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A Proof of Proposition 1

Proof. To prove the hardness we will use SET COVER. Here, we are given a universe U and family
of sets C1, . . . , C`, and we are asked to select k sets covering the universe U .

To map this instance to our problem, we first define vertex set V to consist of 3 parts, V1, V2
and V3. The first part corresponds to the universe U . The second part consists of k copies of `
vertices, ith vertex in jth copy corresponds to Ci. The third part consists of k vertices bj . The edges
are as follows: a vertex v in the jth copy, corresponding to a set Ci is connected to the vertices
corresponding to the elements in Ci, furthermore v is connected to bj . We set p1 = p2 = 1. The
initial seeds are I1 = ∅ and I2 = V1 ∪ V3. We set the budget to 2k.

Assume that there is a k-cover, Ci1 , . . . , Cik . We set

S1 = S2 =
{

vertex corresponding to Cij in jth copy
}
.

It is easy to see that the imbalanced vertices in I2 are exposed to the first campaign. Moreover, S1

and S2 do not introduce new imbalanced vertices. This makes the objective equals to 0.

Assume that there exists a solution S1 and S2 with a zero cost. We claim that |S1 ∩ (V1 ∪ V2)| ≤ k.
To prove this, first note that S1 ∩ V2 = S2 ∩ V2, as otherwise vertices in V2 are left unbalanced. Let
m = |S1 ∩ V2|. Since V3 must be balanced and each vertex in V2 has only one edge to a vertex in
V3, there at least k vertices in |S1 ∩ {V2 ∪ V3}|, that is, we must have |S1 ∩ V3| ≥ k −m. Let us
write dij = |Si ∩ Vj |. The budget constraints guarantee that

d11 + d12 + d22 + d13 ≤
∑
ij

dij ≤ 2k,

which can be rewritten as

d11 + d12 ≤ 2k − d22 − d13 ≤ 2k −m− (k −m) = k.

Construct C as follows: for each S1 ∩ V2, select the set that correponds to the vertex, for each
S1∩V1, select any set that contain this vertex (there is always at least one set, otherwise the problem
is trivially false). Since V1 must be balanced, C is a k-cover of U .

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



B Proof of Lemma 2

Before providing the proof, as a technicality, note that submodularity is usually defined for functions
with one argument. Namely, given a universe of itemsU , we consider functions of the type f : 2U →
R. However, by taking U = V × {1, 2} we can equivalently write our objectives as functions with
one argument, i.e., Φ,Ω,Ψ : 2U → R.

Proof. The objective counts 3 types of vertices: (i) vertices covered by both initial seeds, (ii) addi-
tional vertices covered by I1 and S2, and (iii) additional vertices covered by I2 and S1. This allows
us to decompose the objective as

Ω(S1, S2) = E[|A|+ |B|+ |C|] , where

A = r1(I1) ∩ r2(I2), B = (r1(I1) \ r2(I2)) ∩ r2(S2), C = (r2(I2) \ r1(I1)) ∩ r1(S1).

Note that A does not depend on S1 and S2. B grows in size as we add more vertices to S2, and C
grows in size as we add more vertices to S1. This proves that the objective is monotone.

To prove the submodularity, let us introduce some notation: given a set of edges F , we write r(S;F )
to be the set of vertices that can be reached from S via F . This allows us to define

A(F1, F2) = r(I1;F1) ∩ r(I2;F2),

B(F1, F2) = (r(I1;F1) \ r(I2;F2)) ∩ r(S2;F2),

C(F1, F2) = (r(I2;F2) \ r(I1;F1)) ∩ r(S1;F1).

The score Ω(S1, S2) can be rewritten as∑
F1,F2

p(F1, F2)(|A(F1, F2)|+ |B(F1, F2)|+ |C(F1, F2)|),

where p(F1, F2) is the probability of F1 being the realization of the edges for the first campaign and
F2 being the realization of the edges for the second campaign.

The first term A(F1, F2) does not depend on S1 or S2. The second term is submodular as a function
of S2 and does not depend of S1. The third term is submodular as a function of S1 and does not de-
pend of S2. Since any linear combination of submodular function weighted by positive coefficients
is also submodular, this completes the proof.

C Proof of Proposition 3

Proof. Write c = 1 − 1/e. Let 〈S′1, S′2〉 be the optimal solution maximizing Ω. Lemma 2 shows
that Ω(S1, S2) ≥ cΩ(S′1, S

′
2).

Note that Ψ(∅, ∅) ≥ Ψ(S∗1 , S
∗
2 ) as the first term is the average of vertices not affected by the initial

seeds. Thus,

Φ(S∗1 , S
∗
2 ) = Ω(S∗1 , S

∗
2 ) + Ψ(S∗1 , S

∗
2 ) ≤ Ω(S′1, S

′
2) + Ψ(S∗1 , S

∗
2 )

≤ Ω(S′1, S
′
2) + Ψ(∅, ∅) ≤ Ω(S1, S2)/c+ Ψ(∅, ∅)

≤ Ω(S1, S2)/c+ Ψ(∅, ∅)/c
≤ (2/c) max{Ω(S1, S2),Ψ(∅, ∅)}
≤ (2/c) max{Φ(S1, S2),Φ(∅, ∅)},

which completes the proof.

D Proof of Lemma 4

Proof. As we are dealing with the correlated setting, we can write r(S) = r1(S) = r2(S). Our first
step is to decompose ω = ΦC (S1, S2) into several components. To do so, we partition the vertices
based on their reachability from the initial seeds,

A = r(I1) ∩ r(I2), B = r(I1) \ r(I2),

C = r(I2) \ r(I1), D = V \ (r(I1) ∪ r(I2)).
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Note that these are all random variables. If S1 = S2 = ∅, then ΦC (S1, S2) = EC [|A|+ |D|]. More
generally, S1 may balance some vertices in C, and S2 may balance some vertices in B. We may
also introduce new imbalanced vertices in D. To take this into account we define

B′ = B ∩ r(S2), C ′ = C ∩ r(S1),

D′ = D \ (r(S1)4 r(S2)).

We can express the cost of ΦC (S1, S2) as

ω = ΦC (S1, S2) = EC [|A|+ |B′|+ |C ′|+ |D′|] .

Split S1 ∪ S2 in two equal-size sets, T and Q, and define

ω1 = ΦC (T, T ), ω2 = ΦC (Q,Q).

We claim that ω ≤ ω1 + ω2. This proves the proposition, since ω1 + ω2 ≤ 2 max{ω1, ω2}.
To prove the claim let us first split T and Q,

T1 = T ∩ S1, T2 = T ∩ S2, Q1 = Q ∩ S1, Q2 = Q ∩ S2.

Our next step is to decompose ω1 and ω2, similar to ω. To do that, we define

B1 = B ∩ r(T2), B2 = B ∩ r(Q2),

C1 = C ∩ r(T1), C2 = C ∩ r(Q1).

Note that, the pair 〈T, T 〉 does not introduce new imbalanced nodes. This leads to

ω1 = ΦC (T, T ) = EC [|A|+ |B1|+ |C1|+ |D|] ,

and similarly,
ω2 = ΦC (Q,Q) = EC [|A|+ |B2|+ |C2|+ |D|] .

To prove ω ≤ ω1 + ω2, note that |D′| ≤ |D|. In addition,

|B′| = |B ∩ (r(T2) ∪ r(Q2))|
≤ |B ∩ r(T2)|+ |B ∩ r(Q2)| = |B1|+ |B2|

and

|C ′| = |C ∩ (r(T1) ∪ r(Q1))|
≤ |C ∩ r(T1)|+ |C ∩ r(Q1)| = |C1|+ |C2|.

Combining these inequalities proves the proposition.

E Proof of Proposition 5

To prove the proposition, we need the following technical lemma, which is a twist of a standard
technique for proving the approximation ratio of the greedy algorithm on submodular functions.

Lemma 1. Assume a universe U . Let f : 2U → R be a positive function. Let T ⊆ U be a
set with k elements. Let C0 ⊆ · · · ⊆ Ck be a sequence of subsets of U . Assume that f(Ci) ≥
maxt∈T f(Ci−1 ∪ {t}).

Assume further that for each i = 1, . . . , k, we can decompose f as f = gi + hi such that

1. gi is submodular and monotonically increasing function,

2. hi(W ) = hi(Ci−1), for any W ⊆ T ∪ Ci−1.

Then f(Ck) ≥ (1− 1/e)f(T ).
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Proof. The assumptions of the propositions imply

f(T ) = gi(T ) + hi(T )

= gi(T ) + hi(Ci−1)

≤ gi(Ci−1) + hi(Ci−1) +
∑
t∈T

gi(Ci−1 ∪ {t})− gi(Ci−1)

= f(Ci−1) +
∑
t∈T

hi(Ci−1) + gi(Ci−1 ∪ {t})− gi(Ci−1)− hi(Ci−1)

= f(Ci−1) +
∑
t∈T

hi(Ci−1 ∪ {t}) + gi(Ci−1 ∪ {t})− gi(Ci−1)− hi(Ci−1)

= f(Ci−1) +
∑
t∈T

f(Ci−1 ∪ {t})− f(Ci−1)

≤ f(Ci−1) + k(f(Ci)− f(Ci−1)),

where the first inequality is due to the submodularity of gi, and is a standard trick to prove the
approximation ratio for the greedy algorithm.

We can rewrite the above inequality as

kf(T ) + (1− k)f(T ) = f(T ) ≤ f(Ci−1) + k(f(Ci)− f(Ci−1)).

Rearranging the terms leads to

k − 1

k
(f(Ci−1)− f(T )) ≤ f(Ci)− f(T ) .

Applying induction over i, yields

f(Ck)− f(T ) ≥
(
k − 1

k

)k

(f(C0)− f(T )) ≥ 1

e
(f(C0)− f(T )) ≥ −f(T )/e,

leading to f(Ck) ≥ (1− 1/e)f(T ).

We can now prove the main claim. Note that since we are using the correlated model, we have
r1 = r2. For notational simplicity, we will write r = r1 = r2.

Proof of Proposition 5. Let OPT be the cost of the optimal solution. Let D be the solution maxi-
mizing ΦC (D,D) with |D| ≤ k/2. Lemma 4 guarantees that OPT/2 ≤ ΦC (D,D).

In order to apply Lemma 6, we first define the universe U as

U = {〈u, v〉 | u, v ∈ V } ∪ {〈v, ∅〉 | v ∈ V } ∪ {〈∅, v〉 | v ∈ V } .

The sets are defined as

Ci =
{
〈v, ∅〉 | v ∈ Si

1

}
∪
{
〈∅, v〉 | v ∈ Si

2

}
.

Given a set C ⊆ U , let us define π1(C) = {v | 〈v, u〉 ∈ C, v 6= ∅} to be the union of the first entries
in C. Similarly, define π2(C) = {v | 〈u, v〉 ∈ C, v 6= ∅}.
We can now define f as f(C) = ΦC (π1(C), π2(C)). To decompose f , let us first write

Xi = r(I1 ∪ π1(Ci−1)) ∪ r(I2 ∪ π2(Ci−1)) = r(I1 ∪ Si−1
1 ) ∪ r(I2 ∪ Si−1

2 ), Yi = V \Xi.

and set

gi(C) = E[|Xi \ (r(I1 ∪ π1(C))4 r(I2 ∪ π2(C)))|] ,
hi(C) = E[|Yi \ (r(I1 ∪ π1(C))4 r(I2 ∪ π2(C)))|] .

Finally, we set T = {〈d, d〉 | d ∈ D}.
First note that f = gi +hi since Xi∩Yi = ∅. The proof of Lemma 2 shows that gi is monotonically
increasing and submodular.
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Let C ⊆ Ci−1 ∪ T . If there is a vertex v in r(I1 ∪ π1(C)) but not in Xi, then this means v was
influenced by d ∈ D. Since d ∈ π2(C), we have v ∈ r(I2 ∪ π2(C)). That is,

r(I1 ∪ π1(C)) \Xi = r(I2 ∪ π2(C)) \Xi.

Since Yi and Xi are disjoint, this gives us

hi(C) = E[|Yi \ (r(I1 ∪ π1(C))4 r(I2 ∪ π2(C)))|]
= E[|Yi \ ((r(I1 ∪ π1(C)) \Xi)4 (r(I2 ∪ π2(C)) \Xi))|]
= E[|Yi|] .

That is, hi(C) is constant for any C ⊆ Ci−1 ∪ T . Thus, hi(C) = hi(Ci−1).

Finally, the assumption of the proposition guarantees that f(Ci) ≥ f(Ci−1 ∪ {t}), for t ∈ T .

Thus, these definitions meet all the prerequisites of Lemma 6, guaranteeing that

(1− 1/e)ΦC (D,D) ≤ ΦC (S
k/2
1 , S

k/2
2 ) ≤ ΦC (Sk

1 , S
k
2 ).

Since OPT/2 ≤ ΦC (D,D), the result follows.
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F Additional tables and figures related to the experimental evaluation

Table 1: Dataset descriptions, as well as tags and rewteets that were used to collect the data.
USelections: Tweets containing hashtags and keywords identifying the USElections, such as
#uselections, #trump2016, #hillary2016, etc. Collected using Twitter 1% sample for 2 weeks in
September 2016
Pro-Hillary Pro-Trump
RT @hillaryclinton, #hillary2016, #clin-
tonkaine2016, #imwithher

RT @realdonaldtrump, #makeamericagreata-
gain, #trumppence16, #trump2016

Brexit: Tweets containing hashtags #brexit, #voteremain, #voteleave, #eureferendum for all
of June 2016, from the 1% Twitter sample.

Pro-Remain Pro-Leave
#voteremain, #strongerin, #remain, #re-
maineu, #votein

#voteleave, #strongerout, #leaveeu, #takecon-
trol, #leave, #voteout

Abortion: Tweets containing hashtags #abortion, #prolife, #prochoice, #anti-abortion, #pro-
abortion, #plannedparenthood from Oct 2011 to Aug 2016.

Pro-Choice Pro-Life
RT @thinkprogress, RT @komenforthe-
cure, RT @mentalabortions, #waronwomen,
#nbprochoice, #prochoice, #standwithpp,
#reprorights

RT @stevenertelt, RT @lifenewshq, #pray-
toendabortion, #prolifeyouth, #prolife, #de-
fundplannedparenthood, #defundpp, #unborn-
livesmatter

Obamacare: Tweets containing hashtags #obamacare, and #aca from Oct 2011 to Aug 2016.

Pro-Obamacare Anti-Obamacare
RT @barackobama, RT @lolgop, RT
@charlespgarcia, RT @defendobamacare, RT
@thinkprogress, #obamacares, #enoughal-
ready, #uniteblue

RT @sentedcruz, RT @realdonaldtrump,
RT @mittromney, RT @breitbartnews, RT
@tedcruz, #defundobamacare, #makedclisten,
#fullrepeal, #dontfundit

Fracking: Tweets containing hashtags and keywords #fracking, ’hydraulic fracturing’,
’shale’, ’horizontal drilling’, from Oct 2011 to Aug 2016.

Pro-Fracking Anti-Fracking
RT @shalemarkets, RT @energyindepth, RT
@shalefacts, #fracknation, #frackingez, #oi-
landgas, #greatgasgala, #shalegas

RT @greenpeaceuk, RT @greenpeace, RT
@ecowatch, #environment, #banfracking,
#keepitintheground, #dontfrack, #globalfrack-
down, #stopthefrackattack

iPhone vs. Samsung: Tweets containing hashtags #iphone, and #samsung from April (re-
lease of Samsung Galaxy S7), and September 2015 (release of iPhone 7).

Pro-iPhone Pro-Samsung
#iphone #samsung
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Table 2: Dataset statistics. The column |C| refers to the average number of edges in a randomly
generated cascade in the correlated case, while |C1| and |C2| refer to average number of edges
generated in a cascade of the campaigns 1 and 2, respectively, in the heterogeneous case.
Dataset # Nodes # Edges |C| |C1| |C2|
Abortion 279 505 671 144 2 105 326 1 801
Brexit 22 745 48 830 476 113 390
Fracking 374 403 1 377 085 4 156 1 595 3 103
iPhone 36 742 49 248 4 776 339 4 478
ObamaCare 334 617 1 511 670 6 614 2 404 4 527
US-elections 80 544 921 368 4 697 3 097 12 044

Table 3: Detailed values of the data presented in Figure 2. The data correspond to the absolute value
expected symmetric difference n − Φ of Hedge and the baselines for k = 20 across all datasets.
Low values are better.

Heterogeneous setting
Dataset Hedge BBLO Inters. Union HighDeg. Random
Abortion 1436.090 1447.710 1571.180 1655.580 3414.310 4253.220
Brexit 17.907 17.765 31.850 27.770 54.131 87.341
Fracking 3411.810 3420.700 3651.230 3825.360 5197.060 7449.350
iPhone 421.411 865.126 839.119 1048.090 1189.650 631.543
ObamaCare 1768.560 1828.900 1998.250 1846.750 3315.570 4032.140
US-elections 515.347 516.587 1030.640 685.089 1474.330 5988.160

Homogeneous setting
Dataset Hedge BBLO Inters. Union HighDeg. Random
Abortion 144.898 185.569 446.462 444.766 2368.610 1279.100
Brexit 1.232 1.615 9.643 9.374 28.850 34.283
Fracking 275.143 269.404 1423.870 781.994 2529.570 2960.720
iPhone 14.624 19.893 79.854 80.279 895.353 759.629
ObamaCare 97.319 95.062 1314.830 360.103 2253.050 2484.330
US-elections 64.870 103.318 128.586 104.911 1979.79 5325.130
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model. Low values are better.
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Side 1 Side 2 Hedge
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Figure 4: Word clouds of the profiles for the initial seeds, and profiles selected by Hedge.
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