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Abstract

Generative adversarial networks (GANs) have achieved significant success in
generating real-valued data. However, the discrete nature of text hinders the
application of GAN to text-generation tasks. Instead of using the standard GAN
objective, we propose to improve text-generation GAN via a novel approach
inspired by optimal transport. Specifically, we consider matching the latent feature
distributions of real and synthetic sentences using a novel metric, termed the feature-
mover’s distance (FMD). This formulation leads to a highly discriminative critic and
easy-to-optimize objective, overcoming the mode-collapsing and brittle-training
problems in existing methods. Extensive experiments are conducted on a variety
of tasks to evaluate the proposed model empirically, including unconditional text
generation, style transfer from non-parallel text, and unsupervised cipher cracking.
The proposed model yields superior performance, demonstrating wide applicability
and effectiveness.

1 Introduction

Natural language generation is an important building block in many applications, such as machine
translation [5], dialogue generation [36], and image captioning [14]. While these applications
demonstrate the practical value of generating coherent and meaningful sentences in a supervised
setup, unsupervised text generation, which aims to estimate the distribution of real text from a
corpus, is still challenging. Previous approaches, that often maximize the log-likelihood of each
ground-truth word given prior observed words [41], typically suffer from exposure bias [6, 47], i.e.,
the discrepancy between training and inference stages. During inference, each word is generated in
sequence based on previously generated words, while during training ground-truth words are used for
each timestep [27, 53, 58].

Recently, adversarial training has emerged as a powerful paradigm to address the aforementioned
issues. The generative adversarial network (GAN) [21] matches the distribution of synthetic and
real data by introducing a two-player adversarial game between a generator and a discriminator.
The generator is trained to learn a nonlinear function that maps samples from a given (simple) prior
distribution to synthetic data that appear realistic, while the discriminator aims to distinguish the fake
data from real samples. GAN can be trained efficiently via back-propagation through the nonlinear
function of the generator, which typically requires the data to be continuous (e.g., images). However,
the discrete nature of text renders the model non-differentiable, hindering use of GAN in natural
language processing tasks.

Attempts have been made to overcome such difficulties, which can be roughly divided into two
categories. The first includes models that combine ideas from GAN and reinforcement learning
(RL), framing text generation as a sequential decision-making process. Specifically, the gradient
of the generator is estimated via the policy-gradient algorithm. Prominent examples from this
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category include SeqGAN [60], MaliGAN [8], RankGAN [37], LeakGAN [24] and MaskGAN [15].
Despite the promising performance of these approaches, one major disadvantage with such RL-based
strategies is that they typically yield high-variance gradient estimates, known to be challenging for
optimization [40, 61].

Models from the second category adopt the original framework of GAN without incorporating
the RL methods (i.e., RL-free). Distinct from RL-based approaches, TextGAN [61] and Gumbel-
Softmax GAN (GSGAN) [31] apply a simple soft-argmax operator, and a similar Gumbel-softmax
trick [28, 40], respectively, to provide a continuous approximation of the discrete distribution (i.e.,
multinomial) on text, so that the model is still end-to-end differentiable. What makes this approach
appealing is that it feeds the optimizer with low-variance gradients, improving stability and speed of
training. In this work, we aim to improve the training of GAN that resides in this category.

When training GAN to generate text samples, one practical challenge is that the gradient from the
discriminator often vanishes after being trained for only a few iterations. That is, the discriminator
can easily distinguish the fake sentences from the real ones. TextGAN [61] proposed a remedy based
on feature matching [49], adding Maximum Mean Discrepancy (MMD) to the original objective of
GAN [22]. However, in practice, the model is still difficult to train. Specifically, (i) the bandwidth
of the RBF kernel is difficult to choose; (ii) kernel methods often suffer from poor scaling; and
(iii) empirically, TextGAN tends to generate short sentences.

In this work, we present feature mover GAN (FM-GAN), a novel adversarial approach that leverages
optimal transport (OT) to construct a new model for text generation. Specifically, OT considers
the problem of optimally transporting one set of data points to another, and is closely related to
GAN. The earth-mover’s distance (EMD) is employed often as a metric for the OT problem. In our
setting, a variant of the EMD between the feature distributions of real and synthetic sentences is
proposed as the new objective, denoted as the feature-mover’s distance (FMD). In this adversarial
game, the discriminator aims to maximize the dissimilarity of the feature distributions based on the
FMD, while the generator is trained to minimize the FMD by synthesizing more-realistic text. In
practice, the FMD is turned into a differentiable quantity and can be computed using the proximal
point method [59].

The main contributions of this paper are as follows: (i) A new GAN model based on optimal transport
is proposed for text generation. The proposed model is RL-free, and uses a so-called feature-mover’s
distance as the objective. (ii) We evaluate our model comprehensively on unconditional text generation.
When compared with previous methods, our model shows a substantial improvement in terms of
generation quality based on the BLEU statistics [43] and human evaluation. Further, our model also
achieves good generation diversity based on the self-BLEU statistics [63]. (iii) In order to demonstrate
the versatility of the proposed method, we also generalize our model to conditional-generation tasks,
including non-parallel text style transfer [54], and unsupervised cipher cracking [20].

2 Background

2.1 Adversarial training for distribution matching

We review the basic idea of adversarial distribution matching (ADM), which avoids the specification
of a likelihood function. Instead, this strategy defines draws from the synthetic data distribution
pG(x) by drawing a latent code z ∼ p(z) from an easily sampled distribution p(z), and learning a
generator function G(z) such that x = G(z). The form of pG(x) is neither specified nor learned,
rather we learn to draw samples from pG(x). To match the ensemble of draws from pG(x) with
an ensemble of draws from the real data distribution pd(x), ADM introduces a variational function
V(pd, pG;D), where D(x) is known as the critic function or discriminator. The goal of ADM is to
obtain an equilibrium of the following objective:

min
G

max
D

V(pd, pG;D) , (1)

where V(pd, pG;D) is computed using samples from pd and pG (not explicitly in terms of the dis-
tributions themselves), and d(pd, pG) = maxD V(pd, pG;D) defines a discrepancy metric between
two distributions [3, 42]. One popular example of ADM is the generative adversarial network (GAN),
in which VJSD = Ex∼pd(x) logD(x) + Ez∼p(z) log[1 − D(G(z))] recovers the Jensen-Shannon
divergence (JSD) for d(pd, pG) [21]; expectations Ex∼pd(x)(·) and Ez∼p(z)(·) are computed approx-
imately with samples from the respective distributions. Most of the existing work in applying GAN
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Figure 1: Illustration of the proposed feature mover GAN (FM-GAN) for text generation.

for text generation also uses this standard form, by combining it with policy gradient [60]. However,
it has been shown in [2] that this standard GAN objective suffers from an unstably weak learning
signal when the discriminator gets close to local optimal, due to the gradient-vanishing effect. This is
because the JSD implied by the original GAN loss is not continuous wrt the generator parameters.

2.2 Sentence to feature

GAN models were originally developed for learning to draw from a continuous distribution. The
discrete nature of text samples hinders the use of GANs, and thus a vectorization of a sequence
of discrete tokens is considered. Let x = {s1, ..., sL} ∈ Rv×L be a sentence of length L, where
st ∈ Rv denotes the one-hot representation for the t-th word. A word-level vector representation
of each word in x is achieved by learning a word embedding matrix We ∈ Rk×v, where v is the
size of the vocabulary. Each word is represented as a k-dimensional vector wt = West ∈ Rk. The
sentence x is now represented as a matrix W = [w1, ...,wL] ∈ Rk×L. A neural network F (·),
such as RNN [5, 10], CNN [18, 29, 52] or SWEM [51], can then be applied to extract feature vector
f = F (W).

2.3 Optimal transport

GAN can be interpreted in the framework of optimal transport theory, and it has been shown that the
Earth-Mover’s Distance (EMD) is a good objective for generative modeling [3]. Originally applied
in content-based image retrieval tasks [48], EMD is well-known for comparing multidimensional
distributions that are used to describe the different features of images (e.g., brightness, color, and
texture content). It is defined as the ground distance (i.e., cost function) between every two perceptual
features, extending the notion of a distance between single elements to a distance between sets of
elements. Specifically, consider two probability distribution x ∼ µ and y ∼ ν; EMD can be then
defined as:

DEMD(µ, ν) = inf
γ∈Π(µ,ν)

E(x,y)∼γ c(x, y) , (2)

where Π(µ, ν) denotes the set of all joint distributions γ(x, y) with marginals µ(x) and ν(y), and
c(x, y) is the cost function (e.g., Euclidean or cosine distance). Intuitively, EMD is the minimum cost
that γ has to transport from µ to ν.

3 Feature Mover GAN

We propose a new GAN framework for discrete text data, called feature mover GAN (FM-GAN).
The idea of optimal transport (OT) is integrated into adversarial distribution matching. Explicitly,
the original critic function in GANs is replaced by the Earth-Mover’s Distance (EMD) between
the sentence features of real and synthetic data. In addition, to handle the intractable issue when
computing (2) [3, 49], we define the Feature-Mover’s Distance (FMD), a variant of EMD that can
be solved tractably using the Inexact Proximal point method for OT (IPOT) algorithm [59]. In the
following sections, we discuss the main objective of our model, the detailed training process for text
generation, as well as extensions. Illustration of the framework is shown in Figure 1.
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3.1 Feature-mover’s distance

In practice, it is not tractable to calculate the minimization over γ in (2) [3, 19, 50]. In this section,
we propose the Feature-Mover’s Distance (FMD) which can be solved tractably. Consider two sets
of sentence feature vectors F = {f i}mi=1 ∈ Rd×m and F′ = {f ′j}nj=1 ∈ Rd×n drawn from two
different sentence feature distributions Pf and Pf ′ ; m and n are the total number of d-dimensional
sentence features in F and F′, respectively. Let T ∈ Rm×n be a transport matrix in which Tij ≥ 0
defines how much of feature vector f i would be transformed to f ′j . The FMD between two sets of
sentence features is then defined as:

DFMD(Pf ,Pf ′) = min
T≥0

m∑

i=1

n∑

j=1

Tij · c(f i,f ′j) = min
T≥0
〈T,C〉 , (3)

where
∑n
j=1 Tij = 1

m and
∑m
i=1 Tij = 1

n are the constraints, and 〈·, ·〉 represents the Frobenius dot-

product. In this work, the transport cost is defined as the cosine distance: c(f i,f
′
j) = 1− f>

i f ′
j

‖f i‖2‖f ′
j‖2

,

and C is the cost matrix such that Cij = c(f i,f
′
j). Note that during training, we set m = n as the

mini-batch size.

We propose to use the Inexact Proximal point method for Optimal Transport (IPOT) algorithm to
compute the optimal transport matrix T∗, which provides a solution to the original optimal transport
problem (3) [59]. Specifically, IPOT iteratively solves the following optimization problem:

T(t+1) = argminT∈Π(f ,f ′)〈T,C〉+ βDh(T,T(t)) , (4)

where Dh(T,T(t)) =
∑
i,j Tij log

Tij

T
(t)
ij

−∑
i,j Tij +

∑
i,j T

(t)
ij denotes the Bregman divergence

wrt the entropy functional h(T) =
∑
i,j Tij logTij .

Algorithm 1 IPOT algorithm [59]

1: Input: batch size n, {f i}ni=1,{f ′j}nj=1, β
2: σ = 1

n
1n, T(1) = 11>

3: Cij = c(f i,f
′
j), Aij = e

−
Cij
β

4: for t = 1, 2, 3 . . . do
5: Q = A�T(t) // � is Hadamard product
6: for k = 1, 2, 3, . . .K do
7: δ = 1

nQσ
, σ = 1

nQ>δ

8: end for
9: T(t+1) = diag(δ)Qdiag(σ)

10: end for

Here the Bregman divergence Dh serves as a prox-
imity metric and β is the proximity penalty. This
problem can be solved efficiently by Sinkhorn-style
proximal point iterations [13, 59], as detailed in Al-
gorithm 1.

Notably, unlike the Sinkhorn algorithm [19], we do
not need to back-propagate the gradient through the
proximal point iterations, which is justified by the
Envelope Theorem [1] (see the Supplementary Ma-
terial (SM)). This accelerates the learning process
significantly and improves training stability [59].

Algorithm 2 Adversarial text generation via FMD.

1: Input: batch size n, dataset X, learning rate η, maximum number of iterations N .
2: for itr = 1, . . . N do
3: for j = 1, . . . , J do
4: Sample a mini-batch of {xi}n1 ∼ X and {zi}n1 ∼ N (0, I);
5: Extract sentence features F = {F (Wexi;φ)}n1 and F′ = {F (G(zi; θ);φ)}n1 ;
6: Update the feature extractor F (·;φ) by maximizing:

LFM-GAN({xi}n1 , {zi}n1 ;φ) = DFMD(F,F′;φ)

7: end for
8: Repeat Step 4 and 5;
9: Update the generator G(·; θ) by minimizing:

LFM-GAN({xi}n1 , {zi}n1 ; θ) = DFMD(F,F′; θ)

10: end for
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3.2 Adversarial distribution matching with FMD

To integrate FMD into adversarial distribution matching, we propose to solve the following mini-max
game:

min
G

max
F
LFM-GAN = min

G
max
F

Ex∼px,z∼pz [DFMD(F (Wex), F (G(z)))] , (5)

where F (·) is the sentence feature extractor, and G(·) is the sentence generator. We call this feature
mover GAN (FM-GAN). The detailed training procedure is provided in Algorithm 2.

Sentence generator The Long Short-Term Memory (LSTM) recurrent neural network [25] is
used as our sentence generator G(·) parameterized by θ. Let We ∈ Rk×v be our learned word
embedding matrix, where v is the vocabulary size, with each word in sentence x embedded into wt,
a k-dimensional word vector. All words in the synthetic sentence are generated sequentially, i.e.,

wt = We argmax(at) , where at = Vht ∈ Rv , (6)

where ht is the hidden unit updated recursively through the LSTM cell: ht = LSTM(wt−1,ht−1, z),
V is a decoding matrix, softmax(Vht) defines the distribution over the vocabulary. Note that, distinct
from a traditional sentence generator, here, the argmax operation is used, rather than sampling from a
multinomial distribution, as in the standard LSTM. Therefore, all randomness during the generation
is clamped into the noise vector z.

The generator G cannot be trained, due to the non-differentiable function argmax. Instead, an
soft-argmax operator [61] is used as a continuous approximation:

w̃t = We softmax(ãt) , where ãt = Vht/τ ∈ Rv , (7)

where τ is the temperature parameter. Note when τ → 0, this approximates (6). We denote
G(z) = (w̃1, . . . , w̃L) ∈ Rk×L as the approximated embedding matrix for the synthetic sentence.

Feature extractor We use the convolutional neural network proposed in [11, 29] as our sentence
feature extractor F (·) parameterized by φ, which contains a convolution layer and a max-pooling
layer. Assuming a sentence of length L, the sentence is represented as a matrix W ∈ Rk×L,
where k is the word-embedding dimension, and L is the maximum sentence length. A convolution
filter Wconv ∈ Rk×l is applied to a window of l words to produce new features. After applying
the nonlinear activation function, we then use the max-over-time pooling operation [11] to the
feature maps and extract the maximum values. While the convolution operator can extract features
independent of their positions in the sentence, the max-pooling operator tries to capture the most
salient features.

The above procedure describes how to extract features using one filter. Our model uses multiple
filters with different window sizes, where each filter is considered as a linguistic feature detector.
Assume d1 different window sizes, and for each window size we have d2 filters; then a sentence
feature vector can be represent as f = F (W) ∈ Rd, where d = d1 × d2.

3.3 Extensions to conditional text generation tasks

Style transfer Our FM-GAN model can be readily generalized to conditional generation tasks,
such as text style transfer [26, 35, 44, 54]. The style transfer task is essentially learning the con-
ditional distribution p(x2|x1; c1, c2) and p(x1|x2; c1, c2), where c1 and c2 represent the labels for
different styles, with x1 and x2 sentences in different styles. Assuming x1 and x2 are conditionally
independent given the latent code z, we have:

p(x1|x2; c1, c2) =

∫

z

p(x1|z, c1) · p(z|x2, c2)dz = Ez∼p(z|x2,c2)[p(x1|z, c1)] . (8)

Equation (8) suggests an autoencoder can be applied for this task. From this perspective, we can
apply our optimal transport method in the cross-aligned autoencoder [54], by replacing the standard
GAN loss with our FMD critic. We follow the same idea as [54] to build the style transfer framework.
E : X × C → Z is our encoder that infers the content z from given style c and sentence x;
G : Z × C → X is our decoder that generates synthetic sentence x̂, given content z and style c. We
add the following reconstruction loss for the autoencoder:

Lrec = Ex1∼px1
[− log pG(x1|c1, E(x1, c1))] + Ex2∼px2

[− log pG(x2|c2, E(x2, c2))] , (9)
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where px1 and px2 are the empirical data distribution for each style. We also need to implement
adversarial training on the generatorGwith discrete data. First, we use the soft-argmax approximation
discussed in Section 3.2; second, we also use Professor-Forcing [32] algorithm to match the sequence
of LSTM hidden states. That is, the discriminator is designed to discriminate x̂2 = G(E(x1, c1), c2)
with real sentence x2. Unlike [54] which uses two discriminators, our model only needs to apply the
FMD critic twice to match the distributions for two different styles:

Ladv = Ex1∼px1 ,x2∼px2
[DFMD(F (G(E(x1, c1), c2)), F (Wex2)) (10)

+DFMD(F (G(E(x2, c2), c1)), F (Wex1))] ,

where We is the learned word embedding matrix. The final objective function for this task is:
minG,E maxF Lrec + λ · Ladv, where λ is a hyperparameter that balances these two terms.

Unsupervised decipher Our model can also be used to tackle the task of unsupervised cipher
cracking by using the framework of CycleGAN [62]. In this task, we have two different corpora,
i.e., X1 denotes the original sentences, and X2 denotes the encrypted corpus using some cipher
code, which is unknown to our model. Our goal is to design two generators that can map one
corpus to the other, i.e., G1 : X1 → X2, G2 : X2 → X1. Unlike the style-transfer task, we define
F1 and F2 as two sentence feature extractors for the different corpora. Here we denote px1

to be
the empirical distribution of the original corpus, and px2

to be the distribution of the encrypted
corpus. Following [20], we design two losses: the cycle-consistency loss (reconstruction loss) and
the adversarial feature matching loss. The cycle-consistency loss is defined on the feature space as:
Lcyc = Ex1∼px1

[‖F1(G2(G1(x1)))−F1(Wex1)‖1]+Ex2∼px2
[‖F2(G1(G2(x2)))−F2(Wex2)‖1] ,

(11)
where ‖ · ‖1 denotes the `1-norm, and We is the word embedding matrix. The adversarial loss aims
to help match the generated samples with the target:
Ladv = Ex1∼px1

,x2∼px2
[DFMD(F1(G2(x2)), F1(Wex1)) +DFMD(F2(G1(x1)), F2(Wex2))] .

(12)
The final objective function for the decipher task is: minG1,G2 maxF1,F2 Lcyc + λ · Ladv, where λ is
a hyperparameter that balances the two terms.

4 Related work

GAN for text generation SeqGAN [60], MaliGAN [8], RankGAN [37], and MaskGAN [15]
use reinforcement learning (RL) algorithms for text generation. The idea behind all these works are
similar: they use the REINFORCE algorithm to get an unbiased gradient estimator for the generator,
and apply the roll-out policy to obtain the reward from the discriminator. LeakGAN [24] adopts a
hierarchical RL framework to improve text generation. However, it is slow to train due to its complex
design. For GANs in the RL-free category, GSGAN [31] and TextGAN [61] use the Gumbel-softmax
and soft-argmax trick, respectively, to deal with discrete data. While the latter uses MMD to match
the features of real and synthetic sentences, both models still keep the original GAN loss function,
which may result in the gradient-vanishing issue of the discriminator.

GAN with OT Wasserstein GAN (WGAN) [3, 23] applies the EMD by imposing the 1-Lipschitz
constraint on the discriminator, which alleviates the gradient-vanishing issue when dealing with
continuous data (i.e., images). However, for discrete data (i.e., text), the gradient still vanishes after a
few iterations, even when weight-clipping or the gradient-penalty is applied on the discriminator [20].
Instead, the Sinkhorn divergence generative model (Sinkhorn-GM) [19] and Optimal transport GAN
(OT-GAN) [50] optimize the Sinkhorn divergence [13], defined as an entropy regularized EMD (2):
Wε(f ,f

′) = minT∈Π(f ,f ′)〈T,C〉+ ε · h(T), where h(T) =
∑
i,j Tij logTij is the entropy term,

and ε is the hyperparameter. While the Sinkhorn algorithm [13] is proposed to solve this entropy
regularized EMD, the solution is sensitive to the value of the hyperparameter ε, leading to a trade-off
between computational efficiency and training stability. Distinct from that, our method uses IPOT to
tackle the original problem of OT. In practice, IPOT is more efficient than the Sinkhorn algorithm,
and the hyperparameter β in (4) only affects the convergence rate [59].

5 Experiment

We apply the proposed model to three application scenarios: generic (unconditional) sentence
generation, conditional sentence generation (with pre-specified sentiment), and unsupervised decipher.
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Dataset Train Test Vocabulary average length

CUB captions 100,000 10,000 4,391 15
MS COCO captions 120,000 10,000 27,842 11

EMNLP2017 WMT News 278,686 10,000 5,728 28

Table 1: Summary statistics for the datasets used in the generic text generation experiments.

Text GAN

GS GAN

Leak GAN

Rank GAN

Seq GAN

MLE

RL-Free

RL-Based

CUB MS COCO EMNLP WMT

FM GAN

Figure 2: Test-BLEU score (higher value implies better quality) vs self-BLEU score (lower value implies better
diversity). Upper panel is BLEU-3 and lower panel is BLEU-4.

For the generic sentence generation task, we experiment with three standard benchmarks: CUB
captions [57], MS COCO captions [38], and EMNLP2017 WMT News [24].

Since the sentences in the CUB dataset are typically short and have similar structure, it is employed
as our toy evaluation. For the second dataset, we sample 130, 000 sentences from the original MS
COCO captions. Note that we do not remove any low-frequency words for the first two datasets, in
order to evaluate the models in the case with a relatively large vocabulary size. The third dataset
is a large long-text collection from EMNLP2017 WMT News Dataset. To facilitate comparison
with baseline methods, we follow the same data preprocessing procedures as in [24]. The summary
statistics of all the datasets are presented in Table 1.

For conditional text generation, we consider the task of transferring an original sentence to the
opposite sentiment, in the case where parallel (paired) data are not available. We use the same
data as introduced in [54]. For the unsupervised decipher task, we follow the experimental setup in
CipherGAN [20] and evaluate the model improvement after replacing the critic with the proposed
FMD objective.

We employ test-BLEU score [60], self-BLEU score [63], and human evaluation as the evaluation
metrics for the generic sentence generation task. To ensure fair comparison, we perform extensive
comparisons with several strong baseline models using the benchmark tool in Texygen [63]. For
the non-parallel text style transfer experiment, following [26, 54], we use a pretrained classifier to
calculate the sentiment accuracy of transferred sentences. We also leverage human evaluation to
further measure the quality of the transferring results. For the deciphering experiment, we adopt the
average proportion of correctly mapped words as accuracy as proposed in [20]. Our code will be
released to encourage future research.

5.1 Generic text generation

In general, when evaluating the performance of different models, we desire high test-BLEU score
(good quality) and low self-BLEU score (high diversity). Both scores should be considered: (i) a high
test-BLEU score together with a high self-BLEU score means that the model might generate good
sentences while suffering from mode collapse (i.e., low diversity); (ii) if a model generates sentences
randomly, the diversity of generated sentence could be high but the test-BLEU score would be low.
Figure 2 is used to compare the performance of every model. For each subplot, the x-axis represents
test-BLEU, and the y-axis represents self-BLEU (here we only show BLEU-3 and BLEU-4 figures;
more quantitative results can be found in the SM). For the CUB and MS COCO datasets, our model
achieves both high test-BLEU and low self-BLEU, providing realistic sentences with high diversity.
For the EMNLP WMT dataset, the synthetic sentences from SeqGAN, RankGAN, GSGAN and
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TextGAN is less coherent and realistic (examples can be found in the SM) due to the long-text nature
of the dataset. In comparison, our model is still capable of providing realistic results.

Method MLE SeqGAN RankGAN LeakGAN
Human score 2.54 ± 0.79 2.55 ± 0.83 2.86 ± 0.95 3.41±0.82

Method GSGAN TextGAN Our model real sentences
Human score 2.52±0.78 3.03±0.92 3.72±0.80 4.21±0.77

Table 2: Human evaluation results on EMNLP WMT.

To further evaluate the generation
quality based on the EMNLP WMT
dataset, we conduct a human Turing
test on Amazon Mechanical Turk; 10
judges are asked to rate over 100 ran-
domly sampled sentences from each
model with a scale from 0 to 5. The means and standard deviations of the rating score are calculated
and provided in Table 2. We also provide some examples of the generated sentences from LeakGAN
and our model in Table 3. More generated sentences are provided in the SM.

LeakGAN: (1) " people , if aleppo recognised switzerland stability , " mr . trump has said that " " it has been
filled before the courts .
(2) the russian military , meanwhile previously infected orders , but it has already been done
on the lead of the attack .

Ours: (1) this is why we will see the next few years , we ’ re looking forward to the top of the world ,
which is how we ’ re in the future .
(2) If you ’ re talking about the information about the public , which is not available , they have
to see a new study .

Table 3: Examples of generated sentences from LeakGAN and our model.

5.2 Non-parallel text style transfer

Table 4 presents the sentiment transfer results on the Yelp review dataset, which is evaluated with
the accuracy of transferred sentences, determined by a pretrained CNN classifier [29]. Note that
with the same experimental setup as in [54], our model achieves significantly higher transferring
accuracy compared with the cross-aligned autoencoder (CAE) model [54]. Moreover, our model even
outperforms the controllable text generation method [26] and BST [44], where a sentiment classifier
is directly pre-trained to guide the sentence generation process (on the contrary, our model is trained
in an end-to-end manner and requires no pre-training steps), and thus should potentially have a better
control over the style (i.e., sentiment) of generated sentences [54]. The superior performance of the
proposed method highlights the ability of FMD to mitigate the vanishing-gradient issue caused by the
discrete nature of text samples, and give rises to better matching between the distributions of reviews
belonging to two different sentiments.

Method Controllable [26] CAE [54] BST [44] Our model

Accuracy(%) 84.5 80.6 87.2 89.8

Sentiment 3.6 3.2 - 4.1
Content 4.6 4.1 - 4.5
Fluency 4.2 3.7 - 4.4

Table 4: Sentiment transfer accuracy and human evaluation results on Yelp.

Human evaluations are con-
ducted to assess the quality
of the transferred sentences.
In this regard, we randomly
sample 100 sentences from
the test set, and 5 volunteers
rate the outputs of different
models in terms of their flu-
ency, sentiment, and con-
tent preservation in a double blind fashion. The rating score is from 0 to 5. Detailed results
are shown in Table 4. We also provide sentiment transfer examples in Table 5. More examples are
provided in the SM.

Original: one of the best gourmet store shopping experiences i have ever had .
Controllable : one of the best gourmet store shopping experiences i have ever had .
CAE: one of the worst staff i would ever ever ever had ever had .
Ours: one of the worst indian shopping store experiences i have ever had .
Original: staff behind the deli counter were super nice and efficient !
Controllable: staff behind the deli counter were super rude and efficient !
CAE: the staff were the front desk and were extremely rude airport !
Ours: staff behind the deli counter were super nice and inefficient !

Table 5: Sentiment transfer examples.
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5.3 Unsupervised decipher

CipherGAN [20] uses GANs to tackle the task of unsupervised cipher cracking, utilizing the frame-
work of CycleGAN [62] and adopting techniques such as Gumbel-softmax [31] that deal with discrete
data. The implication of unsupervised deciphering could be understood as unsupervised machine
translation, in which one language might be treated as an enciphering of the other. In this experiment,
we adapt the idea of feature mover’s distance to the original framework of CipherGAN and test this
modified model on the Brown English text dataset [16].

The Brown English-language corpus [30] has a vocabulary size of over one million. In this experiment,
only the top 200 most frequent words are considered while the others are replaced by an “unknown”
token. We denote this modified word-level dataset as Brown-W200. We use Vigenère [7] to encipher
the original plain text. This dataset can be downloaded from this repository1.

For fair comparison, all the model architectures and parameters are kept the same as CipherGAN
while the critic for the discriminator is replaced by the FMD objective as shown in (3). Table 6 shows
the quantitative results in terms of average proportion of words mapped in a given sequence (i.e.,
deciphering accuracy). The baseline frequency analysis model only operates when the cipher key is
known. Our model achieves higher accuracy compared to the original CipherGAN. Note that some
other experimental setups from [20] are not evaluated, due to the extremely high accuracy (above
99%); the amount of improvement would not be apparent.

Method Freq. Analysis (with keys) CipherGAN [20] Our model

Accuracy(%) < 0.1 (44.3) 75.7 77.2

Table 6: Decipher results on Brown-W200.

6 Conclusion

We introduce a novel approach for text generation using feature-mover’s distance (FMD), called
feature mover GAN (FM-GAN). By applying our model to several tasks, we demonstrate that it
delivers good performance compared to existing text generation approaches. For future work, FM-
GAN has the potential to be applied on other tasks such as image captioning [56], joint distribution
matching [9, 17, 34, 45, 46, 55], unsupervised sequence classification [39], and unsupervised machine
translation [4, 12, 33].
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