
A Properties of Exponential Families

A.1 Form of Conjugate-Update(�, x1:n)

Following Diaconis and Ylvisaker [24], the prior is
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Define above updates as �
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A.1.1 Proof of Log-Partition Function of Truncated Distribution used in Lemma 1
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A.1.2 Proof of Lemma 1: Mean and Variance of t(x) in truncated distribution

Claim
Ep̂[t(x)] = Ep[t(x)] +

@

@⌘T
log

�
F (w; ⌘)� F (v; ⌘)

�

Varp̂[t(x)] = Varp[t(x)] +
@
2

@⌘@⌘T
log

�
F (w; ⌘)� F (v; ⌘)

�

Proof:
Ep̂[t(x)] =

@

@⌘T
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The proof for Varp̂[t(x)] is similar.

B Derivation of �2 Gibbs update

We fully derive the Gibbs update for the noise variance �
2 of the augmented model as stated in Park

and Casella [22]. We represent the Laplace distribution with scale b = �s/✏ as a scale mixture of
normals, i.e. a zero-mean normal with an exponential prior on the variance:
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For clarity we have written the exponential rate as ` = 1/2b2. Also recall that the noise z corresponds
to the difference y � s between the noisy and non-noisy sufficient statistics in our model. As per Park
and Casella [22] we can write the conditional update for �

2 as a Wald distribution (inverse-Gaussian)
with the change of variable t = 1/�
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numpy.random.Wald is a two-parameter (mean and scale) implementation of inverse-Gaussian. Its
pdf is
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Then matching parameters we have
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C Sensitivity of Sufficient Statistics in Truncated Model

Recall that t̂(x) = 1[v,w](x) t(x). Then
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D Proof of uniformity of CDF transform used by Cook et al. [30]

Claim: Let X be a random variable with CDF F . The random variable U = F (X) is uniformly
distributed.

Proof:
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E Convergence of Gibbs Sampler

Figure 3 shows the progress of sampled model parameters over the course of 500 iterations for both
binomial and exponential models. For both models the samples quickly converge to the vicinity of
the true parameter.
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Figure 3: Progress of Gibbs sampler parameters over iterations at (n = 1000; ✏ = 0.1) for binomial
and exponential models.
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