Appendix to Filtering Variational Objectives

Other Examples of MCOs.

There is an extensive literature on marginal likelihood estimators [44, 45, 46, 47, 48, 49, 50]. Each
defines an MCO, and we consider two in more detail, annealed importance sampling [48] and multiple
importance sampling [44, 51]. Let « denote an observation of an X' -valued random variable generated
in a process with an unobserved Z-valued random variable z. Let p(x, z) be the joint density.

Annealed Importance Sampling MCO. Annealed importance sampling (AIS) is a generalization
of importance sampling [48]. We present an MCO derived from a special case of the AIS algorithm.
Let q(z|x) be a variational posterior distribution and let 5; be a sequence of real numbers for
i€{l,...,N+1}suchthat0 < 8; <1land 8 = 0and Oy41 = 1. Let T;(2'|z, z) be a Markov
transition distribution whose stationary distribution is proportional to q(z|z)! =% p(z, z)%. Then for
z1 ~ ¢(z|z) and z; ~ T;(2'|z;—1,x) fori € {2,..., N} we have the following unbiased estimator,
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Notice two things. First, there is no assumption that the states z; are at equilibrium, and second, we
did not require a transition operator keeping p(z, z) as an invariant distribution. All together, we can
define the AIS MCO,
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L2 (x, g, {Ti N5, p) = E (10)

This is a sharp objective, if we take ¢ as the true posterior, ¢(z|z) = p(z|z), and T;(2'|z, x) =
d(2' — z) to be the Dirac delta copy operator. The difficulty in applying this MCO is finding 7}, which
are scalable and easy to optimize. Generalizations of the AIS procedure have been proposed in [52].
The resulting Sequential Monte Carlo samplers procedures also provide an unbiased estimator of the
marginal likelihood and are structurally identical to the particle algorithm presented in this paper.

Multiple Importance Sampling MCQO. Multiple importance sampling (MIS) [44] is another
generalization of importance sampling. Let ¢;(z|z) be N possibly distinct variational posterior
distributions and w;(x) > 0 be such that vazl w;(x) = 1. There are a variety of distinct estimators
that could be formed from the ¢; [51]. We present just one. Let z; ~ ¢;(z|z), then we have the
following unbiased estimator

Epn(z)] =E
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N
i=1 Zj:l w;(z)q;(2ilz)
Notice that the latent sample z; ~ g;(z|x) is evaluated under all ¢;’s. One can view this as a
Rao-Blackwellized estimator corresponding to the mixture distribution Zi\il wi(z)g;(z]x). All

together,
N
los (Z wi@p(z,z) )] 12
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Again, this objective is sharp, if we take any ¢;(z|x) = p(z|z) and w;(xz) = 1. The difficulty in
making this objective more useful is optimizing it in a way that distinguishes the ¢; and assigns the
appropriate w;.
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Proof of Proposition 1.

Let E[pn(z)] = p(x) and define Ly (z, p) = E[log pn(x)] as the Monte Carlo objective defined by
]31\/ (:Z?)

(a) By the concavity of log and Jensen’s inequality,

Ly (z,p) = Ellog pn (x)] < log E[pn (z)] = log p(z)
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(b)

()

Assume

* pn () is strongly consistent, i.e. py () =2 p(z) as N — oo,

* log pn () is uniformly integrable. That is, let (£2, F, 1) be the probability space on
which log pn (x) is defined. The random variables {log pn (z)}3F_, are uniformly
integrable if E[| log pn(x)|] < oo and if for any € > 0, there exists § > 0, such that
forall N and E € F, u(E) < § implies E[|log pn (z)|I(E)] < €, where I(E) is an
indicator function of the set E.

Then by continuity of log, logpx(z) converges almost surely to log p(x). By Vitali’s
convergence theorem (using the uniform integrability assumption), we get Ly (x,p) =
Ellogpn(z)] — logp(z) as N — oo.

Let g(N) = E[(pn(z) — p(x))], and assume lim sup y_, ., E[(pn(z)) 1] < co. Define
the relative error
A pn () — p() (13)
p(z)

Then the bias logp(z) — Ly (x,p) = —E[log(1 + A)]. Now, Taylor expand log(1 + A)
about 0,

B 1o, [ 1
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and in expectation
1 5 AL a2
—Eflog(1+ A)] = §A -E /o <1+x) dx (16)

Our aim is to show
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x
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In particular, by Cauchy-Schwarz
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and again by Cauchy-Schwarz

o ) M

This concludes the proof.

Controlling the first inverse moment.

We provide a sufficient condition that guarantees that the inverse moment of the average of i.i.d.
random variables is bounded, a condition used in Proposition 1 (c). Intuitively, this is a fairly weak
condition, because it only requires that the mass in an arbitrarily small neighbourhood of zero is
bounded.

13



Lemma 3. Let w; be i.i.d. positive random variables and py(x) = % Zf\il w;. If there exist

M, C,e > 0 such that P(w; < w) < Cw'* for w € [0, M), then E[pn(z)~] < C2 4 L.

€

Proof. Let M, C, e > 0 be such that P(w; < w) < Cw!*¢ forw € [0, M). We proceed in two cases.
If N =1, then

E[py(z)~! = /000 P(w;t > u) du
= /OOIP’(wl < 1/u) du
0

M o]
P P
(wy < w) dw+/ (w12<w) dw
M w

1
dw+/ —de
M w

0
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0
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M¢e 1
c M

<

C

For N > 1, we show that E[px () ~!] < E[p1(x) ], so the same condition is sufficient for any N.
The AM-GM inequality tells us that

SO

o Z_11/N
=ITe ]
—E ;”N]N

and by Lyapunov’s inequality, we have

This concludes the proof. O

Unbiasedness of py (z1.7) from the particle filter.

We sketch an argument that the random variable py (z1.7) defined by Algorithm 1 is an unbiased
estimator of the marginal likelihood p(z1.7). This is a well-known fact [23, 52, 25, 26], and our
sketch is based on [25]. The strategy is to cast the particle filter’s estimator py (z1.7) as a single
importance weight over an extended space. The lack of bias in the particle filter therefore reduces
to the unbiasedness of importance sampling. Key to this is identifying the target and proposal
distributions in the extended space. The target distribution is called “conditional sequential Monte
Carlo”, Algorithm 2. The proposal distribution is the particle filter itself, Algorithm 1.

We argue that it is enough to consider just an arbitrary fixed (non-adaptive) resampling schedule
that always resamples at step 7. First, consider adaptive resampling criteria, i.e. criteria that are
deterministic functions of the weights w!. For such criteria the joint density of random variables in
Algorithm 1 will be piecewise continuous, composed of 27 regions corresponding to a sequence
of resample/no-resample decisions. This density has a form on each piece that is exactly the same
as the density for some fixed resampling schedule. Moreover, it is globally normalized, because
of the sequential structure of the filter. Because Algorithm 2 makes the same decisions, it also is
partitioned along the same sets and each piece has the same fixed resampling schedule. Thus, it is
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Algorithm 2 Conditional SMC

1. CSMC(z1.7,p,q,N): 10: P = (Zf\;l wgflat(zi:t»

2: yr.7 ~ plz1.T|T1: ; i ; N

vy PGl e {wl), = {wl o) /po,
i 12: if resampling criteria satisfied by {w!}~_, then
w3, = {1/N}Y pling Y \Wiri=1

4 {wO}zzl { i=1 13: i i N i i N

5:fort e {1,...,T} do 3 {w}, 21, Yz = RSAMP({wy, 21, }iz,)
. i 14: j ~ Uniform{1,..., N}

6: At = Y1t . i

7: for i # j do _ 15: A1 = Yt

8: zp ~ qe(ze|Tre, 21y 1)

9: 2%, = CONCAT(2,_4,2})

enough to consider only a fixed resampling schedule. Second, notice that in the final step, step 7',
of Algorithms 1 and 2 resampling has no effect on py (x1.7). Thus, we assume that the resampling
criteria of Algorithms 1 and 2 at step 7' is set to always resample. All together it is safe to assume
a fixed resampling schedule with R resampling events, 1 < R < T, atsteps k,. € {1,...,T} for
r€{0,...,R} withkg =T and ko = 0.

Now we derive the joint density of Algorithm 1 and 2 taken at each iteration after possibly resampling.
To avoid notational clutter we let g, f (omitting their arguments) represent the densities of the
variables in Algorithms 1 and 2. Technically, we should also be keeping track of the indices that
indicate the inheritance of the resampling step. So, let the random variables {{w?, 24 .}, }1_| be

the particles before resampling and s(i) € {1, ..., N} be the index that is selected for inheritance of
the ith particle after resampling. Then the density corresponding to Algorithm 1 is
R N _ k.
9= H sz(:) H @ (21|10, 2110 1) (22)
r=1i=1 k=kr_1+1
For Algorithm 2,
R _ k. 1 K ‘ ‘
F=TL{w? T aGllewzen | | T1 pElorede) | @3
r=1 \i#j k=k,._1+1 k=kq_1+1

These densities are normalized, so E, [f/g] = 1. Thus, our goal is to show pn (z1.7) = p(z1.7)f/9g.
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and thus
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The result follows. An intuitive way to understand this result is the following: Algorithm 2 matches
the distribution of every random variable in the particle filter except it interleaves a true posterior
sample into the set of particles with uniform probability. The only mismatch in the densities are
the normalization terms of the resampling probabilities of that privileged posterior sample, with

terms vazl HZ; k41 Qk(2],;,) coming from the filter’s resampling and terms N from conditional
SMC’s resampling. Of course, we never run Algorithm 2, it just serves to define the target density.

Gradients of L{V°(z1.7,p, q)-

We formulate unbiased gradients of £V (z1.7, p, ¢) by considering Algorithm 1 as a method for
simulating FIVO. We consider the cases when the sampling of 2! is and is not reparameterized. We
also consider the case where we make adaptive resampling decisions.

First, we assume that the decision to resample is not adaptive (i.e., depends in some way on the
random variables already produced until that point in Algorithm 1), and are fixed ahead of time.
When the sampling 2} is not reparameterized there are three terms to the gradient: (1) the gradients
of log p (x1.7) with respect to the parameters conditional on the latent states, (2) gradients of the
densities ¢; with respect to their parameters, and (3) gradients of the resampling probabilities with
respect to the parameters. All together, the following is a gradient of FIVO,

pn(z1.7) i i
E |V, logpn(z1.7) + Zt 1 Zz 1( piN (21 )V¢ log gt,¢(2¢|1:4, 214-1) +
(32)
P (1)
I(resampling at step t) log ENALT)
pN(xlzt)

where [(A) is an indicator function. If z{ is reparameterized, then the first and third terms suffice for
an unbiased gradient,

V9,¢ log wZ)]

. T N pn (1)
E [V(w log pn(x1.7) + thl Zi:l (resampling at step t) log m

In this work we only considered reparameterized ¢;s, and we dropped the terms of the gradient that
arise from resampling.

Vo, log wz] (33)

Second, when the decision to resample is adaptive, the domain of the random variables involved
in simulating log px (x1.7) can be partitioned into 27 regions, over each of which the density is
differentiable. Between those regions, the density experiences a jump discontinuity. Thus, there
are additional terms to the gradient of LV (1.7, p, ¢) that correspond to the change in the regions
of continuity as the parameters change. These terms can be written as surface integrals over the
boundaries of the regions. We drop these terms in practice.

Proof of Proposition 2.

Assume p(z1.4—1|21:) = p(21:4—1|x10—1) forall t € {2,...,T}. We will show LIV (z1.7,p,q) =
log p(z1.7) at q(z¢|z1.4-1, x14) = p(2¢|21:4—1, ¥1.4). We will do this by induction, showing that
every particle has a constant weight and that py (z1.7) = p(z1.7) is a constant. For t = 1 we have

’(z ) _ p1($172’1)

= 4
p(Z1|$1) p1($1) (34)
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Thus, all particles have the same weight and p; = p;(x1). Now for any ¢ we have that the weights
must be 1/N since the particles all have the same weight and

pt(a?t, 2t|21:t717 331:1571)

al(z1) = 35
(710) (2| 21:0—1, T1:¢) (33)
— p<Z1:tax1:t) (36)
P(letfl,$1:t71)p(zt|21:t71,$1:t)
_ p(xlzt) p(zlzt‘xlzt)
= 37
P(r1:6-1) p(zre—1|T1:e-1)p(2e| 2100 -1, T1:t)
_ p(xlzt) p(zlzt|x1:t)
— (38)
p(xl:t—l)p(zlzt—1|331:t)p(2’t\21:t—1,Il:t)
— p(xlzt) (39)
P(fﬂufl)
and thus,
T p(ai)
N 1:t
) = A S LY/ . 4
pN(l“l.T) p1($1)gp(x1:til) p(l‘l.T) (40)

Implementation details

We initialized weights using the Xavier initialization [53] and used the Adam optimizer [54] with a
batch size of 4. During training, we did not truncate sequences and performed full backpropagation
through time for all datasets. For the results presented in Sections 6.1 and 6.2 we performed a grid
search over learning rates {3 x 1074, 1 x 1074,3 x 107°,1 x 10~°} and picked the run and early
stopping step by the validation performance.

Evaluation and Comparison of Bounds

Comparing models trained with different log-likelihood lower bounds is challenging because calculat-
ing the actual log-likelihood is intractable. Burda et al. [12] showed that the IWAE bound is at least
as tight as the ELBO and monotonically increases with V. This suggests comparing models based on
the IWAE bound evaluated with a large N. However, we found that IWAE and ELBO bounds tended
to diverge for models trained with FIVO.

Although FIVO is not provably a tighter bound than the ELBO or IWAE, our experiments suggest
that this tends to be the case in practice. In Figure 3, we plotted all three bounds over training for
a representative experiment. All plots use the same model architecture, but the training objective
changes in each panel. For the model trained with IWAE, the FIVO and IWAE bounds are tighter than
their counterparts on the model trained with ELBO, suggesting that the model trained with IWAE is
superior. The ELBO bound evaluated on the model trained with IWAE, however, is lower than its
counterpart on the model trained with the ELBO. For the model trained with FIVO, both IWAE and
ELBO bounds seem to diverge, but the FIVO bound outperforms the FIVO bounds on both of the
other models. As in the figure, we generally found that the same model evaluated with FIVO, IWAE,
and ELBO produced values descending in that order.

We suspect that g distributions trained under the FIVO bound are more entropic than those trained
under ELBO or IWAE because of the resampling operation. During training under FIVO, g is able to
propose state transitions that could poorly explain the observations because the bad states will be
resampled away without harming the final bound value. Then, when a FIVO-trained ¢ is evaluated
with ELBO or IWAE it proposes poor states that are not resampled away, leading to a poor final bound
value. Conversely, ¢s trained with ELBO and IWAE are not able to fully leverage the resampling
operation when evaluated with the FIVO bound.

Because of this behavior, we chose to optimistically evaluate models trained with IWAE and ELBO
by reporting the maximum across all the bounds. For models trained with FIVO, we reported only the
FIVO bound. We felt this evaluation scheme provided the strongest comparison to existing bounds.
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Figure 3: Comparison of ELBO, IWAE, and FIVO bounds. We plot the ELBO (L), IWAE (L155"),
and FIVO (L£755°) test log-likelihood lower bounds for a fixed model architecture trained with FIVO
(left), IWAE (middle), and ELBO (right). The models are VRNNS trained on the Nottingham dataset
with 64 units, N = 16, and learning rate 3 X 1075,

Evaluating TIMIT Log-Likelihoods

We reported log-likelihood scores for TIMIT relative to an ELBO baseline instead of raw log-
likelihoods. Previous papers (e.g., [39, 41]) report the log-likelihood of data that have been mean
centered and variance normalized, but it would be more proper to report the results on the un-
standardized data. Specifically, if the training set has mean j and variance o2 and the model outputs
and 62, then the un-standardized test data would be evaluated under a N (jio + p, 5%02) distribution.

Log-likelihoods produced by these approaches differ by a constant offset that depends on o. Because
the offset is a function of only training set statistics, it does not affect relative comparison between
methods. Because of this we chose to report log-likelihoods relative to a baseline instead of absolute
numbers. Absolute numbers calculated on standardized data are reported in Tables 3, 4, and 5 to
allow for comparisons with other papers.
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Nottingham JSB MuseData Piano-midi.de
N Bound Train Test Train Test Train Test Train Test

ELBO -254 -3.00 -499 -8.60 -620 -7.15 -626 -7.81
4 IWAE -172 -275 -481 -786 -586 -720 -625 -7.86
FIVO -135 -2.68 -459 -690 -5.64 -620 -573 -7.76

ELBO -2.65 -3.01 -494 -861 -585 -719 -620 -7.83
8§ IWAE -159 -290 -447 -740 -623 -7.15 -5.71 -7.84
FIVO -146 -277 -541 -6.79 -5.02 -6.12 -569 -745

ELBO -2.06 -3.02 -508 -863 -622 -7.18 -6.71 -7.85
16 IWAE -2.12 -285 -486 -741 -6.54 -7.13 -517  -7.79
FIVO  -133 -2.58 -445 -6.72 -544 -589 -508 -7.43

Table 3: Train and test set marginal log-likelihood bounds for VRNNSs trained on the polyphonic
music datasets. We report max{L, L1534F, L755°} for ELBO and IWAE models and £L]5%° for FIVO
models. VRNNSs trained on the JSB Chorales used 32 units, all other models used 64 units.

TIMIT
64 units 256 units

N Bound  Train Test Train Test

ELBO 40,237 41,236 51,688 51,674
4 IWAE 40939 41,076 52,284 52,290
FIVO 46,911 46,927 59,180 59,058

ELBO 42,892 44,007 49,872 51,055
8 IWAE 43,713 45213 52,827 52,859
FIVO 47,343 47,259 61,080 62,685

ELBO 43,175 42912 51,490 51,154
16 IWAE 43,331 44472 53,7797 54,305
FIVO 48,685 49,866 61,929 62,772

Table 4: Train and test set log likelihood bounds for VRNNS trained on the TIMIT dataset with
different bounds and numbers of particles. We report max{L, L154", £5%°} for ELBO and IWAE
models and £75° for FIVO models. These results were calculated on data that was standardized

(mean-centered and scaled to unit variance) using training set statistics.

Nottingham JSB MuseData Piano-midi.de TIMIT

Bound Train  Test Train  Test Train Test Train  Test Train Test

ELBO -295 -240 -8.68 -548 -7.52 -6.54 -7.86 -6.68 41805 40757
ELBO+s -291 -259 -864 -553 -751 -648 -7.87 -6.77 40743 39832

IWAE -3.03 -2.52 -861 -577 -755 -654 -784 -6.74 42174 42226
IWAE+s -2.83 -237 -815 -4.63 -733 -647 -7.81 -6.74 44294 43387
FIVO -2.87 229 -7.06 -408 -655 -580 -7.75 -6.41 49653 47748

FIVO+s 292 -234 -691 -383 -6.68 -587 -7.80 -634 52644 50530

Table 5: Train and test set log-likelihood bounds comparing smoothing and non-smoothing models.
We report max{L, L1535, £L%°} for ELBO and IWAE models and £§54° for FIVO models. All
models were trained with N = 4 and a learning rate of 3 x 10~5. The JSB Chorales model used 32
units and the Musedata model used 256 units. All other models used 64 units. TIMIT results were
calculated on data that was standardized (mean-centered and scaled to unit variance) using training
set statistics.
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