
A Proofs for Results in Section 4

In this section, we provide proofs for Theorem 4.1 and Corollary 4.3. The proof for Corollary 4.2
easily follows from the same construction as in Theorem 4.1, so we omit it here. For Theorem 4.1,
we will prove each claim individually.

A.1 Proof for Claim 1 of Theorem 4.1

Outline of the proof. Our construction of the function is based on the intuition in Section 4.1. Note
the function f defined in (3) is 1) not continuous whereas we need a C2 continuous function and 2)
only defined on a subset of Euclidean space whereas we need a function defined on Rd. To connect
these quadratic functions, we use high-order polynomials based on spline theory. We connect d such
quadratic functions and show that GD needs exponential time to converge if x(0) ∈ [0, 1]

d. Next, to
make all saddle points as interior point, we exploit symmetry and use a mirroring trick to create 2d

copies of the spline. This ensures that as long as the initialization is in [−1, 1]
d, gradient descent

requires exponential steps. Lastly, we use the classical Whitney extension theorem [Whitney, 1934]
to extend our function from a closed subset to Rd.

Step 1: The tube. We fix four constants L = e, γ = 1, τ = e and ν = −g1(2τ) + 4Lτ2 where
g1 is defined in Lemma B.2. We first construct a function f and a closed subset D0 ⊂ Rd such that
if x(0) is initialized in [0, 1]

d then the gradient descent dynamics will get stuck around some saddle
point for exponential time. Define the domain as:

D0 =

d+1�

i=1

{x ∈ Rd : 6τ ≥ x1, . . . xi−1 ≥ 2τ, 2τ ≥ xi ≥ 0, τ ≥ xi+1 . . . , xd ≥ 0}, (5)

which i = 1 means 0 ≤ x1 ≤ 2τ and other coordinates are smaller than τ , and i = d+ 1 means that
all coordinates are larger than 2τ . See Figure 5a for an illustration. Next we define the objective
function as follows. For a given i = 1, . . . , d − 1, if 6τ ≥ x1, . . . xi−1 ≥ 2τ, τ ≥ xi ≥ 0, τ ≥
xi+1 . . . , xd ≥ 0, we have

f (x) =

i−1�

j=1

L (xj − 4τ)
2 − γx2

i +

d�

j=i+1

Lx2
j − (i− 1)ν � fi,1 (x) , (6)

and if 6τ ≥ x1, . . . xi−1 ≥ 2τ, 2τ ≥ xi ≥ τ, τ ≥ xi+1 . . . , xd ≥ 0, we have

f (x) =
i−1�

j=1

L (xj − 4τ)
2
+ g (xi, xi+1) +

d�

j=i+2

Lx2
j − (i− 1)ν � fi,2 (x) , (7)

where the constant ν and the bivariate function g are specified in Lemma B.2 to ensure f is a C2

function and satisfies the smoothness assumptions in Theorem 4.1. For i = d, we define the objective
function as

f (x) =
d−1�

j=1

L (xj − 4τ)
2 − γx2

d − (d− 1)ν � fd,1 (x) , (8)

if 6τ ≥ x1, . . . xd−1 ≥ 2τ and τ ≥ xd ≥ 0 and

f (x) =

d−1�

j=1

L (xj − 4τ)
2
+ g1 (xd)− (d− 1)ν � fd,2 (x) (9)

if 6τ ≥ x1, . . . xd−1 ≥ 2τ and 2τ ≥ xd ≥ τ where g1 is defined in Lemma B.2. Lastly, if
6τ ≥ x1, . . . xd ≥ 2τ , we define

f (x) =

d�

j=1

L (xj − 4τ)
2 − dν � fd+1,1(x). (10)

Figure. 5a shows an intersection surface (a slice along the xi-xi+1 plane) of this construction.
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(a) The intersection surface of the Tube defined in
Equation (5) (6)and (7) for 2τ ≤ x1, . . . , xi−1 ≤
6τ, 0 ≤ xi+2 ≤ τ .
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(b) The “octopus"-like domain we defined in Equa-
tion (12) and (13) for d = 2.

Figure 5: Illustration of intersection surfaces used in our construction.

Remark A.1. As will be apparent in Theorem B.2, g and g1 are polynomials with degrees bounded
by five, which implies that for τ ≤ xi ≤ 2τ and 0 ≤ xi+1 ≤ τ the function values and derivatives of
g(xi, xi+1) and g(xi) are bounded by poly(L); in particular, ρ = poly(L).
Remark A.2. In Theorem B.2 we show that the norms of the gradients of g and g1 gradients are
strictly larger than zero by a constant (≥ γτ ), which implies that for � < γτ , there is no �-second-
order stationary point in the connection region. Further note that in the domain of the function
defined in Eq. (6) and (8), the smallest eigenvalue of Hessian is −2γ. Therefore we know that if
x ∈ D0 and xd ≤ 2τ , then x cannot be an �-second-order stationary point for � ≤ 4γ2

ρ

Now let us study the stationary points of this function. Technically, the differential is only defined on
the interior of D0. However in Steps 2 and 3, we provide a C2 extension of f to all of Rd, so the
lemma below should be interpreted as characterizing the critical points of this extended function f in
D0. Using the analytic form of Eq. (6)- (10) and Remark A.2, we can easily identify the stationary
points of f .
Lemma A.3. For f : D0 → R defined in Eq. (6) to Eq. (10), there is only one local optimum:

x∗ = (4τ, . . . , 4τ)
�
,

and d saddle points:

(0, . . . , 0)
�
, (4τ, 0, . . . , 0)

�
, . . . , (4τ, . . . , 4τ, 0)

�
.

Next we analyze the convergence rate of gradient descent. The following lemma shows that it takes
exponential time for GD to achieve xd ≥ 2τ .

Lemma A.4. Let τ ≥ e and x(0) ∈ [−1, 1]
d ∩ D0. GD with η ≤ 1

2L and any T ≤
�

L+γ
γ

�d−1

satisfies x(T )
d ≤ 2τ .

Proof. Define T0 = 0 and for k = 1, . . . , d, let Tk = min{t|x(t)
k ≥ 2τ} be the first time the iterate

escapes the neighborhood of the k-th saddle point. We also define T τ
k as the number of iterations

inside the region
{x1, . . . , xk−1 ≥ 2τ, τ ≤ xk ≤ 2τ, 0 ≤ xk+�, . . . , xd ≤ τ} .

First we bound T τ
k . Lemma B.2 shows ∂g(xk,xk+1)

∂xk
≤ −2γτ so after every gradient descent step, xk

is increased by at least 2ηγτ . Therefore we can upper bound T τ
k by

T τ
k ≤ 2τ − τ

2ηγτ
=

1

2ηγ
.
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Note this bound holds for all k.

Next, we lower bound T1. By definition, T1 is the smallest number such that x(T1)
1 ≥ 2τ and using

the definition of T τ
1 we know x

(T1−T τ
1 )

1 ≥ τ . By the gradient update equation, for t = 1 . . . , T1−T τ
1 ,

we have xt
1 = (1 + 2ηγ)tx0

1. Thus we have:

x
(0)
1 (1 + 2ηγ)

T1−T τ
1 ≥ τ

⇒ T1 − T τ
1 ≥ 1

2ηγ
log

�
τ

x
(0)
1

�
.

Since x1
0 ≤ 1 and τ ≥ e, we know log( τ

x0
1
) ≥ 1. Therefore T1 − T τ

1 ≥ 1
ηγ ≥ T τ

1 .

Next we show iterates generated by GD stay in D0. If x(t) satisfies 6τ ≥ x1, . . . xk−1 ≥ 2τ, τ ≥
xk ≥ 0, τ ≥ xk+1 . . . , xd ≥ 0, then for 1 ≤ j ≤ k,

x
(t+1)
j = (1− ηL)x

(t)
j − 4ηLτ ∈ [2τ, 6τ ] ,

for j = k,
x
(t+1)
j = (1 + 2ηγ)x

(t)
j ∈ [0, 2τ ] ,

and for j ≥ k + 1

x
(t+1)
j = (1− 2ηL)x

(t)
j ∈ [0, τ ] .

Similarly, if x(t) satisfies 6τ ≥ x1, . . . xk−1 ≥ 2τ, 2τ ≥ xk ≥ τ, τ ≥ xk+1 . . . , xd ≥ 0, the above
arguments still hold for j ≤ k − 1 and j ≥ k + 2. For j = k, note that

x
(t+1)
j = x

(t)
j − η

∂g (xj , xj+1)

∂xj

≤ x
(t)
j + 2ηγτ ≤ 6τ,

where in the first inequality we have used Lemma B.2. For j = k + 1, by the dynamics of gradient
descent, at (Tk − T τ

k )-th iteration, x(Tk−T τ
k )

k+1 = x
(0)
k+1 (1− 2ηL)

Tk−T τ
k . Note Lemma B.2 shows in

the region
{x1, . . . , xk−1 ≥ 2τ, τ ≤ xk ≤ 2τ, 0 ≤ xk+1, . . . , xd ≤ τ} ,

we have
∂f(x)

∂xk+1
≥ −2γxk+1.

Putting this together we have the following upper bounds for t = Tk − T τ
k + 1, . . . , Tk:

x
(t)
k+1 ≤ x0

k+1 (1− 2ηL)
(Tk−T τ

k ) · (1 + 2ηγ)
t−(Tk−T τ

k ) ≤ τ, (11)

which implies x(t) is in D0.

Next, let us calculate the relation between Tk and Tk+1. By our definition of Tk and T τ
k , we have:

x
(Tk)
k+1 ≤ x

(0)
k+1 (1− 2ηL)

Tk−T τ
k · (1 + 2ηγ)

T τ
k .

For Tk+1, with the same logic we used for lower bounding T1, we have

x
(Tk+1−T τ

k+1)

k+1 ≥ τ

⇒ x
(Tk)
k+1 (1 + 2ηγ)

Tk+1−T τ
k+1−Tk ≥ τ

⇒ x
(0)
k+1 (1− 2ηL)

Tk−T τ
k · (1 + 2ηγ)

T τ
k · (1 + 2ηγ)

Tk+1−T τ
k+1−Tk ≥ τ.

Taking logarithms on both sides and then using log(1− θ) ≤ −θ, log(1 + θ) ≤ θ for 0 ≤ θ ≤ 1, and
η ≤ 1

2L , we have

2ηγ
�
Tk+1 − T τ

k+1 − (Tk − T τ
k )

�
≥ log

�
τ

x0
k+1

�
+ 2ηL (Tk − T τ

k )

⇒ Tk+1 − T τ
k+1 ≥ L+ γ

γ
(Tk − T τ

k )
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In last step, we used the initialization condition whereby log
�

τ
x0
k+1

�
≥ 1 ≥ 0. Since T1−T τ

1 ≥ 1
2ηγ ,

to enter the region x1, . . . , xd ≥ 2τ we need Td iterations, which is lower bounded by

Td ≥ 1

2ηγ
·
�
L+ γ

γ

�d−1

≥
�
L+ γ

γ

�d−1

.

Step 2: From the tube to the octopus. We have shown that if x0 ∈ [−1, 1]
d ∩D0, then gradient

descent needs exponential time to approximate a second order stationary point. To deal with
initialization points in [−1, 1]

d −D0, we use a simple mirroring trick; i.e., for each coordinate xi,
we create a mirror domain of D0 and a mirror function according to i-th axis and then take union
of all resulting reflections. Therefore, we end up with an “octopus" which has 2d copies of D0 and
[−1, 1]

d is a subset of this “octopus." Figure 5b shows the construction for d = 2.

The mirroring trick is used mainly to make saddle points be interior points of the region (octopus)
and ensure that the positive result of PGD (claim 2) will hold.

We now formalize this mirroring trick. For a = 0, . . . , 2d − 1, let a2 denote its binary representation.
Denote a2 (0) as the indices of a2 with digit 0 and a2 (1) as those that are 1. Now we define the
domain

Da =

d�

i=1

�
x ∈ Rd : xi ≥ 0 if i ∈ a2(0), xi ≤ 0 otherwise ,

6τ ≥ |x1| . . . , |xi−1| ≥ 2τ, |xi| ≤ 2τ, |xi+1| . . . , |xd| ≤ τ} , (12)

D =

2d−1�

a=0

Da. (13)

Note this is a closed subset of Rd and [−1, 1]
d ⊂ D. Next we define the objective function. For

i = 1, . . . , d− 1, if 6τ ≥ |x1| , . . . , |xi−1| ≥ 2τ, |xi| ≤ τ, |xi+1| . . . , |xd| ≤ τ :

f (x) =
�

j≤i−1,j∈a2(0)

L (xj − 4τ)
2
+

�

j≤i−1,j∈a2(1)

L (xj + 4τ)
2 − γx2

i

+

d�

j=i+1

Lx2
j − (i− 1)ν, (14)

and if 6τ ≥ |x1| , . . . , |xi−1| ≥ 2τ, τ ≤ |xi| ≤ 2τ, |xi+1| , . . . , |xd| ≤ τ :

f (x) =
�

j≤i−1,j∈a2(0)

L (xj − 4τ)
2
+

�

j≤i−1,j∈a2(1)

L (xj + 4τ)
2
+G (xi, xi+1)

+

d�

j=i+2

Lx2
j − (i− 1)ν, (15)

where

G (xi, xi+1) =

�
g(xi, xi+1) if i ∈ a2 (0)

g(−xi, xi+1) if i ∈ a2 (1) .

For i = d, if 6τ ≥ |x1| , . . . , |xi−1| ≥ 2τ, |xi| ≤ τ :

f (x) =
�

j≤i−1,j∈a2(0)

L (xj − 4τ)
2
+

�

j≤i−1,j∈a2(1)

L (xj + 4τ)
2 − γx2

i − (i− 1)ν, (16)

and if 6τ ≥ |x1| . . . , |xi−1| ≥ 2τ, τ ≤ |xi| ≤ 2τ :

f (x) =
�

j≤i−1,j∈a2(0)

L (xj − 4τ)
2
+

�

j≤i−1,j∈a2(1)

L (xj + 4τ)
2
+G1 (xi)− (i− 1)ν, (17)
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where

G1 (xi) =

�
g1(xi) if i ∈ a2 (0)

g1(−xi) if i ∈ a2 (1) .

Lastly, if 6τ ≥ |x1| , . . . , |xd| ≥ 2τ :

f (x) =
�

j≤i−1,j∈a2(0)

L (xj − 4τ)
2
+

�

j≤i−1,j∈a2(1)

L (xj + 4τ)
2 − dν. (18)

Note that if a coordinate xi satisfies |xi| ≤ τ , the function defined in Eq. (14) to (17) is an even
function (fix all xj for j �= i, f(. . . , xi, . . .) = f(. . . ,−xi, . . .)) so f preserves the smoothness of f0.
By symmetry, mirroring the proof of Lemma A.4 for Da for a = 1, . . . , 2d− 1 we have the following
lemma:
Lemma A.5. Choosing τ = e, if x(0) ∈ [−1, 1]

d then for gradient descent with η ≤ 1
2L and any

T ≤
�

L+γ
γ

�d−1

, we have x
(T )
d ≤ 2τ .

Step 3: From the octopus to Rd. It remains to extend f from D to Rd. Here we use the classical
Whitney extension theorem (Theorem B.3) to obtain our final function F . Applying Theorem B.3 to
f we have that there exists a function F defined on Rd which agrees with f on D and the norms of
its function values and derivatives of all orders are bounded by O (poly (d)). Note that this extension
may introduce new stationary points. However, as we have shown previously, GD never leaves D so
we can safely ignore these new stationary points. We have now proved the negative result regarding
gradient descent.

A.2 Proof for Claim 2 of Theorem 4.1

To show that PGD approximates a local minimum in polynomial time, we first apply Theorem 2.7
which shows that PGD finds an �-second-order stationary point. Remark A.2 shows in D, every
�-second-order stationary point is � close to a local minimum. Thus, it suffices to show iterates of
PGD stay in D. We will prove the following two facts: 1) after adding noise, x is still in D, and 2)
until the next time we add noise, x is in D.

For the first fact, using the choices of gthres and r in Jin et al. [2017] we can pick � polynomially
small enough so that gthres ≤ γτ

10 and r ≤ τ
20 , which ensures there is no noise added when there

exists a coordinate xi with τ ≤ xi ≤ 2τ . Without loss of generality, suppose that in the region

{x1, . . . , xk−1 ≥ 2τ, 0 ≤ xk, . . . , xd ≤ τ} ,
we have �∇f (x)�2 ≤ gthres ≤ γτ

10 , which implies |xj − 4τ | ≤ τ
20 for j = 1, . . . , k−1, and xj ≤ τ

20

for j = k, . . . , d. Therefore,
���(x+ ξ)j − 4τ

��� ≤ τ
10 for j = 1, . . . , k − 1 and

���(x+ ξ)j

��� ≤ τ

10
(19)

for j = k, . . . , d.

For the second fact suppose at the t�-th iteration we add noise. Now without loss of generality,
suppose that after adding noise, x(t�) ≥ 0, and by the first fact xt� is in the region

�
x1, . . . , xi−1 ≥ 2τ, 0 ≤ xi ≤ . . . , xd ≤ τ

10

�
.

Now we use the same argument as for proving GD stays in D. Suppose at t��-th iteration we add
noise again. Then for t� < t < t��, we have that if x(t) satisfies 6τ ≥ x1, . . . xk−1 ≥ 2τ, τ ≥ xk ≥
0, τ ≥ xk+1 . . . , xd ≥ 0, then for 1 ≤ j ≤ k,

x
(t+1)
j = (1− ηL)x

(t)
j − 4ηLτ ∈ [2τ, 6τ ] ,

for j = k,
x
(t+1)
j = (1 + 2ηγ)x

(t)
j ∈ [0, 2τ ] ,
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and for j ≥ k + 1

x
(t+1)
j = (1− 2ηL)x

(t)
j ∈ [0, τ ] .

Similarly, if x(t) satisfies 6τ ≥ x1, . . . xk−1 ≥ 2τ, 2τ ≥ xk ≥ τ, τ ≥ xk+1 . . . , xd ≥ 0, the above
arguments still hold for j ≤ k − 1 and j ≥ k + 2. For j = k, note that

x
(t+1)
j = x

(t)
j − η

∂g (xj , xj+1)

∂xj

≤ x
(t)
j + 4ηLτ ≤ 6τ,

where the first inequality we have used Lemma B.2.

For j = k + 1, by the dynamics of gradient descent, at the (Tk − T τ
k )-th iteration, x(Tk−T τ

k )
k+1 =

x
(t�)
k+1 (1− 2ηL)

Tk−T τ
k −t� . Note that Lemma B.2 shows in the region

{x1, . . . , xk−1 ≥ 2τ, τ ≤ xk ≤ 2τ, 0 ≤ xk+1, . . . , xd ≤ τ} ,
we have

∂f(x)

∂xk+1
≥ −2γxk+1.

Putting this together we obtain the following upper bound, for t = Tk − T τ
k + 1, . . . , Tk:

x
(t)
k+1 ≤ x

(t�)
k+1 (1− 2ηL)

(Tk−T τ
k −t�) · (1 + 2ηγ)

t−(Tk−T τ
k ) ≤ τ,

where the last inequality is because t − (Tk − T τ
k ) ≤ T τ

k ≤ 1
2ηγ . This implies x(t) is in D0. Our

proof is complete.

A.3 Proof for Corollary 4.3

Define g(x) = f(x−z
R ) to be an affine transformation of f , ∇g(x) = 1

R∇f(x−z
R ), and ∇2g(x) =

1
R2∇2f(x−z

R ). We see that �g =
�f
R2 , ρg =

ρf

R3 , and Bg = Bf , which are poly(d).

Define the mapping h(x) = x−z
R , and the auxiliary sequence yt = h(xt). We see that

x(t+1) = x(t) − η∇g(x(t))

h−1(y(t+1)) = h−1(y(t))− η

R
∇f(y(t))

y(t+1) = h(Ry(t) + z − η

R
∇f(y(t)))

= y(t) − η

R2
∇f(y(t)).

Thus gradient descent with stepsize η on g is equivalent to gradient descent on f with stepsize η
R2 .

The first conclusion follows from noting that with probability 1 − δ, the initial point x(0) lies in
B∞(z,R), and then applying Theorem 4.1. The second conclusion follows from applying Theorem
2.7 in the same way as in the proof of Theorem 4.1.

B Auxiliary Theorems

The following are basic facts from spline theory. See Equation (2.1) and (3.1) of Dougherty et al.
[1989]
Theorem B.1. Given data points y0 < y1, function values f(y0), f(y1) and derivatives f �(y0),
f �(y1) with f �(y0) < 0 the cubic Hermite interpolant is defined by

p(y) = c0 + c1δy + c2δ
2
y + c3δ

3
y,

where
c0 = f(y0), c1 = f �(y0)

c2 =
3S − f �(y1)− 2f �(y0)

y1 − y0

c3 = −2S − f � (y1)− f �(y0)

(y1 − y0)
2
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for y ∈ [y0, y1], δy = y−y0 and slope S = f(y1)−f(y0)
y1−y0

. p(y) satisfies p(y0) = f(y0), p(y1) = f(y1),
p�(y0) = f �(y0) and p�(y1) = f �(y1). Further, for f(y1) < f(y0) < 0, if

f �(y1) ≥
3 (f(y1)− f(y0))

y1 − y0

then we have f(y1) ≤ p(y) ≤ f(y0) for y ∈ [y0, y1].

We use these properties of splines to construct the bivariate function g and the univariate function g1
in Section A. The next lemma studies the properties of the connection functions g(·, ·) and g1(·).
Lemma B.2. Define g(xi, xi+1) = g1(xi) + g2(xi)x

2
i+1. There exist polynomial functions g1, g2

and ν = −g1(2τ) + 4Lτ2 such that for any i = 1, · · · , d, for fi,1 and fi,2 defined in Eq. (6)- (10),
g(xi, xi+1) ensures fi,2 satisfies, if xi = τ , then

fi,2(x) = fi,1(x),

�fi,2(x) = �fi,1(x),
�2fi,2(x) = �2fi,1(x),

and if xi = 2τ then

fi,2(x) = fi+1,1(x),

�fi,2(x) = �fi+1,1(x),

�2fi,2(x) = �2fi+1,1(x).

Further, g satisfies for τ ≤ xi ≤ 2τ and 0 ≤ xi+1 ≤ τ

−4Lτ ≤ ∂g(xi, xi+1)

∂xi
≤ −2γτ

∂g(xi, xi+1)

∂xi+1
≥ −2γxi+1.

and g1 satisfies for τ ≤ xi ≤ 2τ

−4Lτ ≤ ∂g1(xi)

∂xi
≤ −2γτ.

Proof. Let us first construct g1. Since we know for a given i ∈ [1, . . . , d], if xi = τ , ∂fi,1
∂xi

= −2γτ ,
∂2fi,1
∂x2

i
= −2γ and if xi = 2τ , ∂fi+1,1

∂xi
= −4Lτ and ∂2fi+1,1

∂x2
i

= 2L. Note for L > γ, 0 > −2γτ >

−4Lτ and 2L > −4Lτ−(−2γτ)
2τ−τ . Applying Theorem B.1, we know there exists a cubic polynomial

p(xi) such that

p(τ) = −2γτ and p(2τ) = −4Lτ

p�(τ) = −2γ and p�(2τ) = 2L,

and p(xi) ≤ −2γτ for τ ≤ xi ≤ 2τ . Now define

g1(xi) =

��
p

�
(xi)−

��
p

�
(τ)− γτ2.

where
�
p is the anti-derivative. Note by this definition g1 satisfies the boundary condition at τ . Lastly

we choose ν = −g1(2τ) + 4Lτ2. It can be verified that this construction satisfies all the boundary
conditions.

Now we consider xi+1. Note when if xi = τ , the only term in f that involves xi+1 is Lx2
i+1 and

when xi = 2τ , the only term in f that involves xi+1 is −γx2
i+1. Therefore we can construct g2

directly:

g2(xi) = −γ − 10(L+ γ)(xi − 2τ)3

τ3
− 15(L+ γ)(xi − 2τ)4

τ4
− 6(L+ γ)(xi − 2τ)5

τ5
.
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Note

g�2(xi) = −30(L+ γ)(xi − 2τ)2(xi − τ)2

τ5
.

After some algebra, we can show this function satisfies for τ ≤ xi ≤ 2τ

g2(xi) ≥ −γ,

g�2(xi) ≤ 0,

g2(τ) = L, g2(2τ) = −γ

g�2(τ) = g�2(2τ) = 0

g��2 (τ) = g��2 (2τ) = 0.

Therefore it satisfies the boundary conditions related to xi+1. Further note that at the boundary
(xi = τ or 2τ ), the derivative and the second derivative are zero, so it will not contribute to the
boundary conditions involving xi. Now we can conclude that g and g1 satisfy the requirements of the
lemma.

We use the following continuous extension theorem which is a sharpened result of the seminal
Whitney extension theorem [Whitney, 1934].
Theorem B.3 (Theorem 1.3 of Chang [2015]). Suppose E ⊆ Rd. Let the Cm (E) norm of a function
F : E → R be sup {|∂α| : x ∈ E, |α| ≤ m}. If E is a closed subset in Rd, then there exists a linear
operator T : Cm (E) → Cm

�
Rd

�
such that if f ∈ Cm (E) is mapped to F ∈ Cm

�
Rd

�
, then

F |E = f and F has derivatives of all orders on Ec. Furthermore, the operator norm �T�op is at
most Cd5m/2, where C depends only on m.
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