Supplementary Information: Sampling-free estimation of expectations with
discrete latents

The model involves many discrete random variables, including the spikes and the variables repre-
senting the presence or absence of a synaptic connection. Once discrete variables are present, it is
no longer possible to use the “reparameterization trick”, meaning that we can no longer optimize
the ELBO using simple stochastic gradient ascent, potentially dramatically slowing down learning
[19] 120} 21]]. However, we developed strategies that enabled us to compute expectations over these
discrete variables without sampling, so we were able to retain the simplicity and speed of simple
stochastic gradient descent. In particular, differentiating with respect to two terms was problematic:
Eq [log P (f|s)], and Eq [log P (s(¢)|u(¢))]. Differentiating the first of these,

Eq [logP (fic|s)] = —Eq [(ftc - m)ﬂ / (202) + const Q1)

using sample-based estimates is not possible, as the reconstruction depends on discrete spikes,
s. Instead, we can compute the expectation over spikes directly and exactly by noting that the
log-likelihood depends only on the mean and variance of 74,

Eq [log P ( ficls)] = —Eq [(ftc — Eqqele) [ree])” + Varg(s) [th]} /(20%) +const  (22)

and if (as in our case), the mapping from spikes to the reconstruction is linear, and the recognition
model is factorised, we can compute these quantities simply by summing the mean and variance of
spikes themselves,
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Second, differentiating Eq [log P (s(¢)|u(t))] using sample-based estimates is again not possible as
there are several discrete random variables that form part of the input, u(¢), including spikes from
previous timesteps, and the binary variables representing the presence or absence of sparse GLM
connections (Eq. @]) We therefore approximated the complex, discrete distribution over u(t) as
Gaussian, with matched mean and variance (note that once we make this approximation, we are no
longer guaranteed to bound the model evidence, so we are careful to use the sampled estimate when
evaluating our model). We then need to compute,

Eq (u. (1)) logP (s(t)|u(t))]

= ZEQ(“ ) [8c(t)log o (uc(t)) + (1 = sc(t)) log o (—uc(t))],
(24)
= ZEQ(ur(t ) [sc(t)softplus (—ue(t)) + (1 — s.(t)) softplus (uc(t))],

where softplus (z) = log (1 + €®). As the expectation of a softplus under Gaussian distributed input
cannot (to our knowledge) be computed analytically, we used an upper-bound to the softplus (and
hence a lower-bound to the ELBO) formed by a sum of ReLU’s (Fig.[ST]A). While the assumption
of Gaussianity means that this estimate is not guaranteed to be a lower-bound on either the model
evidence or the ELBO, in practice, the resulting approximation does appear to be such a bound, in
both spontaneous (Fig.[STB) and perturbed (Fib. [STC) data.
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Figure S1: Integrating over discrete, stochastic inputs to cells. A. We put an upper bound on the softplus
function (blue) using a sum-of-ReLLU’s (red). In practice, we use 14 piecewise linear components at learned
locations, allowing us to tightly bound the softplus. This approximation is critical, because we can compute
the expectation of the sum-of-ReLU bound under Gaussian inputs. BC. The ELBO for spontaneous (B) and
perturbed (C) data, computed using using the usual sample-based unbiased estimate and our deterministic
approximation. In practice, our approximation appears to form a tight lower bound on the sampled estimate, as

required.
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