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Abstract

Brain connectivity analysis is a critical component of ongoing human connectome
projects to decipher the healthy and diseased brain. Recent work has highlighted
the power-law (multi-time scale) properties of brain signals; however, there remains
a lack of methods to specifically quantify short- vs. long- time range brain connec-
tions. In this paper, using detrended partial cross-correlation analysis (DPCCA),
we propose a novel functional connectivity measure to delineate brain interactions
at multiple time scales, while controlling for covariates. We use a rich simulated
fMRI dataset to validate the proposed method, and apply it to a real fMRI dataset
in a cocaine dependence prediction task. We show that, compared to extant meth-
ods, the DPCCA-based approach not only distinguishes short and long memory
functional connectivity but also improves feature extraction and enhances classi-
fication accuracy. Together, this paper contributes broadly to new computational
methodologies in understanding neural information processing.

1 Introduction

Brain connectivity is crucial to understanding the healthy and diseased brain states [15, 1]. In recent
years, investigators have pursued the construction of human connectomes and made large datasets
available in the public domain [23, 24]. Functional Magnetic Resonance Imaging (fMRI) has been
widely used to examine complex processes of perception and cognition. In particular, functional
connectivity derived from fMRI signals has proven to be effective in delineating biomarkers for many
neuropsychiatric conditions [15].

One of the challenges encountered in functional connectivity analysis is the precise definition of
nodes and edges of connected brain regions [21]. Functional nodes can be defined based on activation
maps or with the use of functional or anatomical atlases. Once nodes are defined, the next step is to
estimate the weights associated with the edges. Traditionally, these functional connectivity weights
are measured using correlation-based metrics. Previous simulation studies have shown that they can
be quite successful, outperforming higher-order statistics (e.g. linear non-gaussian acyclic causal
models) and lag-based approaches (e.g. Granger causality) [20].

On the other hand, very few studies have investigated the power-law cross-correlation properties
(equivalent to multi-time scale measures) of brain connectivity. Recent research suggested that fMRI
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signals have power-law properties (e.g. their power-spectrum follows a power law) [8, 3] and that the
deviations from the typical range of power-exponents have been noted in neuropsychiatric disorders
[11]. For instance, in [3], using wavelet-based multivariate methods, authors observed that scale-free
properties are characteristic not only of univariate fMRI signals but also of pairwise cross-temporal
dynamics. Moreover, they found an association between the magnitude of scale-free dynamics and
task performance. We hypothesize that power-law correlation measures may capture additional
dimensions of brain connectivity not available from conventional analyses and thus enhance clinical
prediction.

In this paper, we aim to answer three key open questions: (i) whether and how brain networks are
cross-correlated at different time scales with long-range dependencies (“long-memory” process,
equivalent to power-law in the frequency domain); (ii) how to extract the intrinsic association between
two regions controlling for the influence of other interconnected regions; and (iii) whether multi-time
scale connectivity measures can improve clinical prediction. We address the first two questions
by using the detrended partial cross-correlation analsyis (DPCCA) coefficient [25], a measure that
quantifies correlations on multiple time scales between non-stationary time series, as is typically the
case with task-related fMRI signals. DPCCA is an extension of detrended cross-correlation analysis
[17, 13], and has been successfully applied to analyses of complex systems, including climatological
[26] and financial [18] data. Unlike methods based on filtering particular frequency bands, DPCCA
directly informs correlations across multiple time scales, and unlike wavelet-based approaches (e.g.
cross wavelet transformation and wavelet transform coherence [2]), DPCCA has the advantage of
estimating pairwise correlations controlling for the influence of other regions. This is critical because
brain regions and thus fMRI signals thereof are highly interconnected. To answer the third question,
we use the correlation profiles, generated from DPCCA, as input features for different machine
learning methods in classification tasks and compare the performance of DPCCA-based features with
all other competing features.

In Section 2, we describe the simulated and real data sets used in this study, and show how features
of the classification task are extracted from the fMRI signals. In Section 3, we provide further details
about DPCCA (Section 3.1), and present the proposed multi-time scale functional connectivity mea-
sure (Section 3.2). In Section 4, we describe core experiments designed to validate the effectiveness
of DPCCA in brain connectivity analysis and clinical prediction. We demonstrate that DPCCA
(i) detects connectivity at multiple-time scales while controlling for covariates (Sections 4.1 and
4.3), (ii) accurately identifies functional connectivity in well-known gold-standard simulated data
(Section 4.2), and (iii) improves classification accuracy of cocaine dependence with fMRI data of
seventy-five cocaine dependent and eighty-eight healthy control individuals (Section 4.4). In Section
5, we conclude by highlighting the significance of the study as well as the limitations and future
work.

2 Material and Methods

2.1 Simulated dataset: NetSim fMRI data

We use fMRI simulation data - NetSim [20] - previously developed for the evaluation of network
modeling methods. Simulating rich and realistic fMRI time series, NetSim is comprised of twenty-
eight different brain networks, with different levels of complexity. These signals are generated
using dynamic causal modeling (DCM [6]), a generative network model aimed to quantify neuronal
interactions and neurovascular dynamics, as measured by the fMRI signals. NetSim graphs have 5
to 50 nodes organized with “small-world” topology, in order to reflect real brain networks. NetSim
signals have 200 time points (mostly) sampled with repetition time (TR) of 3 seconds. For each
network, 50 separate realizations (“subjects”) are generated. Thus, we have a total of 1400 synthetic
dataset for testing. Finally, once the signals are generated, white noise of standard deviation 0.1-1%
is added to reproduce the scan thermal noise.

2.2 Real-world dataset: Cocaine dependence prediction

Seventy-five cocaine dependent (CD) and eighty-eight healthy control (HC) individuals matched in
age and gender participated in this study. CD were recruited from the local, greater New Haven area
in a prospective study and met criteria for current cocaine dependence, as diagnosed by the Structured
Clinical Interview for DSM-IV. They were drug-free while staying in an inpatient treatment unit.
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The Human Investigation committee at Yale University School of Medicine approved the study, and
all subjects signed an informed consent prior to participation. In the MR scanner, they performed a
simple cognitive control paradigm called stop-signal task [14]. FMRI data were collected with 3T
Siemens Trio scanner. Each scan comprised four 10-min runs of the stop signal task. Functional
blood oxygenation level dependent (BOLD) signals were acquired with a single-shot gradient echo
echo-planar imaging (EPI) sequence, with 32 axial slices parallel to the AC-PC line covering the
whole brain: TR=2000 ms, TE=25 ms, bandwidth=2004 Hz/pixel, flip angle=85◦, FOV=220×220
mm2, matrix=66×64, slice thickness=4 mm and no gap. A high-resolution 3D structural image
(MPRAGE; 1 mm resolution) was also obtained for anatomical co-registration. Three hundred
images were acquired in each session. Functional MRI data was pre-processed with standard pipeline
using Statistical Parametric Mapping 12 (SPM12) (Wellcome Department of Imaging Neuroscience,
University College London, U.K.).

2.2.1 Brain activation

We constructed general linear models and localized brain regions responding to conflict (stop signal)
anticipation (encoded by the probability P(stop)) at the group level [10]. The regions responding to
P(stop) comprised the bilateral parietal cortex, the inferior frontal gyrus (IFG) and the right middle
frontal gyrus (MFG); and regions responding to motor slowing bilateral insula, the left precentral
cortex (L.PC), and the supplementary motor area (SMA) (Fig. 1(a))2. These regions of interest (ROIs)
were used as masks to extract average activation time courses for functional connectivity analyses.

2.2.2 Functional connectivity

We analyzed the frontoparietal circuit involved in conflict anticipation and response adjustment using
a standard Pearson correlation analysis and multivariate Granger causality analysis or mGCA [19]. In
Fig. 1(b), we illustrate fifteen correlation coefficients derived from the six ROIs for each individual
CD and HC as shown in Fig. 1(a). According to mGCA, connectivities from bilateral parietal to L.PC
and SMA were disrupted in CD (Fig. 1(b)). These findings offer circuit-level evidence of altered
cognitive control in cocaine addiction.

(a) (b)

Figure 1: Disrupted frontoparietal circuit
in cocaine addicts. The frontoparietal
circuit included six regions responding
to Bayesian conflict anticipation (“S”)
and regions of motor slowing (“RT”): (a)
CD and HC shared connections (orange
arrows). (b) Connectivity strengths be-
tween nodes in the frontoparietal circuit.
We show connectivity strengths between
nodes for each individual subject in CD
(red line) and HC (blue line) groups.

3 A Novel Measure of Brain Functional Connectivity

3.1 Detrended partial cross-correlation analysis (DPCCA)

Detrended partial cross-correlation is a novel measure recently proposed by [25]. DPCCA combines
the advantages of detrended cross-correlation analysis (DCCA) [17] and standard partial correlation.
Given two time series {x(a)}, {x(b)} ∈ Xt, where Xt ∈ IRm, t = 1, 2, ..., N time points, DPCCA is
given by Equation 1:

ρDPCCA(a, b; s) =
−Ca,b(s)√

Ca,a(s).Cb,b(s)
, (1)

2Peak MNI coordinates for IFG:[39,53,-1], MFG:[42,23,38],bilateral insula:[-33,17,8] and [30,20,2], L.PC:[-
36,-13,56], and SMA:[-9,-1,50] in mm.
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where s is the time scale and each term Ca,b(s) is obtained by inverting the matrix ρ(s), e.g.
C(s) =ρ−1(s). The coefficient ρa,b ∈ ρ(s) is the so called DCCA coefficient [13]. The DCCA
coefficient is an extension of the detrented cross correlation analysis [17] combined with detrended
fluctuation analysis (DFA) [12].

Given two time series {x}, {y} ∈ Xt (indices omitted for the sake of simplicity) with N time
points and time scale s, DCCA coefficient is given by Equation 2:

ρ(s) =
F 2
DCCA(s)

FDFA,x(s)FDFA,y(s)
, (2)

where the numerator and denominator are the average of detrended covariances and variances of the
N − s+ 1 windows (partial sums), respectively, as described in Equations 3-4:

F 2
DCCA(s) =

∑N−s+1
j=1 f2

DCCA(s, j)

N − s
(3)

F 2
DFA,x(s) =

∑N−s+1
j=1 f2

DFA,x(s, j)

N − s
. (4)

The partial sums (profiles) are obtained with sliding windows across the integrated time series
Xt =

∑t
i=1 xi and Yt =

∑t
i=1 yi. For each time window j with size s, detrended covariances

and variances are computed according to Equations 5-6:

f2
DCCA(s, j) =

∑j+s−1
t=j (Xt − X̂t,j)(Yt − Ŷt,j)

s− 1
, (5)

f2
DFA,x(s, j) =

∑j+s−1
t=j (Xt − X̂t,j)

2

s− 1
, (6)

where X̂t,j and Ŷt,j are polynomial fits of time trends. We used a linear fit as originally proposed
[13], but higher order fits could also be used [25]. DCCA can be used to measure power-law
cross-correlations. However, we focus on DCCA coefficient as a robust measure to detect pairwise
cross-correlation in multiple time scales, while controlling for covariates. Importantly, DPCCA
quantifies correlations among time series with varying levels of non-stationarity [13].

3.2 DPCCA for functional connectivity analysis

In this section, we propose the use of DPCCA as a novel measure of brain functional connectivity.
First, we show in simulation experiments that the measure satisfies desired connectivity properties.
Further, we define the proposed connectivity measure. Although these properties are expected by
mathematical definition of DPCCA, it is critical to confirm its validity on real fMRI data. Additionally,
it is necessary to establish the statistical significance of the computed measures at the group level.

3.2.1 Desired properties

Given real fMRI signals, the measure should accurately detect the time scale in which the pairwise
connections occur, while controlling for the covariates. To verify this, we create synthetic data by
combining real fMRI signals and sinusoidal waves (Fig. 2). To simplify, we assume additive property
of signals and sinusoidal waves reflecting the time onset of the connections. For each simulation, we
randomly sample 100 sets of time series or “subjects”.

a) Distinction of short and long memory connections. Given two fMRI signals {xA}, {xB}, we
derive three pairs with known connectivity profiles: short-memory {XA = xA + sin(T1) + e},
{XB = xB + sin(T1) + e}, long-memory {XA = xA + sin(T2) + e}, {XB = xB +
sin(T2)+ e} and mixed {XA = xA + sin(T1)+ sin(T2)+ e}, {XB = xB + sin(T1)+
sin(T2) + e}, where T1 << T2 and e is a Gaussian signal to simulate measurement noise. We
hypothesize that the two nodes A and B are functionally connected at time scales T1 and T2.
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b) Control for covariates. Given three fMRI signals {xA}, {xB}, {xC}, we derive three signals
with known connectivity {XAC = xA+xC+sin(T )+e}, {XBC = xB+xC+sin(T )+e},
{XC = xC + e}, where e is the measurement noise. We hypothesize that the two nodes A and B
are functionally connected mostly at scale T, once the mutual influence of node C is controlled.

(a) (b)

Figure 2: Illustration of synthetic fMRI sig-
nals generated by combining real fMRI sig-
nals and sinusoidal waves. (a) Original fMRI
signals, (b) original signals with sin(T =
10s) and sin(T = 30s) waves added.

3.2.2 Statistical significance

Given two nodes and their time series, we assume that they are functionally connected if the
max |ρDPCCA|, within a time range srange, is significantly greater than the null distribution.
Empirical null distributions are estimated from the original data by randomly shuffling time series
across different subjects and nodes, as proposed in [20]. In this way, we generate realistic distributions
of connectivity weights occurring by chance. Since we have a multivariate measure, the null dataset
is always generated with the same number of nodes as the tested network. Multiple comparisons are
controlled by estimating the false discovery rate. Importantly, the null distribution is also computed on
max |ρDPCCA| within the time range srange. We use a srange from 6 to 18 seconds, assuming
that functional connections transpire in this range. Thus, we allow connections with different
time-scales. We use this binary definition of functional connectivity for the current approach to be
comparable with other methods, but it is also possible to work with the whole temporal profile of
ρDPCCA(s), as is done in the classification experiment (Section 4.4). To keep the same statistical
criteria, we also generate null distributions for all the other connectivity measures.

3.2.3 DPCCA + Canonical correlation analysis

As further demonstrated by simulation results (Table 1), DPCCA alone has lower true positive rate
(TPR) compared to other competing methods, likely because of its restrictive statistical thresholds. In
order to increase the sensitivity of DPCCA, we augmented the method by including an additional
canonical correlation analysis (CCA) [7]. CCA was previously used in fMRI in different contexts
to detect brain activations [5], functional connectivity [27], and for multimodal information fusion
[4]. In short, given two sets of multivariate time series {XA(t) ∈ IRm, t = 1, 2, ..., N} and
{XB(t) ∈ IRn, t = 1, 2, ..., N}, wherem and n are the respective dimensions of the two sets
A andB, andN is the number of time points, CCA seeks the linear transformations u and v so that
the correlation between the linear combinationsXA(t)u andXB(t)v is maximized. In this work,
we propose the use of CCA to define the existence of a true connection, in addition to the DPCCA
connectivity results. The proposed method is summarized in Algorithm 1. With CCA (Lines 8-14),
we identify the nodes that are strongly connected after linear transformations. In Line 18, we use
CCA to inform DPCCA in terms of positive connections.

4 Experiments and Results

4.1 Connectivity properties: Controlling time scales and covariates

In Figure 3, we observe that DPCCA successfully captured the time scales of the correlations
between time series {XA}, {XB}, despite the noisy nature of fMRI signals. For instance, it
distinguished between short and long-memory connections, represented using T1 = 10s and
T2 = 30s, respectively (Figs. 3a-c). Importantly, it clearly detected the peak connection at 10s after
controlling for the influence of covariate signalXC (Fig. 3f). Further, unlike DPCCA, the original
DCCA method did not rule out the mutual influence ofXC with peak at 30s (Fig. 3e).
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Algorithm 1 DPCCA+CCA
Input: Time series {Xt ∈ IRm, t = 1, 2, ..., N}, where m is the number of vectors and N is

the number of time points; time range srange with k values
Output: Connectivity matrix FC : [m×m] and associated matrices

1: Step: DPCCA(Xt) . Compute pairwise DPCCA
2: for pair of vectors {x(a)}, {x(b)} ∈ Xt do
3: for s in srange do
4: Compute the coefficient ρDPCCA(a, b; s) . Equation(1)
5: FC[a, b]← max |ρDPCCA| in srange

6: P [a, b]← statistical significance of FC[a, b] given the null empirical distribution
7: return FC and P .Matrix of connection weights and p-values
8: Step: CCA(Xt) . Compute CCA connectivity
9: for x(a) ∈ Xt do

10: for x(b) ∈ Xt, b 6= a do
11: rCCA[a, b]← (1− CCA between {x(a)}, {x(c)}, c 6= a, b) . Effect of

excluding node b
12: indexcon ← k-means(rCCA[a]) . Split connections into binary groups
13: CCA[a, indexcon]← 1

14: return CCA . CCA is a binary connectivity matrix
15: Step: DPCCA+CCA(P,CCA) . Augment DPCCA with CCA results
16: for pair of nodes {a, b} do
17: FC∗[a, b]← 1, if P [a, b] < 0.05 . DPCCA significant connections
18: FC∗[a, b]← max(FC∗[a, b], CCA[a, b]) . Fill missing connections
19: return FC∗, FC and P . FC∗ is a binary matrix

Figure 3: DPCCA temporal profiles
among the synthetic signals (details
in Section 3.2.1). (a)-(c): DPCCA
with peak at T=10s and T=30s, and
mixed. (d) DPCCA of the origi-
nal fMRI signals used to generate
the synthetics signals. (e) Temporal
profile obtained with DCCA with-
out partial correlation. (f) DPCCA
peak at T=10s after controlling for
XC . Dashed lines are the 95% con-
fidence interval of DPCCA for the
empirical null distribution.

4.2 Simulated networks: Improved connectivity accuracy

The goal of this experiment is to validate the proposed methods in an extensive dataset designed
to test functional connectivity methods. In this dataset, ground truth networks are known with the
architectures aimed to reflect real brain networks. We use the full NetSim dataset comprised of
28 different brain circuits and 50 subjects. For each sample of time series, we compute the partial
correlation (parCorr) and the regularized inverse covariance (ICOV), reported as the best performers
in [20], as well as the proposed DPCCA and DPCCA+CCA methods. For each measure, we construct
empirical null distributions, as described in Section 3.2.2, and generate the binary connectivity matrix
using threshold α = 0.05. To evaluate their connectivity accuracy, given the ground truth networks,
we compute the true positive and negative rates (TPR and TNR, respectively) and the balanced
accuracy BAcc= (TPR+TNR)

2
.

Using NetSim fMRI data as the testing benchmark, we observed that the proposed DPCCA+CCA
method provided more accurate functional connectivity results than the best methods reported in the
original paper [20]. Results are summarized in Table 1. Here we use the balanced accuracy (BAcc)
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as the evaluation metric, since it is a straightforward way to quantify both true positive and negative
connections.

Table 1: Comparison of functional connectivity methods using NetSim dataset. Mean and standard
deviation of balanced accuracy (BAcc), true positive rate (TPR) and true negative rate (TNR) are
reported. ParCorr: partial correlation, ICOV: regularized inverse covariance, DPCCA: detrended
cross correlation analysis, DPCCA+CCA: DPCCA augmented with CCA. DPCCA+CCA balanced
accuracy is significantly higher than the best competing method ICOV (Wilcoxon signed paired test,
Z=3.35 and p=8.1e-04).

Metrics
Functional connectivity measures

ParCorr ICOV DPCCA DPCCA+CCA
BAcc TPR TNR BAcc TPR TNR BAcc TPR TNR BAcc TPR TNR

Mean 0.834 0.866 0.804 0.841 0.866 0.817 0.846 0.835 0.855 0.859 0.893 0.824
Std 0.096 0.129 0.188 0.095 0.131 0.181 0.095 0.150 0.177 0.091 0.081 0.169

4.3 Real-world dataset: Learning connectivity temporal profiles

We use unsupervised methods to (i) learn representative temporal profiles of connectivity from
DPCCAFull, and (ii) perform dimensionality reduction. The use of temporal profiles may capture
additional information (such as short- and long-memory connectivity). However, it increases the
feature set dimensionality, imposing additional challenges on classifier training, particularly with
small dataset. The first natural choice for this task is principal component analysis (PCA), which can
represent original features by their linear combination. Additionally, we use two popular non-linear
dimensionality reduction methods Isomap [22] and autoencoders [9]. With Isomap, we attempt to
learn the intrinsic geometry (manifold) of the temporal profile data. With autoencoders, we seek to
represent the data using restricted Boltzmann machines stacked into layers.

In Figure 4, we show some representative correlation profiles obtained by computing DPPCA
among frontoparietal regions (circuit presented in Fig. 1), and the first three principal components.
Interestingly, PCA seemed to learn some of the characteristic temporal profiles. For instance, as
expected, the first components captured the main trend, while the second components captured some
of the short (task-related) and long (resting-state) memory connectivity trends (Figs.4a-b).

Figure 4: Illustration of some
DPCCA profiles and their prin-
cipal components. IFG: infe-
rior frontal gyrus, SMA: sup-
plementary motor area, PC:
premotor cortex. Explained
variances of the components
are also reported.

4.4 Real-world dataset: Cocaine dependence prediction

The classification task consists of predicting the class membership, cocaine dependence (CD) and
healthy control (HC), given each individual’s fMRI data. After initial preprocessing (Section 2.2), we
extract average time series within the frontoparietal circuit of 6 regions 3 (Figure 1), and compute
the different cross-correlation measures. These coefficients are used as features to train and test
(leave-one-out cross-validation) a set of popular classifiers available in scikit-learn toolbox [16]
(version 0.18.1), including k-nearest neighbors (kNN), support vector machine (SVM), multilayer
perceptron (MLP), Gaussian processes (GP), naive Bayes (NB) and the ensemble method Adaboost
(Ada). For the DPCCA coefficients, we test both peak values DPCCAmax as well as the rich
temporal profiles DPCCAFull. Finally, we also include the brain activation maps (Section 2.2.1) as
feature set, thus allowing comparison with popular fMRI classification softwares such as PRONTO
(http://www.mlnl.cs.ucl.ac.uk/pronto/). Features are summarized in Table 2.

3Although these regions are obtained from the whole-group, no class information is used to avoid inflated
classification rates.
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Table 2: Features used in the cocaine dependence classification task.

Type Name Size Description

Activation P(stop) 1042 Brain regions responding to anticipation of stop signals
UPE 1042 Brain regions responding to unsigned prediction error of P(stop)

Connectivity

Corr 15 Pearson cross-correlation among the six frontoparietal regions
ParCorr 15 Partial cross-correlation among the six frontoparietal regions
ICOV 15 Regularized inverse covariance among the six frontoparietal regions

DPCCAmax 15 Maximum DPCCA within the range 6-40 seconds
DPCCAFull 270 Temporal profile of DPCCA within the range 6-40 seconds
DPCCAIso 135-180 Isomap with 9-12 components and 30 neighbors

DPCCAAutoE 30-45 Autoencoders with 2-3 hidden layers, 5-20 neurons, batch=100, epoch=1000
DPCCAPCA 135-180 PCA with 9-12 components

Classification results are summarized in Table 3 and Figure 5. We used the area under curve (AUC)
as an evaluation metric in order to consider both sensitivity and specificity of the classifiers, as well as
balanced accuracy (BAcc). Here we tested all features described in Table 2, including the DPCCA full
profiles after dimensionality reduction (Isomap, autoencoders and PCA). Activation maps produced
poor classification results (P(stop): 0.525±0.048 and UPE: 0.509±0.032), comparable to the results
obtained with PRONTO software using the same features (accuracy 0.556).

Features Mean AUC
(± std)

Mean BAcc
(± std)

Top classifier
(AUC / BAcc)

Accuracy
(AUC / BAcc)

Corr 0.757 (± 0.041) 0.674 (± 0.037) GP / NB 0.794 / 0.710
ParCorr 0.901 (± 0.034) 0.848 (± 0.025) GP / Ada 0.948 / 0.875
ICOV 0.900 (± 0.030) 0.838 (± 0.023) GP / SVM 0.948 / 0.858

DPCCAmax 0.906 (± 0.019) 0.831 (± 0.022) GP / Ada 0.929 / 0.857
DPCCAFull 0.899 (± 0.028) 0.820 (± 0.052) GP / GP 0.957 / 0.874
DPCCAIso 0.902 (± 0.030) 0.827 (± 0.068) GP / MLP 0.954 / 0.894

DPCCAAutoE 0.815 (± 0.149) 0.813 (± 0.106) SVM / kNN5 0.939 / 0.863
DPCCAPCA 0.928 (± 0.035) 0.844 (± 0.064) Ada / NB 0.963 / 0.911

Table 3: Comparison of classification results for different
features. The DPCCA features combined with PCA produced
the top classifiers according to both criteria (0.963/0.911).
However, DPCCAPCA is not statistically better than ParCorr
or ICOV (Wilcoxon signed paired test, p>0.05). See Figure 5
for accuracy across different classification methods.

Figure 5: Comparison of classi-
fication results for different fea-
tures and methods (described in
Section 4.4).

5 Conclusions

In summary, as a multi-time scale approach to characterize brain connectivity, the proposed method
(DPCCA+CCA) (i) identified connectivity peak-times (Fig. 3), (ii) produced higher connectivity
accuracy than the best competing method ICOV (Table 1), and (iii) distinguished short/long memory
connections between brain regions involved in cognitive control (IFC&SMA and SMA&PC) (Fig.
4). Second, using the connectivity weights as features, DPCCA measures combined with PCA
produced the highest individual accuracies (Table 3). However, it was not statistically different
from the second best feature (ParCorr) across different classifiers. Further separate test set would be
necessary to identify the best classifiers. We performed extensive experiments with a large simulated
fMRI dataset to validate DPCCA as a promising functional connectivity analytic. On the other
hand, our conclusions on clinical prediction (classification task) are still limited to one case. Finally,
further optimization of Isomap and autoencoders methods could improve the learning of connectivity
temporal profiles produced by DPCCA.
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