD(α)M)− 1

N

N∑
i=1

L∗(yi,−αi) (16)

where Q : N × N is the kernel matrix with Qij = K(xi,xj). Then Algorithm 1 can be applied
with the only difference on the evaluation of gradient ∇g(M), which requires finding the maximizer
α∗ of (16) by solving the following linear system: ( 1

NτQ ◦M + I)α = y. where ◦ denotes the
elementwise product.

4.3 Rounding Procedure for Generalized & Standard Mixed Rregression

While the atomic-norm regularization λ‖M‖S is a good convex relaxation of the number of compo-
nents, the number of non-zero components getting from estimator (6) cannot be precisely specified
apriori by the hyper-parameter λ directly. In practice, it is often useful to obtain a solution c with
exactly ‖c‖0 = K non-zeros. This can be achieved by setting the K coefficients of largest magnitude
to 1 and all the other coefficients to 0. This results in a N ×K matrix of hidden assignments Ẑ as the
output of Algorithm 1. Then, starting from Ẑ, we can perform a number of alternating minimization
steps between model parameters W (or {fk}Kk=1 in general) and hidden assignments {zi}Ni=1 until
convergence, as in a standard EM algorithm (with MAP hard assignment on zi).

While we have proposed a solution of the generalized version (1), in some applications, it might be
of interest to solve the special case of standard mixed regression, where each observation belongs
to exactly one mixture component. One approach to convert a generalized mixture solution with K
components to a standard mixture of J components is to find the most frequent J patterns z1, z2, ..., zJ
from the estimated hidden assignments {ẑi}Ni=1, and then force each observation to choose their
hidden assignments {zi}Ni=1 from the set {zj}Jj=1 instead of arbitrary 0-1 patterns {0, 1}K . This
results in J functions {fj}Jj=1 of the form fj(x) =

∑K
k=1 zjkfk(x), j ∈ [J ], being actually used in

the training observation, and thus gives a valid model {fj}Jj=1 of standard mixed regression with
J components. Then as noted previously, one can further refine this rounded solution through EM
iterates of standard mixed regression, initialized with component functions {fj}Jj=1.

5 Analysis

5.1 Convergence Analysis

We assume y and x are bounded such that |y| ≤ Ry , ‖x‖2 ≤ Rx. And without loss of generality, we
assume the data are scaled such that Ry = Rx = 1. Then the following theorem guarantees the rate
of convergence for Algorithm 1 up to a certain precision determined by the approximation ratio given
in (14).
Theorem 1. Let F (c) be the objective (7). The greedy algorithm (Algorithm 1) satisfies

F (cT )− F (c∗) ≤ 2γ‖c∗‖21
µ2

(
1

T

)
. (17)

for any iterate T satisfying F (cT ) − F (c∗) ≥ 2(1−µ)
µ λ‖c∗‖1, where c∗ is any reference solution,

µ = 3/5 is the approximation ratio given by (14) and γ is the Lipschitz-continuous constant of the
coordinate-wise gradient zkT∇g(M)zk, ∀k ∈ [K̄].

Then the following lemma shows that, with the additional assumption that F (c) is strongly convex
over a restricted support setA∗, one can get a bound in terms of the `0-norm of the reference solution.
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Figure 1: Results for Noiseless Mixture of Linear Regression with N(0, I) input distribution (Top)
and U(−1, 1) input distribution (Bottom), where (Left) D=100, K=3, (Middle) D=20, K=10, and
(Right) Generalized Mixture of Regression with D=20, K=3.

0 500 1000 1500 2000 2500 3000 3500 4000

N

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
a
ra

m
e
te

r-
E

rr
o
r

Normal-Noisy-D=100-K=3

ALT-random

ALT-tensor

EM-random

EM-tensor

MixLasso

0 0.5 1 1.5 2

N
×10

4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
a
ra

m
e
te

r-
E

rr
o
r

Normal-Noisy-D=20-K=10

ALT-random

ALT-tensor

EM-random

EM-tensor

MixLasso

0 500 1000 1500

N

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
a
ra

m
e
te

r-
E

rr
o
r

Generalized-Normal-Noisy-D=20-K=3

EM-random

MixLasso

0 500 1000 1500 2000 2500 3000 3500 4000

N

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
a
ra

m
e
te

r-
E

rr
o
r

Uniform-Noisy-D=100-K=3

ALT-random

ALT-tensor

EM-random

EM-tensor

MixLasso

0 0.5 1 1.5 2

N
×10

4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
a
ra

m
e
te

r-
E

rr
o
r

Uniform-Noisy-D=20-K=10

ALT-random

ALT-tensor

EM-random

EM-tensor

MixLasso

0 500 1000 1500

N

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
a
ra

m
e
te

r-
E

rr
o
r

Generalized-Uniform-Noisy-D=20-K=3

EM-random

MixLasso

Figure 2: Results for Noisy (σ = 0.1) Mixture of Linear Regression with N(0, I) input distribution
(Top) and U(−1, 1) input distribution (Bottom), where (Left) D=100, K=3, (Middle) D=20, K=10,
and (Right) Generalized Mixture of Regression with D=20, K=3.

Lemma 1. Let A∗ ∈ [K̄] be a support set and c∗ := argminc:supp(c)=A∗ F (c∗). Suppose F (c) is

strongly convex on A∗ with parameter β. We have ‖c∗‖1 ≤
√

2‖c∗‖0(F (0)−F (c∗))
β .

Since F (0)− F (c∗) ≤ 1
2N

∑N
i=1 y

2
i ≤ 1 , from (17), we have

F (cT )− F (c∗) ≤ 4γ‖c∗‖0
βµ2

(
1

T

)
+

2(1− µ)λ

µ

√
2‖c∗‖0
β

. (18)

for any c∗ := argminc:supp(c)=A∗ F (c).

5.2 Generalization Analysis

In this section, we investigate the performance of output from Algorithm 1 in terms of the risk (2).
Given a coefficients c with support A, we can construct the weight matrix by Ŵ (c) = D(

√
cA)W

with W = ZT
AD(α∗)X , where ZA = (zk)k∈A and α∗ is the maximizer in (6) as a function of c.

From the duality between (3) and (4), Ŵ satisfies

F (cA) =
1

2N

N∑
i=1

(yi − zTi Ŵxi)2 +
τ

2
‖W‖2F + λ‖cA‖1. (19)
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The following theorem gives a risk bound for the output weight matrix Ŵ (c) from Algorithm 1.

Theorem 2. Let A, ĉ, Ŵ be the set of active components, coefficients and corresponding weight
matrix obtained from T iterations of Algorithm 1, and W̄ be the minimizer of the population risk
(2) with K components and ‖W̄‖F ≤ R. We have r(Ŵ ) ≤ r(W̄ ) + ε with probability 1 − ρ for
T ≥ 4γ

µ2β (Kε ) and N = Ω(DKε3 log(RKερ )) with λ, τ chosen appropriately as functions of N .

Note the output of Algorithm 1 has number of components K̂ ≤ T . Therefore, Theorem 2 gives
a trade-off between the suboptimality of risk r(Ŵ ) − r(W̄ ) ≤ ε and number of components
K̂ = O(K/ε). Note the result of Theorem (2) is obtained without distributional assumption on
the input/output (except boundedness), so it is in general not possible to guarantee convergence to
an optimal risk with exactly K components, since finding such optimal solution is NP-hard even
measured by the empirical risk [1]. It remains open if one can give a tighter result for the estimator (6)
that achieves ε-suboptimal risk with number of components being a constant multiple of K, or derive
a bound on the parameter estimation error, possibly with additional assumptions on the observations.

6 Experiments

In this section, we compare the proposed MixLasso method with other state-of-the-art approaches
listed as follows. (i) EM-Random: A standard EM algorithm that alternates between minimizing
{zi}Ni=1 and {fk(x)}Kk=1 until convergence, with random initialized W∼ N(0, I) in the linear case
and random initialized Z∼Multinoulli(1/K) in the nonlinear case. Each point in the figures is
the best result out of 100 random trials. (ii) EM-Tensor: The EM algorithm initialized with Tensor
Method proposed in [8]. The formula of Tensor Method is derived assuming xi ∼N(0, I). We adopt
implementation provided by the author of [7]. (iii) ALT-Random: An Alternating Minimization
algorithm proposed in [7] with the same initialization strategy and number of trails as EM-Random.
(iv) ALT-Tensor: The Alternating Minimization algorithm initialized with Tensor Method proposed
in [7]. The formula of Tensor Method is derived assuming xi ∼ N(0, I). We adopt implementation
provided by the author of [7]. (v) MixLasso: The proposed estimator with Algorithm 1. We round
our solution to exact K components according to the rounding procedure described in Section 4.3 for
generalized MR and standard MR respectively. The rounded solution is further refined by EM iterates.
For the linear case, we compare methods using the root mean square error on the learned parameters
W compared to the ground-truth parameters W ∗ of size K ×D: minS:|S|=K

‖WS,:−W∗‖F√
DK

, where
S denotes a multiset that selects the best matched row in W for each row in W ∗. For the nonlinear
case, we compare methods using RMSE between the predicted value and the ground-truth function

value:
√

1
N

∑N
i=1(

∑K
k=1 zikfk(xi)−

∑K
k=1 z

∗
ikf
∗
k (xi))2.

6.1 Experiments on Synthetic Data

We generate 14 synthetic data sets according to the model: yi =
∑K
k=1 zikfk(x) + ωi, i ∈ [N ],

where Syn1∼Syn12 are generated by D-dimensional linear models fk(x) = wT
k x and Syn13∼Syn14

are generated by 1-dimensional polynomial model of degree 6: fk(x) =
∑6
j=1 wkjx

j . Figure 1 and 2
give experimental results of the linear model in the noiseless and noisy case respectively. We observe
that, in the case of Normal input distribution (Syn1, Syn2, Syn7, Syn8) (top row), both the Tensor-
initialized methods and MixLasso consistently improve upon random-initialized EM/ALT (even
with 100 trials) in terms of the number of samples required to achieve a good performance, where
ALT performs better than EM in higher dimensional case (D = 100,K = 3) whileEM performs
better for cases of more components (D = 20,K = 10); meanwhile, MixLasso leads to significant
improvements in both cases. On the other hand, when the input distribution becomes U(-1,1) (Syn4,
Syn5, Syn10, Syn11), the tensor-initialized method becomes even worse than the random-initialized
ones, presumably due to the model mis-specification, while MixLasso still consistently improve
upon the random initialized EM/ALT. Note we are testing Tensor Method derived based on the
Normal assumption on data with Uniform input on purpose. The fgoal is to see the effect of model
misspecification on the Tensor approach, as in practice one would always have model misspecification
to some degree. The rightmost columns of Figure 1, 2 show the results on data generated from
the generalized mixed regression model (Syn3, Syn6, Syn9, Syn12), where Tensor-based methods
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Figure 3: Results on Mixture of 6th-order Polynomial Regression of K=4 components with noise
(Bottom) and without noise (Top). (Left) The best result of EM out of 100 random initialization.
(Middle) Solution from MixLasso followed by fine-tuning EM iterates. (Right) Comparison in terms
of RMSE.
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Figure 4: Results of fitting mixture of polynomial regressions on the Stock data set of increasing num-
ber of samples. The top row shows results fitted by EM, and the bottom row shows that from MixLasso.
From left to right we have (left) 100 weeks, (middle) 200 weeks, and (right) 300 weeks. From left to
right, the RMSE of EM=(6.33,6.04,6.27) and the RMSE of MixLasso=(6.29,5.75,5.58).

are not applicable, while MixLasso improves upon EM-Random by a large margin. Figure 3 gives
a comparison of EM-Random and MixLasso on Mixture of Kernel Regression with polynomial
kernel K(xi,xj) = (axT

i xj + b)d (d = 6), where we generate K=4 random 6th-degree polynomial
functions {f∗k}Kk=1 by uniform sampling their coefficients from U(−4, 4). In this setting, we found
EM-Random has a hard time converging to the ground-truth solution even with 100-restarts, while
MixLasso obtains solution close to the ground truth with a small number of samples.

6.2 Experiments on Real Data

In this section, we compare MixLasso and EM (with 100 restarts) for fitting a mixture of polynomial
regressions on a Stock data set that contains the mixed stock prices of IBM, Facebook, Microsoft and
Nvidia of span 300 weeks till the Feb. of 2018. The task is to automatically recover the company label
of each stock price, while fitting the stock price time series of each company as a polynomial curve.
Both EM and MixLasso use a polynomial kernel of the parameters: K(xi,xj) = (2xT

i xj + 2)8. The
results are shown in Figure 4. We can see that MixLasso almost recovers the pattern when all samples
are given, except for a small number of samples generated by Nvidia’s rapid growth recently. While
MixLasso consistently achieving a lower RMSE over different sample sizes, the RMSE gap between
MixLasso and EM increases as the number of samples grows.
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