
Supplementary Material: Value Prediction Network

Junhyuk Oh† Satinder Singh† Honglak Lee∗,†
†University of Michigan

∗Google Brain
{junhyuk,baveja,honglak}@umich.edu, honglak@google.com

A Comparison between VPN and DQN in the Deterministic Collect

Observation DQN’s trajectory VPN’s trajectory VPN’s 10-step plan

Figure 1: Examples of trajectories and planning on the deterministic Collect domain. The first column shows
initial observations, and the following two columns show trajectories of DQN and VPN respectively. It is shown
that DQN sometimes chooses a non-optimal option and ends up with collecting fewer goals than VPN. The last
column visualizes VPN’s 10 option-step planning from the initial state. Note that VPN’s initial plans do not
always match with its actual trajectories because the VPN re-plans at every step as it observes its new state.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



B Comparison between VPN and OPN in the Stochastic Collect

O
PN

V
PN

O
PN

V
PN

O
PN

V
PN

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

t = 8 t = 9 t = 10 t = 11 t = 12 t = 13 t = 14

t = 15 t = 16 t = 17 t = 18 t = 19 t = 20

Figure 2: Example of trajectory on the stochastic Collect domain. Each row shows a trajectory of VPN (top) and
OPN (bottom) given the same initial state. At t=6, the VPN decides to move up to collect nearby goals, while
the OPN moves left to collect the other goals. As a result, the OPN collects two fewer goals compared to VPN.
Since goals move randomly and the outcome of option is stochastic, the agent should take into account many
different possible futures to find the best option with the highest expected outcome. Though the outcome is noisy
due to the stochasticity of the environment, our VPN tends to make better decisions more often than OPN does
in expectation.

2



C Examples of Planning on Atari Games

Figure 3: Examples of VPN’s planning on Atari games. The first column shows initial states, and the following
columns show our VPN’s value estimates in parentheses given different sequences of actions. Red and black
arrows represent movement actions with and without ‘Fire’. ‘N’ and ‘F’ correspond to ‘No-operation’ and ‘Fire’.
(Seaquest) The VPN estimates higher values for moving up to refill the oxygen tank and lower values for moving
down to kill enemies because the agent loses a life when the oxygen tank is empty, which is almost running out.
(Ms. Pacman) The VPN estimates the lowest value for moving towards an enemy (ghost). It also estimates a low
value for moving right because it already has eaten some yellow pellets on the right side. On the other hand, it
estimates relatively higher values for moving left and down because it collects more pellets while avoiding the
enemy. (Frostbite) The VPN estimates higher values for collecting a nearby fish, which gives a positive reward,
and lower values for not collecting it. (Enduro) The VPN estimates higher values for accelerating (fire) and
avoiding collision and lower values for colliding with other cars.

3



D Details of Learning

Algorithm 1 describes our algorithm for training value prediction network (VPN). We observed that
training the outcome module (reward and discount prediction) on additional data collected from
a random policy slightly improves the performance because it reduces a bias towards the agent’s
behavior. More specifically, we fill a replay memory with R transitions from a random policy before
training and sample transitions from the replay memory to train the outcome module. This procedure
is described in Line 4 and Lines 20-24 in Algorithm 1. This method was used only for Collect domain
(not for Atari) in our experiment by generating 1M transitions from a random policy.

Algorithm 1 Asynchronous n-step Q-learning with k-step prediction and d-step planning

1: θ: global parameter, θ−: global target network parameter, T : global step counter
2: d: plan depth, k: number of prediction steps
3: t← 0 and T ← 0
4: M [1...R]← Store R transitions (s, o, r, γ, s′) using a random policy
5: while not converged do
6: Clear gradients dθ ← 0
7: Synchronize thread-specific parameter θ′ ← θ
8: tstart ← t
9: st ← Observe state

10: while t− tstart < n and st is non-terminal do
11: at ← argmaxoQ

d
θ′(st, ot) or random option based on ε-greedy policy

12: rt, γt, st+1 ← Execute ot
13: t← t+ 1 and T ← T + 1
14: end while

15: R =

{
0 if st is terminal
maxoQ

d
θ−(st, o) if st is non-terminal

16: for i = t− 1 to tstart do
17: R← ri + γiR

18: dθ ← dθ +∇θ′
[∑k

l=1

(
R− vli

)2
+
(
ri − rli

)2
+
(
logγ γi − logγ γ

l
i

)2]
19: end for
20: t′ ← Sample an index from 1, 2, ..., R
21: for i = t′ to t′ + n do
22: si, ai, ri, γi, si+1 ← Retrieve a transition from M [i]

23: dθ ← dθ +∇θ′
[∑k

l=1

(
ri − rli

)2
+
(
logγ γi − logγ γ

l
i

)2]
24: end for
25: Perform asynchronous update of θ using dθ
26: if T mod Itarget == 0 then
27: Update the target network θ− ← θ
28: end if
29: end while

4



E Details of Hyperparameters

Figure 4: Transition module used for Collect domain. The first convolution layer uses different weights
depending on the given option. Sigmoid activation function is used for the last 1x1 convolution such that its
output forms a mask. This mask is multiplied to the output from the 3rd convolution layer. Note that there is a
residual connection from s to s′. Thus, the transition module learns the change of the consecutive abstract states.

E.1 Collect

The encoding module of our VPN consists of Conv(32-3x3-1)-Conv(32-3x3-1)-Conv(64-4x4-2)
where Conv(N-KxK-S) represents N filters with size of KxK with a stride of S. The transition module
is illustrated in Figure 4. It consists of OptionConv(64-3x3-1)-Conv(64-3x3-1)-Conv(64-3x3-1) and
a separate Conv(64-1x1-1) for the mask which is multiplied to the output of the 3rd convolution layer
of the transition module. ‘OptionConv’ uses different convolution weights depending on the given
option. We also used a residual connection from the previous abstract state to the next abstract state
such that the transition module learns the difference between two states. The outcome module has
OptionConv(64-3x3-1)-Conv(64-3x3-1)-FC(64)-FC(2) where FC(N) represents a fully-connected
layer with N hidden units. The value module consists of FC(64)-FC(1). Exponential linear unit
(ELU) [1] was used as an activation function for all architectures.

Our DQN baseline consists of the encoding module followed by the transition module followed by
the value module. Thus, the overall architecture is very similar to VPN except that it does not have
the outcome module. To match the number of parameters, we used 256 hidden units for DQN’s value
module. We found that this architecture outperforms the original DQN architecture [2] on Collect
domain and several Atari games.

The model network of OPN baseline has the same architecture as VPN except that it has an additional
decoding module which consists of Deconv(64-4x4-2)-Deconv(32-3x3-1)-Deconv(32-3x3-1). This
module is applied to the predicted abstract-state so that it can predict the future observations. The
value network of OPN has the same architecture as our DQN baseline.

A discount factor of 0.98 was used, and the target network was synchronized after every 10K steps.
The epsilon for ε-greedy policy was linearly decreased from 1 to 0.05 for the first 1M steps.

E.2 Atari Games

The encoding module consists of Conv(16-8x8-4)-Conv(32-4x4-2), and the transition module has
OptionConv(32-3x3-1)-Conv(32-3x3-1) with a mask and a residual connection as described above.
The outcome module has OptionConv(32-3x3-1)-Conv(32-3x3-1)-FC(128)-FC(1), and the value
module consists of FC(128)-FC(1). The DQN baseline has the same encoding module followed by
the transition module and the value module, and we used 256 hidden units for the value module of
DQN to approximately match the number of parameters. The other hyperparameters are same as the
ones used in the Collect domain except that a discount factor of 0.99 was used.

References
[1] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by exponential

linear units (ELUs). arXiv preprint arXiv:1511.07289, 2015.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

5


	Comparison between VPN and DQN in the Deterministic Collect
	Comparison between VPN and OPN in the Stochastic Collect
	Examples of Planning on Atari Games
	Details of Learning
	Details of Hyperparameters
	Collect
	Atari Games


