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Abstract

Non-parametric multivariate density estimation faces strong statistical and com-
putational bottlenecks, and the more practical approaches impose near-parametric
assumptions on the form of the density functions. In this paper, we leverage re-
cent developments to propose a class of non-parametric models which have very
attractive computational and statistical properties. Our approach relies on the
simple function space assumption that the conditional distribution of each variable
conditioned on the other variables has a non-parametric exponential family form.

1 Introduction

LetX = (X1, . . . , Xp) be a p-dimensional random vector. LetG = (V,E) be the graph that encodes
conditional independence assumptions underlying the distribution of X , that is, each node of the
graph corresponds to a component of vector X and (a, b) ∈ E if and only if Xa 6⊥⊥ Xb | X¬ab with
X¬ab := {Xc | c ∈ V \{a, b}}. The graphical model represented by G is then the set of distributions
over X that satisfy the conditional independence assumptions specified by the graph G.

There has been a considerable line of work on learning parametric families of such graphical model
distributions from data [22, 20, 13, 28], where the distribution is indexed by a finite-dimensional
parameter vector. The goal of this paper, however, is on specifying and learning nonparametric
families of graphical model distributions, indexed by infinite-dimensional parameters, and for which
there has been comparatively limited work. Non-parametric multivariate density estimation broadly,
even without the graphical model constraint, has not proved as popular in practical machine learning
contexts, for both statistical and computational reasons. Loosely, estimating a non-parametric
multivariate density, with mild assumptions, typically requires the number of samples to scale
exponentially in the dimension p of the data, which is infeasible even in the big-data era when n is
very large. And the resulting estimators are typically computationally expensive or intractable, for
instance requiring repeated computations of multivariate integrals.

We present a review of multivariate density estimation, that is necessarily incomplete but sets up
our proposed approach. A common approach dating back to [15] uses the logistic density transform
to satisfy the unity and positivity constraints for densities, and considers densities of the form
f(X) = exp(η(X))∫

X exp(η(x))dx
, with some constraints on η for identifiability such as η(X0) = 0 for some

X0 ∈ X or
∫
X η(x)dx = 0.

With the logistic density transform, differing approaches for non-parametric density estimation can
be contrasted in part by their assumptions on the infinite-dimensional function space domain of η(·).
An early approach [8] considered function spaces of functions with bounded “roughness” functionals.
The predominant line of work however has focused on the setting where η(·) lies in a Reproducing
Kernel Hilbert Space (RKHS), dating back to [21]. Consider the estimation of these logistic density
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transforms η(X) given n i.i.d. samples Xn = {X(i)}ni=1 drawn from fη(X). A natural loss
functional is penalized log likelihood, with a penalty functional that ensures a smooth fit with respect
to the function space domain: `(η;Xn) := − 1

n

∑
i∈[n] η(X(i)) + log

∫
exp(η(x))dx+λ pen(η), for

functions η(·) that lie in an RKHSH, and where pen(η) = ‖η‖2H is the squared RKHS norm. This
was studied by many [21, 11, 6]. A crucial caveat is that the representer theorem for RKHSs does not
hold. Nonetheless, one can consider finite-dimensional function space approximations consisting
of the linear span of kernel functions evaluated at the sample points [12]. Computationally this still
scales poorly with the dimension due to the need to compute multidimensional integrals of the form∫

exp(η(x)dx which do not, in general, decompose. These approximations also do not come with
strong statistical guarantees.

We briefly note that the function space assumption that η(·) lies in an RKHS could also be viewed
from the lens of an infinite-dimensional exponential family [4]. Specifically, let H be a Repro-
ducing Kernel Hilbert Space with reproducing kernel k(·, ·), and inner product 〈·, ·〉H. Then
η(X) = 〈θ(·), k(X, ·)〉H, so that the density f(X) can in turn be viewed as a member of an
infinite-dimensional exponential family with sufficient statistics k(X, ·) : X 7→ H, and natural
parameter θ(·) ∈ H. Following this viewpoint, [4] propose estimators via linear span approximations
similar to [11].

Due to the computational caveat with exact likelihood based functionals, a line of approaches
have focused on penalized surrogate likelihoods instead. [14] study the following loss functional:
`(η;Xn) := 1

n

∑
i∈[n] exp(−η(X(i)))+

∫
η(x)ρ(x)dx+λpen(η), where ρ(X) is some fixed known

density with the same support as the unknown density f(X). While this estimation procedure is
much more computationally amenable than minimizing the exact penalized likelihood, the caveat,
however, is that for a general RKHS this requires solving higher order integrals. The next level of
simplification has thus focused on the form of the logistic transform function itself. There has been a
line of work on an ANOVA type decomposition of the logistic density function into node-wise and
pairwise terms: η(X) =

∑p
s=1 ηs(Xs) +

∑p
s=1

∑p
t=s+1 ηst(Xs, Xt). A line of work has coupled

such a decomposition with the assumption that each of the terms lie in an RKHS. This does not
immediately provide a computational benefit: with penalized likelihood based loss functionals, the
loss functional does not necessarily decompose into such node and pairwise terms. [24] thus couple
this ANOVA type pairwise decomposition with a score matching based objective. [10] use the above
decomposition with the surrogate loss functional of [14] discussed above, but note that this still
requires the aforementioned function space approximation as a linear span of kernel evaluations, as
well as two-dimensional integrals.

A line of recent work has thus focused on further stringent assumptions on the density function space,
by assuming some components of the logistic transform to be finite-dimensional. [30] use an ANOVA
decomposition but assume the terms belong to finite-dimensional function spaces instead of RKHSs,
specified by a pre-defined finite set of basis functions. [29] consider logistic transform functions η(·)
that have the pairwise decomposition above, with a specific class of parametric pairwise functions
βstXsXt, and non-parametric node-wise functions. [17, 16] consider the problem of estimating
monotonic node-wise functions such that the transformed random vector is multivariate Gaussian;
which could also be viewed as estimating a Gaussian copula density.

To summarize the (necessarily incomplete) review above, non-parametric density estimation faces
strong statistical and computational bottlenecks, and the more practical approaches impose stringent
near-parametric assumptions on the form of the (logistic transform of the) density functions. In this
paper, we leverage recent developments to propose a very computationally simple non-parametric
density estimation algorithm, that still comes with strong statistical guarantees. Moreover, the
density could be viewed as a graphical model distribution, with a corresponding sparse conditional
independence graph.

Our approach relies on the following simple function space assumption: that the conditional distri-
bution of each variable conditioned on the other variables has a non-parametric exponential family
form. As we show, for there to exist a consistent joint density, the logistic density transform with
respect to a particular base measure necessarily decomposes into the following semi-parametric
form: η(X) =

∑p
s=1 θsBs(Xs) +

∑p
s=1

∑p
t=s+1 θstBs(Xs)Bt(Xt) in the pairwise case, with

both a parametric component {θs : s = 1, . . . , p}, {θst : s < t; s, t = 1, . . . , p}, as well as
non-parametric components {Bs : s = 1, . . . , p}. We call this class of models the “expxorcist”, fol-
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lowing other “ghostbusting” semi-parametric models such as the nonparanormal and nonparanormal
skeptic [17, 16].

Since the conditional distributions are exponential families, we show that there exist computationally
amenable estimators, even in our more general non-parametric setting, where the sufficient statistics
have to be estimated as well. The statistical analysis in our non-parametric setting however is more
subtle, due in part to non-convexity and in part to the non-parametric setting. We also show how the
Expxorcist class of densities is closely related to a semi-parametric exponential family copula density
that generalizes the Gaussian copula density of [17, 16]. We corroborate the applicability of our class
of models with experiments on synthetic and real data sets.

2 Multivariate Density Specification via Conditional Densities

We are interested in the approach of estimating a multivariate density by estimating node-conditional
densities. Since node-conditional densities focus on the density of a single variable, though condi-
tioned on the rest of the variables, estimating these is potentially a simpler problem, both statistically
and computationally, than estimating the entire joint density itself. Let us consider the general
non-parametric conditional density estimation problem. Given the general multivariate density
f(X) = exp(η(X))∫

X exp(η(x))dx
, the conditional density of a variable Xs given the rest of the variables X−s

is given by f(Xs | X−s) = exp(η((Xs,X−s)))∫
Xs

exp(η((x,X−s)))dx
, which does not have a multi-dimensional integral,

but otherwise does not have a computationally amenable form. There has been a line of work on such
conditional density estimation, mirroring developments in multivariate density estimation [9, 18, 23],
but unlike parametric settings, there are no large sample complexity gains with non-parametric
conditional density estimation under general settings. There have also been efforts to use ANOVA
decompositions in a conditional density context [31, 26].

In addition to computational and sample complexity caveats, recall that in our context, we would
like to use conditional density estimates to infer a joint multivariate density. A crucial caveat with
using the above estimates to do so is that it is not clear when the estimated node-conditional densities
would be consistent with a joint multivariate density. There has been a line of work on this question
(of when conditional densities are consistent with a joint density) for parametric densities; see [1] for
an overview, with more recent results in [27, 5, 2, 25]. Overall, while estimating node-conditional
densities could be viewed as surrogate estimation of a joint density, arbitrary node-conditional
distributions need not be consistent in general with any joint density. There has however been a line
of work in recent years [3, 28], where it was shown that when the node-conditional distributions
belong to an exponential family, then under certain conditions on their parameterization, there do
exist multivariate densities consistent with the node-conditional densities. In the next section, we
leverage these results towards non-parametric estimation of conditional densities.

3 Conditional Densities of an Exponential Family Form

We first recall the definition of an exponential family in the context of a conditional density.
Definition 1. A conditional density of a random variable Y ∈ Y given covariates Z :=
(Z1, . . . , Zm) ∈ Z is said to have an exponential family form if it can be written as f(Y | Z) =
exp(B(Y )TE(Z) +C(Y ) +D(Z)), for some functions B : Y 7→ Rk (for some finite integer k > 0),
E : Z 7→ Rk, C : Y 7→ R and D : Z 7→ R.

Thus, f(Y | Z) belongs to a finite-dimensional exponential family with sufficient statistics B(Y ),
base measure exp(C(Y )), and with natural parameter E(Z) and where −D(Z) is the log-partition
function. Contrast this with a general conditional density f(Y | Z) = exp(h(Y,Z)+C(Y )+D(Z))
with respect to the base measure exp(C(Y )) and−D(Z) being the log-normalization constant, and it
can be seen that a conditional density of the exponential family form has its logistic density transform
h(Y,Z) that factorizes as B(Y )TE(Z).

Consider the case where the sufficient statistic function is real-valued. The non-parametric estimation
problem of a conditional density of exponential form then reduces to the estimation of the sufficient
statistics function B(·), the exponential natural parameter function E(·), assuming the base measure
C(·) is given. But when would such estimated conditional densities be consistent with a joint density?
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To answer this question, we draw upon developments in [28]. Suppose that the node-conditional
distributions of each random variable Xs conditioned on the rest of random variables have the
exponential family form as in Definition 1, so that for each s ∈ V

P(Xs | X−s) ∝ exp{Es(X−s)Bs(Xs) + Cs(Xs)} , (1)

for some arbitrary functions Es(·), Bs(·), Cs(·) that specify a valid conditional density. Then [28]
show that these node-conditional densities are consistent with a unique joint density over the random
vector X , that moreover factors according to a set of cliques C in the graph G, if and only if
the functions {Es(·)}s∈V specifying the node-conditional distributions have the form Es(X−s) =
θs +

∑
C∈C:s∈C θC

∏
t∈C,t 6=sBt(Xt), where {θs} ∪ {θC}C∈C is a set of parameters. Moreover, the

corresponding consistent joint distribution has the following form

P(X) ∝ exp
{∑

s∈V
θsBs(Xs) +

∑
C∈C

θC
∏

s∈C
Bs(Xs) +

∑
s∈V

Cs(Xs)
}
. (2)

In this paper, we are interested in the non-parametric estimation of the Expxorcist class of densities
in (2), where we estimate both the finite-dimensional parameters {θs} ∪ {θC}C∈C , as well as the
functions {Bs(Xs)}s∈V . We assume we are given the base measures {Cs(Xs)}s∈V , so that the
joint density is with respect to a given product base measure

∏
s∈V exp(Cs(XS)), as is common

in the multivariate density estimation literature. Note that this is not a very restrictive assumption.
In practice the base measure at each node can be well approximated using the empirical univariate
marginal density of that node. We could also extend our algorithm, which we present next, to estimate
the base measures along with sufficient statistic functions.

4 Regularized Conditional Likelihood Estimation for Exponential Family
Form Densities

We consider the nonparametric estimation problem of estimating a joint density of the form in (2),
focusing on the pairwise case where the factors have size at most k = 2, so that the joint density
takes the form

P(X) ∝ exp

{∑
s∈V

θsBs(Xs) +
∑

(s,t)∈E
θstBs(Xs)Bt(Xt) +

∑
s∈V

Cs(Xs)

}
. (3)

As detailed in the previous section, estimating this joint density can be reduced to estimating its
node-conditional densities, which take the form

P(Xs | X−s) ∝ exp

{
Bs(Xs)

(
θs +

∑
t∈NG(s)

θstBt(Xt)
)

+ Cs(Xs)

}
. (4)

We now introduce some notation which we use in the sequel. Let Θ = {θs}s∈V ∪ {θst}s6=t and
Θs = θs ∪ {θst}t∈V \{s}. Let B = {Bs}s∈V be the set of sufficient statistics. Let Xs be the domain
of Xs, which we assume is bounded and L2(Xs) be the Hilbert space of square integrable functions
over Xs with respect to Lebesgue measure. We assume that the sufficient statistics Bs(·) ∈ L2(Xs).

Note that the model in Equation (3) is unidentifiable. To overcome this issue we impose additional
constraints on its parameters. Specifically, we require Bs(Xs) to satisfy

∫
Xs
Bs(X)dX = 0,∫

Xs
Bs(X)2dX = 1 and θs ≥ 0, ∀s ∈ V .

Optimization objective: Let Xn = {X(1), . . . X(n)} be n i.i.d. samples drawn from a joint density
of the form in Equation (3), with parameters Θ∗, B∗. And let Ls(Θs, B;Xn) be the node conditional
negative log likelihood at node s

Ls(Θs, B;Xn) =
1

n

∑n

i=1

{
−Bs(X(i)

s )

(
θs +

∑
t∈V \s

θstBt(X
(i)
t )

)
+A(X

(i)
−s; Θs, B)

}
,

where A(X−s; Θs, B) is the log partition function. To estimate the unknown parameters, we solve
the following regularized node conditional log-likelihood estimation problem at each node s ∈ V

min
Θs,B

Ls(Θs, B;Xn) + λn‖Θs‖1

s.t. θs ≥ 0,
∫
Xt
Bt(X)dX = 0,

∫
Xt
Bt(X)2dX = 1 ∀t ∈ V.

(5)
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The equality constraints on the norm of functions Bt(·) makes the above optimization problem a
difficult one to solve. While the norm constraints on Bt(·),∀t ∈ V \ s can be handled through re-
parametrization, the constraint onBs(·) can not be handled efficiently. To make the optimization more
amenable for numerical optimization techniques, we solve a closely related optimization problem.
At each node s ∈ V , we consider the following re-parametrization of B: Bs(Xs) ← θsBs(Xs),
Bt(Xt)← (θst/θs)Bt(Xt),∀t ∈ V \ {s}. With a slight abuse of notation we redefine Ls using this
re-parametrization as

Ls(B;Xn) =
1

n

∑n

i=1

{
−Bs(X(i)

s )

(
1 +

∑
t∈V \s

Bt(X
(i)
t )

)
+A(X

(i)
−s;B)

}
, (6)

where A(X−s;B) is the log partition function. We solve the following optimization problem, which
is closely related to the original optimization in Equation (5)

min
B
Ls(B;Xn) + λn

∑
t∈V

√∫
Xt
Bt(X)2dX

s.t.
∫
Xt
Bt(X)dX = 0 ∀t ∈ V.

(7)

For more details on the relation between (5) and (7), please refer to Appendix.

Algorithm: We now present our algorithm for optimization of (7). In the sequel, for simplicity,
we assume that the domains Xt of random variables Xt are all the same and equal to X . In order to
estimate functions Bt, we expand them over a uniformly bounded, orthonormal basis {φk(·)}∞k=0 of
L2(X ) with φ0(·) ∝ 1. Expansion of the functions Bt(·) over this basis yields

Bt(X) =
∑m

k=1
αt,kφk(X)+ρt,m(X) where ρt,m(X) = αt,0φ0(X)+

∑∞

k=m+1
αt,kφk(X).

Note that the constraint
∫
X Bt(X)dX = 0 in Equation (7), translates to αt,0 = 0. To convert the

infinite dimensional optimization problem in (7) into a finite dimensional problem, we truncate the
basis expansion to the top m terms and approximate Bt(·) as

∑m
k=1 αt,kφk(·). The optimization

problem in Equation (7) can then be rewritten as

min
αm

Ls,m(αm;Xn) + λn
∑
t∈V
‖αt,m‖2, (8)

where αt,m = {αt,k}mk=1, αm = {αt,m}t∈V and Ls,m is defined as

Ls,m(αm;Xn) =
1

n

n∑
i=1

−
m∑
k=1

αs,kφk(X(i)
s )

1 +
∑

t∈V \{s}

m∑
l=1

αt,lφl(X
(i)
t )

+A(X
(i)
−s;αm)

 .

Iterative minimization of (8): Note that the objective in (8) is non-convex. In this work, we use
a simple alternating minimization technique for its optimization. In this technique, we alternately
minimize αs,m, {αt,m}t∈V \s while fixing the other parameters. The resulting optimization problem
in each of the alternating steps is convex. We use Proximal Gradient Descent to optimize these
sub-problems. To compute the objective and its gradients, we need to numerically evaluate the
one-dimensional integrals in the log partition function. To do this, we choose a uniform grid of points
over the domain and use quadrature rules to approximate the integrals.

Convergence: Although (8) is non-convex, we can show that under certain conditions on the
objective function, the alternating minimization procedure converges to the global minimum. In a
recent work [32] analyze alternating minimization for low rank matrix factorization problems and
show that it converges to a global minimum if the sequence of convex problems are strongly convex
and satisfy certain other regularity condition. The analysis of [32] can be extended to show global
convergence of alternating minimization for (8).

5 Statistical Properties

In this section we provide parameter estimation error rates for the node conditional estimator in
Equation (8). Note that these rates are for the re-parameterized model described in Equation (6) and
can be easily translated to guarantees on the original model described in Equations (3), (4).
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Notation: Let B2(x, r) = {y : ‖y − x‖2 ≤ r} be the `2 ball with center x and radius r. Let
{B∗t (·)}t∈V be the true functions of the re-parametrized model, which we would like to estimate
from the data. Denote the basis expansion coefficients of Bt(·) with respect to orthonormal basis
{φk(·)}∞k=0 by αt, which is an infinite dimensional vector and let α∗t be the coefficients of B∗t (·).
And let αt,m be the coefficients corresponding to the top m basis in the basis expansion of Bt(·).
Note that

∫
Bt(X)2dX = ‖αt‖22. Let α = {αt}t∈V and αm = {αt,m}t∈V . Let L̄s,m(αm) =

E [Ls,m(αm;Xn)] be the population version of the sample loss defined in Equation (8). We will often
omit Xn from Ls,m(αm;Xn) when clear from the context. We let (αt − αt,m) be the difference
between infinite dimensional vector αt and the vector obtained by appropriately padding αt,m with
zeros. Finally, we define the norm R(·) as R(αm) =

∑
t∈V ‖αt,m‖2 and its dual as R∗(αm) =

supt∈V ‖αt,m‖2. The norms on infinite dimensional vector α are similarly defined.

We now state our key assumption on the loss function Ls,m(·). This assumption imposes strong
curvature condition on Ls,m along certain directions in a ball around α∗m.
Assumption 1. There exists rm > 0 and constants c, κ > 0 such that for any ∆m ∈ B2(0, rm) the
gradient of the sample loss Ls,m satisfies: 〈∇Ls,m(α∗m + ∆m)−∇Ls,m(α∗m),∆m〉 ≥ κ‖∆m‖22−
c
√

m log(p)
n R(∆m).

Similar assumptions are increasingly common in analysis of non-convex estimators, see [19] and
references therein. We are now ready to state our results which give the parameter estimation error
rates, the proofs of which can be found in Appendix. We first provide a deterministic bound on
the error ‖αm − α∗m‖2 in terms of the random quantityR∗(∇Ls,m(α∗m)). We derive probabilistic
results in the subsequent corollaries.
Theorem 2. Let Ns be the true neighborhood of node s, with |Ns| = d. Suppose Ls,m satisfies
Assumption 1. If the regularization parameter λn is chosen such that λn ≥ 2R∗(∇Ls,m(α∗m)) +

2c
√

m log(p)
n , then any stationary point α̂m of (8) in B2(α∗m, rm) satisfies:

‖α̂m − α∗m‖2 ≤
6
√

2

κ

√
dλn.

We now provide a set of sufficient conditions under which the random quantity R∗(∇Ls,m(α∗m))
can be bounded.
Assumption 2. There exists a constant L > 0 such that the gradient of the population loss L̄s,m at
α∗m satisfies: R∗(∇L̄s,m(α∗m)) ≤ LR∗(α∗ − α∗m).
Corollary 3. Suppose the conditions in Theorem 2 are satisfied. Moreover, let γ =
supi∈N,X∈X |φi(X)| and τm = supt∈V,X∈X |

∑m
i=1 α

∗
t,iφi(X)|. Suppose Ls,m satisfies Assumption

2. If the regularization parameter λn is chosen such that λn ≥ 2LR∗(α∗−α∗m)+cγτm

√
md2 log(p)

n ,
then then with probability at least 1−2m/p2 any stationary point α̂m of (8) in B2(α∗m, rm) satisfies:

‖α̂m − α∗m‖2 ≤
6
√

2

κ

√
dλn.

Theorem 2 and Corollary 3 bound the error of the estimated coefficients in the truncated expansion.
The approximation error of the truncated expansion itself depends on the function space assumption,
as well as the basis chosen, but can be simply combined with the statement of the above corollary to
derive the overall error. As an instance, we present a corollary below for the specific case of Sobolev
space of order two, and the trigonometric basis.
Corollary 4. Suppose the conditions in Corollary 3 are satisfied. Moreover, suppose the true functions
B∗t (·) lie in a Sobolev space of order two. Let {φk}∞k=0 be the trigonometric basis of L2(X ). If the
optimization problem (8) is solved with λn = c1(d2 log(p)/n)2/5 and m = c2(n/d2 log(p))1/5, then
with probability at least 1− 2m/p2 any stationary point α̂m of (8) in B2(α∗m, rm) satisfies:

‖α̂m − α∗‖2 ≤ c3
(
d13/4 log(p)

n

)2/5

,

where c1, c2, c3 depend on L, κ, γ, τm.
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Discussion on Assumption 1: We now provide a set of sufficient conditions which ensure the
restricted strong convexity (RSC) condition. Suppose the population risk L̄s,m(·) is strongly convex
in a ball of radius rm around α∗m〈

∇L̄s,m(α∗m + ∆m)−∇L̄s,m(α∗m),∆m

〉
≥ κ‖∆m‖22 ∀∆m ∈ B2(0, rm). (9)

Moreover, suppose the empirical gradients converge uniformly to the population gradients

sup
αm∈B2(α∗m,rm)

R∗
(
∇Ls,m(αm)−∇L̄s,m(αm)

)
≤ c
√
m log p

n
. (10)

For example, this condition holds with high probability when the gradient of Ls,m(αm) w.r.t
αt,m, for any t ∈ [p] is a sub-Gaussian process. Equations (9),(10) are easier to check and en-
sure that Ls,m(αm) satisfies the RSC property in Assumption 1.

6 Connections to Exponential Family MRF Copulas

The Expxorcist class of models could be viewed as being closely related to an exponential fam-
ily MRF [28] copula density. Consider the parametric exponential family MRF joint density in
(3): PMRF;θ(X) ∝ exp

{∑
s∈V θsBs(Xs) +

∑
(s,t)∈E(G) θstBs(Xs)Bt(Xt) +

∑
s∈V Cs(Xs)

}
,

where the distribution is indexed by the finite-dimensional parameters {θs}s∈V , {θst}(s,t)∈E , and
where in contrast to the previous sections, we assume we are given the sufficient statistics functions
{Bs(·)}s∈V as well as the nodewise base measures {Cs(·)}s∈V . Now consider the following non-
parametric problem. Given a random vector X , suppose we are interested in estimating monotonic
node-wise functions {fs(Xs)}s∈V such that (f1(X1), . . . , fp(Xp)) follows PMRF;θ for some θ. Let-
ting f(X) = (f1(X1), . . . , fp(Xp)), we have that P(f(X)) = PMRF;θ(f(X)), so that the density of
X can be written as P(X) ∝ P(f(X))

∏
s∈V f

′
s(Xs). This is now a semi-parametric estimation

problem, where the unknowns are the functions {fs(Xs)}s∈V as well as the finite-dimensional pa-
rameters θ. To simplify this density, suppose we assume that the given node-wise sufficient statistics
are linear, so that Bs(z) = z, for all s ∈ V , so that density reduces to

P(X) ∝ exp

∑
s∈V

θsfs(Xs) +
∑

(s,t)∈E(G)

θstfs(Xs) ft(Xt) +
∑
s∈V

(Cs(fs(Xs)) + log f ′s(Xs))

 . (11)

In contrast, the Expxorcist nonparametric exponential family graphical model takes the form

P(X) ∝ exp

∑
s∈V

θsfs(Xs) +
∑

(s,t)∈E(G)

θstfs(Xs) ft(Xt) +
∑
s∈V

Cs(Xs)

 . (12)

It can be seen that the two densities have very similar forms, except that the density in (11) has a
more complex base measure that depends on the unknown functions {fs}s∈V and importantly the
functions {fs}s∈V in (11) are monotonic.

The class of densities in (11) can be cast as an exponential family MRF copula density. Suppose
we denote the CDF of the parametric exponential family MRF joint density by FMRF;θ(X), with
nodewise marginal CDFs FMRF;θ,s(Xs). Then the marginal CDF of the density (11) can be written
as Fs(xs) = P[Xs ≤ xs] = P[fs(Xs) ≤ fs(xs)] = FMRF;θ,s(fs(xs)), so that

fs(xs) = F−1
MRF;θ,s(Fs(xs)). (13)

It then follows that: F (X) = FMRF;θ

(
F−1

MRF;θ,1(F1(X1)), . . . , F−1
MRF;θ,p(Fp(Xp))

)
, where F (X)

is the CDF of density (11). By letting FCOP;θ(U) = FMRF;θ

(
F−1

MRF;θ,1(U1), . . . , F−1
MRF;θ,p(Up)

)
be the exponential family MRF copula density function, we see that the CDF of X is precisely:
F (X) = FCOP;θ(F1(X1), . . . , Fp(Xp)), which is specified by the marginal CDFs {Fs(Xs)}s∈V and
the copula density FCOP;θ corresponding to the exponential family MRF density. In other words, the
non-parametric extension in (11) of the exponential family MRF densities is precisely an exponential
family MRF copula density. This development thus generalizes the non-parametric extension of
Gaussian MRF densities via the Gaussian copula nonparanormal densities [17]. The caveats with the
copula density however are two-fold: the node-wise functions are restricted to be monotonic, but
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also the estimation of these as in (13) requires the estimation of inverses of marginal CDFs of an
exponential family MRF, which is intractable in general. Thus, minor differences in the expressions
of the Expxorcist density (12) and an exponential family MRF copula density (11) nonetheless have
seemingly large consequences for tractable estimation of these densities from data.

7 Experiments

We present experimental results on both synthetic and real datasets. We compare our estimator,
Expxorcist, with the Nonparanormal model of [17] and Gaussian Graphical Model (GGM). We use
glasso [7] to estimate GGM and the two step estimator of [17] to estimate Nonparanormal model.

7.1 Synthetic Experiments

Data: We generated synthetic data from the Expxorcist model with chain and grid graph structures.
For both the graph structures, we set θs = 1,∀s ∈ V ,θst = 1,∀(s, t) ∈ E and fix the domain
X to [−1, 1]. We experimented with two choices for sufficient statistics Bs(X): sin(4πX) and[
exp

(
−20(X − 0.5)2

)
+ exp

(
−20(X + 0.5)2

)
− 1
]

and picked the log base measure Cs(X) to
be 0. The grid graph we considered has a 10× (p/10) structure. We used Gibbs sampling to sample
data from these models. We also generated data from Gaussian distribution with chain and grid graph
structures. To generate this data we set the off diagonal non-zero entries of inverse covariance matrix
to 0.49 for chain graph and 0.25 for grid graph and diagonal entries to 1.

Evaluation Metric: We compared the performance of Expxorcist against baselines, on graph
structure recovery, using ROC curves. The ROC curve plots the true positive rate (TPR) against false
positive rate (FPR) over different choices of regularization parameter, where TPR is the fraction of
correctly detected edges and FPR is the fraction of mis-identified non edges.

Experiment Settings: For this experiment we set p = 50 and n ∈ {100, 200, 500} and varied the
regularization parameter λ from 10−2 to 1. To fit the data to the non parametric model (3), we used
cosine basis and truncated the basis expansion to top 30 terms. In practice, one could choose the
number of basis (m) based on domain knowledge (e.g. “smooth” functions), or in the absence of
which, one could use hold-out validation/cross validation. Given N̂(s), the estimated neighborhood
for node s, we estimated the overall graph structure as: ∪s∈V ∪t∈N̂(s) {(s, t)}. To reduce the variance
in the ROC plots, we averaged results over 10 repetitions.

Results: Figure 1 shows the ROC plots obtained from this experiment. Due to the lack of space,
we present more experimental results in Appendix. It can be seen that Expxorcist has much better
performance on non-Gaussian data. On these datasets, even at n = 500 the baselines chose edges
at random. This suggests that in the presence of multiple modes and fat tails, Expxorcist is a better
model. Expxorcist has slightly poor performance than baselines on Gaussian data. However, this is
expected because it learns a broader family of distributions than Nonparanormal.

7.2 Futures Intraday Data

We now present our analysis on the Futures price returns. This dataset was downloaded from
http://www.kibot.com/. We focus on the Top-26 most liquid instruments being traded at the
Chicago Mercantile Exchange (CME). The instruments span different sectors like Energy, Agriculture,
Currencies, Equity Indices, Metals and Interest Rates. We focus on the hours of maximum liquidity
(9am Eastern to 3pm Eastern) and look at the 1 minute price returns. The return distribution is a
mixture of 1 minute returns with the overnight return. Since overnight returns tend to be bigger than
the 1 minute return within the day, the return distribution is multimodal and fat-tailed. We treat each
instrument as a random variable and the 1 minute returns as independent samples drawn from these
random variables. We use the data collected in February 2010 as training data and data from March
2010 as held out data for tuning parameter selection. After removing samples with missing entries
we are left with 894 training and 650 held out data samples. We fit Expxorcist and baselines on this
data with the same parameter settings described above. For each of these models, we select the best
tuning parameter through log likelihood on held out data. However, this criteria resulted in complete
graphs for Nonparanormal and GGM (325 edges) and a relatively sparser graph for Expxorcist (168
edges). So for a better comparison of these models, we selected tuning parameters for each of the
models such that the resulting graphs have almost the same number of edges. Figure 2 shows the
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Figure 1: ROC plots from synthetic experiments. Top and bottom rows show plots for chain and grid graphs
respectively. Left column shows plots for data generated from our non-parametric model with Bs(X) = sin(X),
n = 500 and center column shows plots for the other choice of sufficient statistic with n = 500. Right column
shows plots for Gaussian data with n = 200.

(a) Nonparanormal (b) Expxorcist

Figure 2: Graph Structures learned for the Futures Intraday Data. The Expxorcist graph shown here was
obtained by selecting λ = 0.1. Nodes are colored based on their categories. Edge thickness is proportional to
the magnitude of the interaction.

learned graphs for one such choice of tuning parameters, which resulted in ∼ 52 edges in the graphs.
Nonparanormal and GGM resulted in very similar graphs, so we only present Nonparanormal here. It
can be seen that Expxorcist is able to identify the clusters better than Nonparanormal. More detailed
graphs and comparison with GGM can be found in Appendix.

8 Conclusion

In this work we considered the problem of non-parametric density estimation and introduced Expx-
orcist, a new family of non-parametric graphical models. Our approach relies on a simple function
space assumption that the conditional distribution of each variable conditioned on the other variables
has a non-parametric exponential family form. We proposed an estimator for Expxorcist that is
computationally efficient and comes with statistical guarantees. Our empirical results suggest that, in
the presence of multiple modes and fat tails in the data, our non-parametric model is a better choice
than the Nonparanormal model of [17].
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