
A Proof of Theorem 6

We establish Theorem 6 in this section. First, we introduce the notion of contiguity of measures
Definition 2. Let {Pn} and {Qn} be two sequences of probability measures on the measurable space
(Ωn,Fn). We say that Pn is contiguous to Qn if for any sequence of events An with Qn(An)→ 0,
Pn(An)→ 0.

It is standard that for two sequences of probability measures Pn and Qn with Pn contiguous to Qn,
lim supn→∞ dTV(Pn, Qn) < 1. The following lemma provides sufficient conditions for establishing
contiguity of two sequence of probability measures.
Lemma 10 (see e.g. [MRZ15] ). Let Pn and Qn be two sequences of probability measures on
(Ωn,Fn). Then Pn is contiguous to Qn if

EQn

[( dPn
dQn

)2]
exists and remains bounded as n→∞.

Our next result establishes that asymptotically error-free detection is impossible below the conjectured
detection boundary.

Lemma 11. Let λ, µ > 0 with λ2 + µ2

γ < 1. Then Pλ,µ is contiguous to P0,0.

To establish that consistent detection is possible above this boundary, we need the following lemma.
Recall the matrices A,B from the Gaussian model (8), (9).
Lemma 12. Let b∗ = 2µ

λγ . Define

T = sup
‖x‖=‖y‖=1

[
〈x,Ax〉+ b∗〈x,By〉

]
.

(i) Under P0,0, as n, p→∞, T → 2
√

1 +
b2∗γ
4 + b∗ almost surely.

(ii) Let λ, µ > 0, ε > 0, with λ2 + µ2

γ > 1 + ε. Then as n, p→∞,

Pλ,µ
(
T > 2

√
1 +

b2∗γ

4
+ b∗ + δ

)
→ 1,

where δ := δ(ε) > 0.

(iii) Further, define

T̃ (δ̃) = sup
‖x‖=‖y‖=1,0<〈x,v〉<δ̃

√
n

[
〈x,Ax〉+ b∗〈x,By〉

]
.

Then for each δ > 0, there exists δ̃ > 0 sufficiently small, such that as n, p→∞,

Pλ,µ
(
T̃ (δ̃) < 2

√
1 +

b2∗γ

4
+ b∗ +

δ

2

)
→ 1.

We defer the proofs of Lemma 11 and Lemma 12 to Sections A.1 and Section A.5 respectively, and
complete the proof of Theorem 6, armed with these results.

Proof of Theorem 6. The proof is comparatively straightforward, once we have Lemma 11 and 12.
Note that Lemma 11 immediately implies that Pλ,µ is contiguous to P0,0 for λ2 + λ2

γ < 1.

Next, let λ, µ > 0 such that λ2 + µ2

γ > 1 + ε for some ε > 0. In this case, consider the test which

rejects the null hypothesis H0 if T > 2
√

1 +
b2∗γ
4 + b∗ + δ. Lemma 12 immediately implies that the

Type I and II errors of this test vanish in this setting.

Finally, we prove that weak recovery is possible whenever λ2 + µ2

γ > 1. To this end, let (x̂, ŷ) be the
maximizer of 〈x,Ax〉+ b∗〈y,Bx〉, with ‖x‖ = ‖y‖ = 1. Combining parts (ii) and (iii) of Lemma
12, we conclude that x̂ achieves weak recovery of the community assignment vector.
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A.1 Proof of Lemma 11

Fix λ, µ > 0 satisfying λ2 + µ2

γ < 1. We start with the likelihood,

L(u, v) =
dPλ,µ
dP0,0

= L1(u, v)L2(u, v),

L1(u, v) = exp
[λ

2
〈A, vvT 〉 − λ2n

4

]
. (40)

L2(u, v) = exp
[
p

√
µ

n
〈B, uvT 〉 − µp

2
‖u‖2

]
. (41)

We denote the prior joint distribution of (u,v) as π, and set

Lπ = E(u,v)∼π

[
L(u, v)

]
.

To establish contiguity, we bound the second moment of Lπ under the null hypothesis, and appeal to
Lemma 10. In particular, we denote E0[·] to be the expectation operator under the distribution P(0,0)

and compute

E0[L2
π] = E0[E(u1,v1),(u2,v2)

[
L(u1, v1)L(u2, v2)

]]
= E(u1,v1),(u2,v2)

[
E0

[
L(u1, v1)L(u2, v2)

]]
,

where (u1, v1), (u2, v2) are i.i.d. draws from the prior π, and the last equality follows by Fubini’s
theorem. We have, using (40) and (41),

L(u1, v1)L(u2, v2)

= exp
[
− λ2n

2
− µp

2n

(
‖u1‖2 + ‖u2‖2

)
+
λ

2

〈
A, v1v

T
1 + v2v

T
2

〉
+ p

√
µ

n

〈
B, u1v

T
1 + u2v

T
2

〉]
.

Taking expectation under E0[·], upon simplification, we obtain,

E0[L2
π] = E(u1,v1),(u2,v2)

[
exp

[λ2
2n
〈v1, v2〉2 +

µp

n
〈u1, u2〉〈v1, v2〉

]]
(42)

= E(u1,v1),(u2,v2)

[
exp

[
n
(λ2

2

( 〈v1, v2〉
n

)2
+
µ

γ
〈u1, u2〉

〈v1, v2〉
n

)]]
(43)

= E
[

exp
[
n
(λ2

2
X2 +

µ

γ
XY

)]]
(44)

Here that X,Y ∈ [−1,+1] are independent, with X distributed as the normalized sum of n
Radamacher random variables, and Y as the first coordinate of a uniform vector on the unit sphere.
In particular, defining h(s) = −((1 + s)/2) log((1 + s))− ((1− s)/2) log((1− s)), and denoting
by fY the density of Y , we have, for s ∈ (2/n)Z

P
(
X = s

)
=

1

2n

(
n

n(1 + s/2)

)
(45)

≤ C

n1/2
enh(s) (46)

fY (y) =
Γ(p/2)

Γ((p− 1)/2)Γ(1/2)
(1− y2)(p−3)/2 (47)

≤ C
√
n(1− y2)p/2 . (48)

Approximating sums by integrals, and using h(s) ≤ −s2/2, we get

E0[L2
π] ≤ Cn

∫
[−1,1]2

exp
{
n
[λ2

2
s2 +

µ

γ
sy + h(s) +

1

2γ
log(1− y2)

}
dsdy (49)

≤ Cn
∫
R2

exp
{
n
[λ2

2
s2 +

µ

γ
sy − s2

2
− y2

2γ

]}
dsdy ≤ C ′ . (50)

The last step holds for λ2 + µ2/γ < 1.

Next, we turn to the proof of Lemma 12. This is the main technical contribution of this paper, and
uses a novel Gaussian process comparison argument based on Sudakov-Fernique comparison.
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A.2 A Gaussian process comparison result

Let Z ∼ Rp×n and W ∼ Rn×n denote random matrices with independent entries as follows.

Wij ∼
{
N(0, ρ/n) if i < j

N(0, 2ρ/n) if i = j
(51)

where Wij = Wji,

Zai ∼ N(0, τ/p). (52)

For an integer N > 0, we let SN denote the sphere of radius
√
N in N dimensions, i.e. SN =

{x ∈ RN : ‖x‖22 = N}. Furthermore let u0 ∈ Sp and v0 ∈ {±1}n be fixed vectors. We denote the
standard inner product between vectors x, y ∈ RN as 〈x, y〉 =

∑
i xiyi. The normalized version will

be useful as well: we define 〈x, y〉N ≡
∑
i xiyi/N .

We are interested in characterizing the behavior of the following optimization problem in the limit
high-dimensional limit p, n→∞ with constant aspect ratio n/p = γ ∈ (0,∞).

OPT(λ, µ, b) ≡ 1

n
E max

(x,y)∈Sn×Sp

[(λ
n
〈x, v0〉2 + 〈x,Wx〉

)
+ b

(√ µ

np
〈x, v0〉 〈y, u0〉+ 〈y, Zx〉

)]
.

We now introduce two different comparison processes which give upper and lower bounds to
OPT(λ, µ, b). Their asymptotic values will coincide in the high dimensional limit n, p→∞ with
n/p = γ. Let gx, gy , Wx and Wy be:

gx ∼ N(0, (4ρ+ b2τ)In) (53)

gy ∼ N(0, b2τn/pIp), (54)

(Wx)ij ∼
{
N(0, (4ρ+ b2τ)/n) if i < j

N(0, 2(4ρ+ b2τ)/n) if i = j
(55)

(Wy)ij ∼
{
N(0, b2τn/p2) if i < j

N(0, 2b2τn/p2) if i = j
(56)

Proposition 13. We have

OPT(λ, µ, b) ≤ 1

n
E max

(x,y)∈Sn×Sp
λ

n
〈x, v0〉2 + 〈x, gx〉+ b

√
µ

np
〈x, v0〉〈y, u0〉+ 〈y, gy〉

OPT(λ, µ, b) ≥ 1

n
E max

(x,y)∈Sn×Sp
λ

n
〈x, v0〉2 +

1

2
〈x,Wxx〉+ b

√
µ

np
〈x, v0〉〈y, u0〉+

1

2
〈y,Wyy〉

(57)

Proof. The proof is via Sudakov-Fernique inequality. First we compute the distances induced by the
three processes. For any pair (x, y), (x′, y′):

1

4n

(
E{(〈x,Wx〉+ b〈y, Zx〉 − 〈x′,Wx′〉 − b〈y′, Zx′〉)2}

)
= ρ(1− 〈x, x′〉2n) +

b2τ

2
(1− 〈x, x′〉n〈y, y′〉p)

1

n

(
E{(〈x, gx〉+ 〈y, gy〉 − 〈x′, gx〉 − 〈y′, gy〉)2}

)
= 2(4ρ+ b2τ)(1− 〈x, x′〉n) + 2b2τ(1− 〈y, y′〉p)

1

4n

(
E{(〈x,Wxx〉+ 〈y,Wyy〉 − 〈x′,Wxx〉 − 〈y′,Wyy

′〉)2}
)

= (ρ+
b2τ

4
)(1− 〈x, x′〉2n) +

b2τ

4
(1− 〈y, y′〉2p).
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This immediately gives:
1

n

(
E{(〈x,Wx〉+ b〈y, Zx〉 − 〈x′,Wx′〉 − b〈y′, Zx′〉)2}

)
−

1

n

(
E{(〈x, gx〉+ 〈y, gy〉 − 〈x′, gx〉 − 〈y, g′y〉)2}

)
= −4ρ(1− 〈x, x′〉n)2 − 2b2τ(1− 〈x, x′〉n)(1− 〈y, y′〉p) ≤ 0,

1

4n

(
E{(〈x,Wx〉+ b〈y, Zx〉 − 〈x′,Wx′〉 − b〈y′, Zx′〉)2}

)
−

1

4n

(
E{(〈x,Wxx〉+ 〈y,Wyy〉 − 〈x′,Wxx〉 − 〈y′,Wyy

′〉)2}
)

=
b2τ

4
(〈x, x′〉n − 〈y, y′〉p)2 ≥ 0.

The claim follows.

An immediate corollary of this is the following tight characterization for the null value, i.e. the case
when µ = λ = 0:
Corollary 14. For any ρ, τ as n, p diverge with n/p→ γ, we have

lim
n→∞

OPT(0, 0) =
√

4ρ+ b2τ + b

√
τ

γ
(58)

Note that this upper bound generalizes the maximum eigenvalue and singular value bounds of W ,
Z respectively. In particular, the case τ = 0 corresponds to the maximum eigenvalue of W , which
yields OPT = 2

√
ρ while the maximum singular value of Z can be recovered by setting ρ to 0 and

b to 1, yielding OPT =
√
τ(1 + γ−1/2). Corollary 14 demonstrates the limit for the case when

µ = λ = 0. The following theorem gives the limiting value when λ, µ may be nonzero.
Theorem 15. Suppose G : R× R+ → R is as follows:

G(κ, σ2) =

{
κ/2 + σ2/2κ if κ2 ≥ σ2,

σ otherwise.
(59)

Then the optimal value OPT(λ, µ) is

lim
n→∞

OPT(λ, µ) = min
t≥0

{
G(2λ+ bµt, 4ρ+ b2τ) + γ−1G(b/t, b2γτ)

}
. (60)

If the minimum above occurs at t = t∗ such that G′(2λ + bµt∗, 4ρ + b2τ) = ∂κG(κ, 4ρ +

b2τ)|κ=2λ+bµt∗ > 0, then limn→∞OPT(λ, µ) >
√

4ρ+ b2τ + γ−1
√

τ
γ .

A.3 Proof of Theorem 15: the upper bound

The following lemma removes the effect of the projection of gx (gy) along v0 (resp. u0). Let
F (x, y) = 1

n [λx21 + 〈x, gx〉 + b
√
µx1y1 + 〈y, gy〉]. Further, let g̃x (g̃y) be the vectors obtained by

setting the first coordinate of gx (resp. gy) to zero, and F̃ (x, y) = 1
n [λx21 + 〈x, g̃x〉 + b

√
µx1y1 +

〈y, g̃y〉].
Lemma 16. The optima of F and F̃ differ by at most o(1). More precisely:∣∣∣Emax

x,y
F (x, y)− Emax

x,y
F̃ (x, y)

∣∣∣ = O
( 1√

n

)
.

Proof. For any x, y:

F (x, y) =
1

n

(
λx21 + 〈x, gx〉+

√
µx1y1 + 〈y, gy〉

)
= F̃ (x, y) +

1

n
(x1(gx)1 + y1(gy)1)∣∣∣F (x, y)− F̃ (x, y)

∣∣∣ ≤ 1

n
(
√
n|(gx)1|+

√
p|(gy)1|).

Maximizing each side over x, y and taking expectation yields the lemma.

17



With this in hand, we can concentrate on computing the maximum of F̃ (x, y).

Lemma 17. Let g̃x (g̃y) be the projection of gx (resp. gy) orthogonal to the first basis vector. Then

lim sup
n∞

E max
(x,y)∈Sn×Sp

F̃ (x, y) ≤ min
t≤0

G(2λ+ bµt, 4ρ+ b2τ) +
1

γ
G(b/t, b2γτ) (61)

Proof. Since F̃ (x, y) increases if we align the signs of x1 and y1 to +1, we can assume that they are
positive. Furthermore, for fixed, positive x1, y1, F̃ is maximized if the other coordinates align with
g̃x and g̃y respectively. Therefore:

max
x,y

F̃ (x, y) = max
x1∈[0,

√
n],y1∈[0,

√
p]

λx21
n

+

√
1− x21

n

‖g̃x‖√
n

+
b
√
µx1y1

n
+

√
1− y21

p

√
p ‖g̃y‖
n

= max
m1,m2∈[0,1]

λm1 +
√

1−m1
‖g̃x‖√
n

+ b

√
µm1m2p

n
+
√

1−m2

√
p ‖g̃y‖
n

≤ max
m1,m2∈[0,1]

(
λ+

bµt

2

)
m1 +

√
1−m1

‖g̃x‖√
n

+
p

n

(bm2

2t
+
√

1−m2
‖g̃y‖√
p

)
= G(2λ+ bµt, ‖g̃x‖2 /n) +

1

γ
G
(b
t
, ‖g̃y‖2 /p

)
, (62)

where the first equality is change of variables, the second inequality is the fact that 2
√
ab =

mint≥0(at+ b/t), and the final equality is by direct calculus.

Now let t∗ be any minimizer of G(2λ + bµt, 4ρ + b2τ) + γ−1G(b/t, b2γτ). We may assume that
t∗ 6∈ {0,∞}, otherwise we can use t∗(ε), an ε-approximate minimizer in (0,∞) in the argument
below. Since the above holds for any t, we have:

max
x,y

F̃ (x, y) ≤ G(2λ+ bµt∗, ‖g̃x‖2 /n) + γ−1G(b/t∗, ‖g̃y‖2 /p). (63)

By the strong law of large numbers, ‖g̃x‖2 /n → 4ρ + b2τ and ‖g̃y‖2 /p → b2γτ almost surely.
Further, as G(κ, σ2) is continuous in the second argument on (0,∞), when κ 6∈ {0,∞}, almost
surely:

lim sup max
x,y

F̃ (x, y) ≤ G(2λ+ bµt∗, 4ρ+ b2τ) + γ−1G(b/t∗, b
2γτ). (64)

Taking expectations and using bounded convergence yields the lemma.

We can now prove the upper bound.

Theorem 15, upper bound. Using Proposition 13, Lemma 16 and Lemma 17 in order:

OPT(λ, µ) ≤ E{max
x,y

F (x, y)} (65)

≤ E{max
x,y

F̃ (x, y)}+ o(n−1/3) (66)

≤ min
t

G(2λ+ bµt, 4ρ+ b2τ) +
1

γ
G(b/t, b2γτ) + o(n−1/3). (67)

Taking limit p→∞ yields the result.

A.4 Proof of Theorem 15: the lower bound

Recall that t∗ denotes the optimizer of the upper bound G(2λ+ bµt, 4ρ+ b2τ) + γ−1G(b/t, b2γτ).
By stationarity, we have:

bµG′(2λ+ bµt∗, 4ρ+ b2τ)− b

γt2∗
G′(

b

t∗
, b2γτ) = 0. (68)
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Now we proceed in two cases. First, suppose G′(2λ + bµt∗, 4ρ + b2τ) = 0. In this case
G′(b/t∗, b

2γτ)/t2∗ = 0, whence G′(b/t∗, b
2γτ) = 0. Indeed, the case when t∗ = ∞ also satis-

fies this. However, this also implies that 2λ + bµt∗ ≤
√

4ρ+ b2τ and t∗ ≥ (γτ)−1/2, whereby
G(2λ + bµt∗, 4ρ + b2τ) =

√
4ρ+ b2τ and G′(b/t∗, b

2γτ) = b
√
γτ . In this case we consider x̃, ỹ

to be the principal eigenvectors of Wx,Wy rescaled to norms
√
n,
√
p respectively and, hence using

(57),

OPT(λ, µ, b) ≥ 1

2n
E
[
〈x̃,Wxx̃〉+ 〈ỹ,Wy ỹ〉

]
− o(1). (69)

By standard results on GOE matrices the right hand side converges to
√

4ρ+ b2τ + b
√

τ
γ implying

the required lower bound.

Now consider the case that G′(2λ+ bµt∗, 4ρ+ b2τ) > 0. Importantly, by stationarity we have

t2∗ =
G′(bt−1∗ , b2γτ)

µγG′(2λ+ bµt∗, 4ρ+ b2τ)
, (70)

and that t∗ is finite since the numerator is decreasing in t∗. The key ingredient to prove the lower
bound is the following result on the principal eigenvalue/eigenvector of a deformed GOE matrix.
Theorem 18 ([CDMF+09, KY13]). Suppose W ∈ Rn×n is a GOE matrix with variance σ2, i.e.
Wij = Wji ∼ N(0, (1+δijσ

2/p) and A = κv0v
T
0 +W where v0 is a unit vector. Then the following

holds almost surely and in expectation:

lim
n→∞

λ1(A) = 2G(κ, σ2) =

{
2σ if κ < σ

κ+ σ2/κ if κ > σ.
(71)

lim
n→∞

〈v1(A), v0〉2 = 2G′(κ, σ2) =

{
0 if κ < σ,

1− σ2/κ2 if κ > σ.
, (72)

where G′ denotes the derivative with respect to the first argument.

For the prescribed t∗, define:

H(x, y) =
(
λ+

bµt∗
2

) 〈x, v0〉2
n2

+
〈x,Wxx〉

2n
+
p

n

(b〈y, u0〉2
2t∗p2

+
〈y,Wyy〉

2p

)
(73)

Let x̃, ỹ be the principal eigenvector of (2λ+ bµt∗)v0v
T
0 /n+Wx, bt−1∗ u0u

T
0 /p+Wy, rescaled to

norm
√
n and

√
p respectively. Further, we choose the sign of x̃ so that 〈x̃, v0〉 ≥ 0, and analogously

for ỹ. Now, fixing an ε > 0, we have by Theorem 18, for every p large enough:
H(x̃, ỹ) ≥ G(2λ+ bµt∗, 4ρ+ b2τ) + γ−1G(bt−1∗ , b2γτ)− ε (74)
〈x̃, v0〉
n

=
√

2G′(2λ+ bµt∗, 4ρ+ b2τ) +O(ε) (75)

〈ỹ, u0〉
p

=

√
2G′(bt−1∗ , b2γτ) +O(ε) (76)

We have, therefore:

OPT(λ, µ, b) ≥ E
[
H(x̃, ỹ) +

( b
n

√
µ

np
〈x̃, v0〉〈ỹ, u0〉 −

bµt〈x̃, v0〉2

2n2
− b〈y, u0〉2

2tnp

)]
(77)

≥ G(2λ+ bµt∗, 4ρ+ b2τ) + γ−1G(bt−1∗ , b2γτ) +O(ε(t∗ ∨ t−1∗ ))

+
(

2

√
µ

γ
G′(2λ+ bµt∗, 4ρ+ b2τ)G′(bt−1∗ , b2γτ)− bµt∗G′(2λ+ bµt∗, 4ρ+ b2τ)

− G′(bt−1∗ , b2γτ)

γt∗

)
≥ G(2λ+ bµt∗, 4ρ+ b2τ) + γ−1G(bt−1∗ , b2γτ) +O(ε(t∗ ∨ t−1∗ )). (78)

Here the first inequality since we used a specific guess x̃, ỹ, the second using Theorem 18 and the
final inequality follows since the remainder term vanishes due to Eq. (70). Taking expectations and
letting ε going to 0 yields the required lower bound.

Given Corollary 14 and Theorem 15, it is not too hard to establish Lemma 12, which we proceed to
do next.
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A.5 Proof of Lemma 12

Recall b∗ = 2µ
λγ . Part (i) follows directly from Corollary 14, upon setting ρ = τ = 1, and

b = b∗
√
γ. To establish part (ii), we use Theorem 15. In particular, it suffices to establish that

with this specific choice of b = b∗
√
γ, for any (λ, µ) with λ2 + µ2/γ > 1, the minimizer t∗ of

G(2λ + bµt, 4 + b2) + γ−1G(b/t, b2γ) satisfies G′(2λ + bµt∗, 4 + b2) > 0. Let us assume, if
possible, that G(2λ + bµt∗, 4 + b2) = 0. Using the stationary point condition (68), in this case
G′(b/t∗, b

2γ) = 0. Next, using the definition of G (59), observe that this implies

t∗ >
1
√
γ
, 2λ+

2µ2

λ
√
γ
t∗ <

√
4 +

4µ2

λ2γ
.

These imply:

2

λ

(
λ2 +

µ2

γ

)
< 2λ+ 2

µ2t∗
λµ
√
γ

(79)

<

√
4 +

4µ2

λ2γ
(80)

=
2

λ

√
λ2 +

µ2

γ
. (81)

That this is impossible whenever λ2 + µ2

γ > 1. This establishes part (ii). To establish part (iii), we

again use the upper bound from Proposition 13, and note that for 0 < 〈x, v〉 < δ̃
√
n,

E[T̃ (δ̃)] ≤ λδ̃2 +
√

4 + b2∗ + max
‖y‖=1

{b∗
√
µδ̃〈u, y〉+

1

γ
〈y, g〉},

where g ∼ N(0, b2γIp/p). The proof follows using continuity in δ̃. This completes the proof.

B Proof of Lemma 8

Recall the distributional recursion specified by density evolution (Definition 1).

m̄′|U
d
= µUE[V η̄] + ζ1

√
µE[η̄2],

η̄′|V ′=+1
d
=

λ√
d

[ k+∑
k=1

η̄k|+ +

k−∑
k=1

η̄k|−
]
− λ
√
dE[η̄] +

µ

γ
E[Um̄] + ζ2

√
µ

γ
E[m̄2],

where V ∼ U({±1}), U ∼ N(0, 1), k+ ∼ Poisson
(
d+λ
√
d

2

)
, k− ∼ Poisson

(
d−λ
√
d

2

)
, ζ1, ζ2 ∼

N(0, 1) are all mutually independent. Further, {η̄k|+} are iid random variables, distributed as η̄|V=+1.
Similarly, {η̄k|−}, are iid random variables, distributed as η̄|V=−1. Finally, we require the collections
to be mutually independent, and independent of the other auxiliary variables defined above.

Given these distributional recursions, we compute the vector of moments

E[V ′η̄′] = λ2E[V η̄] +
µ

γ
E[Um̄]

E[U ′m̄′] = µE[V η̄]

E[η̄′2] = λ2E[η̄2] +
µ2

γ2
E2[Um̄] +

µ

γ
E[m̄2] + 2

λ2

γ
E[Um̄]E[V η̄].

E[m̄′2] = µ2E2[V η̄] + µE[η̄2]
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Thus the induced mapping on moments φDE : R4 → R4, φDE(z1, z2, z3, z4) = (φ1, φ2, φ3, φ4), with

φ1 = λ2z1 +
µ

γ
z2

φ2 = µz1

φ3 =
µ2

γ2
z22 +

2λ2

γ
z1z2 + λ2z3 +

µ

γ
z4,

φ4 = µ2z21 + µz3.

The Jacobian of φDE at 0 is, up to identical row/column permutation:

J =

[
λ2I2

µ
γ I2

µI2 0

]
.

By direct computation, we see that z is an eigenvalue of J if and only if z2−λ2z− µ2

γ = 0. Consider

the quadratic function f(z) = z2 − λ2z − µ2

γ and note that f(0) < 0. Thus to check whether f
has a root with magnitude greater than 1, it suffices to check its value at z = 1,−1. Note that if
λ2 + µ2

γ > 1, f(1) < 0 and thus J has an eigenvalue greater than 1. Conversely, if λ2 + µ2

γ < 1,

f(1) > 0 and f(−1) = 1 + λ2 − µ2

γ > 1− µ2

γ > 0. This completes the proof.

C Proof of Theorem 4

We prove Theorem 4 in this Section. Recall the matrix mean square errors

MMSE(v;A,B) =
1

n(n− 1)
E
[
‖vvT − E[vvT |A,B]‖2F

]
,

MMSE(v;AG, B) =
1

n(n− 1)
E
[
‖vvT − E[vvT |AG, B]‖2F

]
.

The following lemma is immediate from Lemma 4.6 in [DAM16].
Lemma 19. Let v̂ = v̂(A,B) be any estimator so that ‖v̂‖2 =

√
n. Then

lim inf
n→∞

〈v̂, v〉
n

> 0 in probability ⇒ lim sup
n→∞

MMSE(v;A,B) < 1. (82)

Furthermore, if lim supn→∞MMSE(v;A,B) < 1, there exists an estimator ŝ(A,B) with
‖ŝ(A,B)‖2 =

√
n so that, in probability:

lim inf
n→∞

〈ŝ, v〉
n

> 0. (83)

Indeed, the same holds for the observation model AG, B.

Proof of Theorem 4. Consider first the case λ2 + µ2

γ < 1. For any θ ∈ [0, λ], θ2 + µ2/γ < 1 as well.
Suppose we have A(θ), B according to model (8), (9) where λ is replaced with θ. By Theorem 6
(applied at θ) and the second part of Lemma 19, lim infn→∞MMSE(v;A(θ), B) = 1. Using the
I-MMSE identity [GSV05], this implies

lim
n→∞

1

n
(I(v;A(θ), B)− I(v;A(0), B)) =

θ2

4
. (84)

By Theorem 5, for all θ ∈ [0, λ]

lim
d→∞

lim
n→∞

1

n
(I(v;AG(θ), B)− I(v;AG(0), B) =

θ2

4
, (85)

and, therefore lim
n→∞

MMSE(v;AG, B) = 1 (86)

This implies, via the first part of Lemma 19 that for any estimator v̂(AG;B), we have
lim supn→∞ |〈v̂, v〉|/n = 0 in probability, as required.
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Conversely, consider the case λ2 + µ2

γ > 1. We may assume that µ2/γ < 1, as otherwise the result
follows from Theorem 2. Let λ0 = (1− µ2/γ)1/2.

Now, by the same argument for Eqs.(84), (85), we obtain for all θ1, θ2 ∈ [λ0, λ]:

lim sup
n→∞

1

n
(I(v;A(θ1), B)− I(v;A(θ2), B)) <

θ21 − θ22
4

. (87)

Applying Theorem 5, we have for all θ1, θ2, θ ∈ [λ0, λ]:

lim
d→∞

lim sup
n→∞

1

n
(I(v;AG(θ1), B)− I(v;AG(θ2), B)) <

θ21 − θ22
4

(88)

and therefore, lim supMMSE(v;AG(θ), B) < 1. (89)

Applying then Lemma 19 implies that we have an estimator ŝ(AG, B) with non-trivial overlap i.e. in
probability:

lim
d→∞

lim inf
n→∞

〈ŝ, v〉
n

> 0. (90)

This completes the proof.

D Belief propagation: derivation

In this section we will derive the belief propagation algorithm. Recall the observation model for
(AG, B) ∈ Rn×n × Rp×n in Eqs. (1), (2):

AGij =

{
1 with probability d+λ

√
dvivj
n

0 otherwise.
(91)

Bqi =

√
µ

n
uqvi + Zqi, (92)

where uq and Zqi are independent N(0, 1/p) variables.

We will use the following conventions throughout this section to simplify some of the notation. We
will index nodes in the graph, i.e. elements in [n] with i, j, k . . . and covariates, i.e. elements in [p]
with q, r, s, . . . . We will use ‘'’ to denote equality of probability distributions (or densities) up to an
omitted proportionality constant, that may change from line to line. We will omit the superscript G in
AG. In the graph G, we will denote neighbors of a node i with ∂i and non-neighbors with ∂ic.

We start with the posterior distribution of u, v given the data A,B:

dP{u, v|A,B} =
dP{A,B|u, v}

dP{A,B}
dP{u, v} (93)

'
∏
i<j

(d+ λ
√
dvivj

n

)Aij
(

1− d+ λ
√
dvivj

n

)1−Aij

·
∏
q,i

exp
(√µp2

n
Bqiuqvi

)∏
q

exp
(
− p(1 + µ)

2
u2q

)
. (94)

The belief propagation algorithm operates ‘messages’ νti→j , ν
t
q→i, ν

t
i→q which are probability distri-

butions. They represent the marginals of the variables vi, uq in the absence of variables vj , uq , in the
posterior distribtuion dP{u, v|A,B}. We denote by Eti→j ,Etq→i,Eti→q expectations with respect to

22



these distributions. The messages are are computed using the following update equations:

νt+1
i→j(vi) '

∏
q∈[p]

Etq→i
{

exp
(√µp2

n
Bqiviuq

)} ∏
k∈∂i\j

Etk→i
(d+ λ

√
dvivk

n

) ∏
k∈∂ic\j

Etk→i
(

1− d+ λ
√
dvivk

n

)
,

(95)

νt+1
i→q(vi) '

∏
r∈[p]\q

Etr→i
{

exp
(√µp2

n
Briviur

)} ∏
k∈∂i

Etk→i
(d+ λ

√
dvivk

n

) ∏
k∈∂ic

Etk→i
(

1− d+ λ
√
dvivk

n

)
,

(96)

νt+1
q→i(uq) ' exp

(
−
p(1 + µ)u2q

2

)∏
j 6=i

Etj→q
{

exp
(√µp2

n
Bqjvjuq

)}
. (97)

As is standard, we define νti , ν
t
q in the same fashion as above, except without the removal of the

incoming message.

D.1 Reduction using Gaussian ansatz

The update rules (95), (96), (97) are in terms of probability distributions, i.e. measures on the real
line or {±1}. We reduce them to update rules on real numbers using the following analytical ansatz.
The measure νti→j on {±1} can be summarized using the log-odds ratio:

ηti→j ≡
1

2
log

νti→j(+1)

νti→j(−1)
, (98)

and we similarly define ηti→q , η
t
i . In order to reduce the densities νtq→i, we use the Gaussian ansatz:

νtq→i = N
(mt

q→i√
p
,
τ tq→i
p

)
. (99)

With Equations (98) and (99) we can now simplify Equations (95) to (97). The following lemma
computes the inner marginalizations in Equations (95) to (97). We omit the proof.

Lemma 20. With νt,Et as defined as per Equations (95) to (97) and ηt,mt, τ t as in Equations (98)
and (99) we have

Etq→i exp
(√µp2

n
Bqiviuq

)
= exp

(√µp

n
Bqivim

t
q→i +

µp

2n
B2
qiτ

t
q→i

)
, (100)

Eti→j
(d+ λ

√
dvivj

n

)
=
d

n

(
1 +

λvj√
d

tanh(ηti→j)
)
, (101)

Eti→j
(

1− d+ λ
√
dvivj

n

)
= 1− d

n

(
1 +

λvj√
d

tanh(ηti→j)
)
, (102)

Eti→q exp
(
p

√
µ

n
Bqiviuq

)
=

cosh(ηti→q + p
√
µ/nBqiuq)

cosh ηti→q
. (103)

The update equations take a simple form using the following definitions

f(z; ρ) ≡ 1

2
log
(cosh(z + ρ)

cosh(z − ρ)

)
, (104)

ρ ≡ tanh−1(λ/
√
d) , (105)

ρn ≡ tanh−1
( λ√d
n− d

)
. (106)
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With this, we first compute the update equation for the node messages ηt+1. Using Equations (95),
(96) and (100) to (103):

ηt+1
i→j =

√
µ

γ

∑
q∈[p]

Bqim
t
q→i +

∑
k∈∂i\j

f(ηtk→i; ρ)−
∑

k∈∂i\j

f(ηtk→i; ρn) , (107)

ηt+1
i→q =

√
µ

γ

∑
r∈[p]\q

Brim
t
r→i +

∑
k∈∂i

f(ηtk→i; ρ)−
∑
k∈∂ic

f(ηtk→i; ρn) , (108)

ηt+1
i =

√
µ

γ

∑
q∈[p]

Bqim
t
q→i +

∑
k∈∂i

f(ηtk→i; ρ)−
∑
k∈∂ic

f(ηtk→i; ρn) . (109)

Now we compute the updates for mt
a→i, τ

t
a→i. We start from Equations (97) and (100), and use

Taylor approximation assuming uq, Bjq are both O(1/
√
p), as the ansatz (99) suggests.

log νt+1
q→i(uq) = const.+

−p(1 + µ)

2
u2q +

∑
j∈[n]\i

log cosh
(
ηtj→q + p

√
µ

n
Bqjuq

)
(110)

= const.+
−p(1 + µ)

2
u2q +

(
p

√
µ

n

∑
j∈[n]\i

Bqj tanh(ηtj→q)
)
uq +

(p2µ
2n

∑
j∈[n]

B2
qjsech2(ηtj→q)

)
u2q +O

( 1√
n

)
.

(111)

Note that here we compute log νt+1 only up to constant factors (with slight abuse of the notation
‘'’). It follows from this quadratic approximation that:

τ t+1
q→i =

(
1 + µ− µ

γ

∑
j∈[n]\i

B2
qjsech2(ηtj→q)

)−1
, (112)

mt+1
q→i = τ t+1

q→i

√
µ

γ

∑
j∈[n]\i

Bqj tanh(ηtj→q) (113)

=

√
µ/γ

∑
j∈[n]\iBqj tanh(ηtj→q)

1 + µ− µγ−1
∑
j∈[n]B

2
qjsech2(ηtj→q)

. (114)

Updates computing mt+1
q , τ t+1

q are analogous.

D.2 From message passing to approximate message passing

The updates for ηt,mt derived in the previous section require keeping track of O(np) messages. In
this section, we further reduce the number of messages to O(dn + p), i.e. linear in the size of the
input graph observation.

The first step is to observe that the dependence of ηti→j on j is negligible when j is not a neighbor of
i in the graph G. This derivation is similar to the presentation in [DKMZ11]. As supz∈R f(z; ρ) ≤ ρ.
Therefore, if i, j are not neighbors in G:

ηti→j = ηti − f(ηt−1j→i; ρn) (115)

= ηti +O(ρn) = ηti +O
( 1

n

)
. (116)

Now, for a pair i, j not connected, by Taylor expansion and the fact that ∂zf(z; ρ) ≤ tanh(ρ),

f(ηti→j ; ρn)− f(ηti ; ρn) = O
( tanh(ρn)

n

)
= O

( 1

n2

)
. (117)

Therefore, the update equation for ηt+1
i→j satisfies:

ηt+1
i→j =

√
µ

γ

∑
q∈[p]

Bqim
t
q→i +

∑
k∈∂i\j

f(ηtk→i; ρ)−
∑
k∈[n]

f(ηtk; ρn) +O
( 1

n

)
, (118)

ηt+1
i = ηt+1

i→j + f(ηtj→i; ρ). (119)
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Similarly for ηt+1
i→q we have:

ηt+1
i→q =

√
µ

γ

∑
r∈[p]\q

Brim
t
r→i +

∑
k∈∂i

f(ηtk→i; ρ)−
∑
k∈[n]

f(ηtk; ρn) +O
( 1

n

)
. (120)

Ignoring O(1/n) correction term, the update equations reduce to variables (ηti→j , η
t
i) where i, j are

neighbors.

We now move to reduce updates for ηti→q and mt
q→i to involving O(n) variables. This reduction is

more subtle then that of ηti→j , where we are able to simply ignore the dependence of ηti→j on j if
j 6∈ ∂i. We follow a derivation similar to that in [Mon12]. We use the ansatz:

ηti→q = ηti + δηti→q (121)

mt
q→i = mt

q + δmt
q→i (122)

τ tq→i = τ tq + δτ tq→i, (123)

where the corrections δηti→q, δm
t
q→i, δτ

t
q→i are O(1/

√
n). From Equations (97) and (120) at

iteration t:

ηti + δηti→q =

√
µ

γ

∑
r∈[p]\q

Bri(m
t−1
r + δmt−1

r→i) +
∑
k∈∂i

f(ηt−1k→i; ρ)−
∑
k

f(ηt−1k ; ρn) (124)

=

√
µ

γ

∑
r∈[p]

Bri(m
t−1
r + δmt−1

r→i) +
∑
k∈∂i

f(ηt−1k→i; ρ)−
∑
k

f(ηt−1k ; ρn)−
√
µ

γ

(
Bqim

t−1
q +Bqiδm

t−1
q→i
)
.

(125)

Notice that the last term is the only term that depends on q. Further, since Bqiδmt−1
q→i = O(1/n) by

our ansatz, we may safely ignore it to obtain

ηti =

√
µ

γ

∑
r∈[p]

Bri(m
t−1
r + δmt−1

r→i) +
∑
k∈∂i

f(ηt−1k→i; ρ)−
∑
k

f(ηt−1k ; ρn) (126)

δηti→q = −
√
µ

γ
Bqim

t−1
q . (127)

We now use the update equation for τ t+1
q→i:

τ t+1
q =

1 + µ− µ

γ

∑
j∈[n]

B2
qjsech2(ηtj + δηtj→q)

−1 +O(1/n) (128)

=

1 + µ− µ

γ

∑
j∈[n]

B2
qj

(
(sech2(ηtj)− 2sech2(ηtj) tanh(ηtj)δη

t
i→q
)−1 +O(1/n), (129)

where we expanded the equation to linear order in δηti→q and ignored higher order terms. By the
identification Equation (127):

τ t+1
q =

1 + µ− µ

γ

∑
j∈[n]

B2
qjsech2(ηtj) + 2

(µ
γ

)3/2 ∑
j∈[n]

B3
qjsech2(ηtj) tanh(ηtj)m

t−1
q

−1 +O(1/n).

(130)

Notice here, that there is no term that explicitly depends on i and the final term is O(1/
√
n) since

Bqj = O(1/
√
n). Therefore, ignoring lower order terms, we have the identification:

τ t+1
q =

1 + µ− µ

γ

∑
j∈[n]

B2
qjsech2(ηtj)

−1 , (131)

δτ t+1
q→i = 0. (132)
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Now we simplify the update for mt+1
q→i using Taylor expansion to first order:

mt+1
q + δmt+1

q→i =

√
µ/γ

τ t+1
q

∑
j∈[n]\i

Bqj tanh(ηtj + δηtj→q) (133)

=

√
µ/γ

τ t+1
q

∑
j∈[n]\i

(
Bqj tanh(ηtj) +Bqjsech2(ηti)δη

t
j→q

)
(134)

=

√
µ/γ

τ t+1
q

∑
j∈[n]\i

(
Bqj tanh(ηtj)−

√
µ

γ
B2
qjsech2(ηtj)m

t−1
q

)
(135)

=

√
µ/γ

τ t+1
q

∑
j∈[n]

Bqj tanh(ηtj)−
µ

γτ t+1
q

( ∑
j∈[n]

B2
qjsech2(ηtj)

)
mt−1
q

−
√
µ/γ

τ t+1
q

(
Bqi tanh(ηti)−

√
µ/γB2

qisech2(ηti)m
t−1
q

)
. (136)

Only the final term is dependent on i, therefore we can identify:

mt+1
q =

√
µ/γ

τ t+1
q

∑
j∈[n]

Bqj tanh(ηtj)−
µ

γτ t+1
q

( ∑
j∈[n]

B2
qjsech2(ηtj)

)
mt−1
q , (137)

δmt+1
q→i = −

√
µ/γ

τ t+1
q

Bqi tanh(ηti). (138)

Here, as before, we ignore the lower order term in δmt+1
q→i. Now we can substitute the identification

Equation (138) back in Equation (126) at iteration t+ 1:

ηt+1
i =

√
µ

γ

∑
r∈[p]

Brim
t
r −

µ

γ

∑
r∈[p]

B2
ri

τ tr
tanh(ηt−1i ) +

∑
k∈∂i

f(ηtk→i; ρ)−
∑
k

f(ηtk; ρn). (139)

Collecting the updates for ηti , η
t
i→j ,m

t
q we obtain the approximate message passing algorithm:

ηt+1
i =

√
µ

γ

∑
q∈[p]

Bqim
t
q −

µ

γ

( ∑
q∈[p]

B2
qi

τ tq

)
tanh(ηt−1i ) +

∑
k∈∂i

f(ηtk→i; ρ)−
∑
k∈[n]

f(ηtk; ρn) ,

(140)

ηt+1
i→j =

√
µ

γ

∑
q∈[p]

Bqim
t
q −

µ

γ

( ∑
q∈[p]

B2
qi

τ tq

)
tanh(ηt−1i ) +

∑
k∈∂i\j

f(ηtk→i; ρ)−
∑
k∈[n]

f(ηtk; ρn) ,

(141)

mt+1
q =

√
µ/γ

τ t+1
q

∑
j∈[n]

Bqj tanh(ηtj)−
µ

γτ t+1
q

( ∑
j∈[n]

B2
qjsech2(ηtj)

)
mt−1
q (142)

τ t+1
q =

1 + µ− µ

γ

∑
j∈[n]

B2
qjsech2(ηtj)

−1 . (143)
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D.3 Linearized approximate message passing

This algorithm results from expanding the updates Equations (140) to (143) to linear order in the
messages ηti , η

t
i→j :

ηt+1
i =

√
µ

γ

∑
q∈[p]

Bqim
t
q −

µ

γ

( ∑
q∈[p]

B2
qi

τ tq

)
ηt−1i +

λ√
d

∑
k∈∂i

ηtk→i −
λ
√
d

n

∑
k∈[n]

ηtk (144)

ηt+1
i→j =

√
µ

γ

∑
q∈[p]

Bqim
t
q −

µ

γ

( ∑
q∈[p]

B2
qi

τ tq

)
ηt−1i +

λ√
d

∑
k∈∂i\j

ηtk→i −
λ
√
d

n

∑
k∈[n]

ηtk (145)

mt+1
q =

√
µ/γ

τ t+1
q

∑
j∈[n]

Bqjη
t
j −

µ

γτ t+1
q

( ∑
j∈[n]

B2
qj

)
mt−1
q (146)

τ t+1
q =

1 + µ− µ

γ

∑
j∈[n]

B2
qj

−1 . (147)

This follows from the linear approximation f(z; ρ) = tanh(ρ)z for small z. The algorithm given
in the main text follows by using the law of large numbers to approximate

∑
j∈[n]B

2
qj ≈ 1/γ,∑

q∈[p]B
2
qj ≈ 1, and hence τ4q ≈ 1.
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