APPENDIX A. Modes in the Mixture of Gaussian

According to Ray and Lindsay [21]], all the critical points 6 of a mixture of Gaussian (MoG) with
two components are in one curve as the following equation with 0 < o < 1.

0=(1-a)S7 +aX3) (1=)57 + o i) (12)

The proof is as follows. Imagine two Gaussian distribution ¢; and g2, such as in Equation 2]

1 1 _

@ =0, B) = Zesg e <—2(9 —m) B0 - u1)> (13)
1 1 _

q2 = q2(0; po, Xo) = m exp <—2(9 —p2) 870 - Mz)) (14)

D is the dimension of the Gaussian distribution. Mixture of two Gaussian ¢; and gs with the equal
mixing ratio (i.e., 1:1) is g1 /2 + ¢2/2. The derivation of the MoG is as follows:

N /2+/2) _ @

00 2
If we set Equation [I3]to 0, to find all critical points, the following equation holds:

(16— 1)) = (S (6 = i2)) = 0 (15)

0= (27" + @3) @S i+ 55 e) (16)
When « is set to ql‘fqz s Equationholds.

Note that « is a function of 6, so 6 cannot be calculated in a closed-form from Equation How-
ever, the optimal 6 is in the set {010 = (1 — @)X +aX5)" (1 —)27ty + aX5 ' p2),0 <
a < 1}, which motivates our mode-IMM method.

In our study IMM uses diagonal covariance matrices, which means that there is no correlation be-
tween parameters. This diagonal assumption is useful, since it decreases the number of parameters
for each covariance matrix from O(D?) to O(D). Based on this, the 6 in Equation 12]is defined as
follows:

(1 - Oé) ' Mlﬂ)/a%,v +o- /1’271)/0-%,1)

0, =
(1-a)/of,+a/o3,

a7

v denotes an index of the parameter vector. y. ,, and o2, are scalar.
?)

For MoG with two components in K dimension, the number of modes can be at most K + 1 [32].
Therefore, it is hard to find all modes in high-dimensional Gaussian in general.

The property of critical points of a MoG with two components can be extended to the case of K
components. The following equation holds:

K K
0= a7 O] oSy), (18)
k=1 k=1

where 0 < oy, < 1forall kand), oy, = 1. There is no tight upper bound on the number of modes
of MoG in general. There is a guess that, for all D, K > 1, the upper bound is (p4 —1)Cp [33].

APPENDIX B. Bayesian Neural Networks and Continual Learning

Bayesian Neural Networks. Bayesian neural networks (BNN) assume an uncertainty for the whole
parameter in neural networks so that the posterior distribution can be obtained [[L0]. Previous studies

12

Algorithm 1 IMM with weight-transfer, L2-transfer

Input: data {(X1,¥1),....(Xk,yx)}, balancing hyperparameter «
Output: wy.x
wq < InitializeNN()
for k= 1:K do
Wi £ Wk—1
Train(wk*, X, yk) with L(wk*, X, yk) + A ||wk* — wk—l”%
if type is mean-IMM then
Wi — S apwy.
else if type is mode-IMM then
F}.. + CalculateFisherMatrix (wp, Xk, yx)

Y (Zf aiFp)™t

W1k & X1k (Zf OétFt*wt*)
end if
end for

have argued that BNN regularizes better than NN, and provides a confidence interval for the output
estimation of each input instance. Current research on BNN, to the best of our knowledge, uses
Gaussian distributions as the posteriors of the parameters. In the Gaussian assumption, because
tracking the entire information of a covariance matrix is too expensive, researchers usually use only
the diagonal term for the covariance matrix, where the posterior distribution is fully factorized for
each parameter. However, the methods using full covariance were also suggested recently [31]. To
estimate a covariance matrix most studies use stochastic gradient variational Bayes (SGVB), where
a sampled point from the posterior distribution by Monte Carlo is used in the training phases [34].
Alternatively, Kirkpatrick et al. [8] approximated the covariance matrix as an inverse of a Fisher
matrix. This approximation makes the computational cost of the inference of a covariance matrix
cheaper when the update of covariance information is not needed in the training phase. Our method
follows the approach using the Fisher matrix.

Elastic Weight Consolidation. We compare the work of Kirkpatrick et al. [8] to the results of our
framework. The mechanism of EWC follows sequential Bayesian estimation. EWC maximizes the
following terms by gradient descent to get the solution 1.5 -

log p1.x ~ log p(yx|Xrk,0) + X -logprx—1) +C

K-1
~ log p(yx| Xk, 0) + X Y logqrx + C
k=1 (19)
A —1
logp(yK|XK7 5]; 0 1 k ;1(9 — ;Ulek) + Cl

Dk 18 emplrlcal posterior distribution of kth task, and ¢ ~ N (ug, X) is an approximation of pj. In
EWC, Z ! is also approximated by the diagonal term of Fisher matrix F}, with respect to 1.5 and
X

When moving to a third task, EWC uses the penalty term of both first and second network (i.e., 1
and pi1.2). Although this heuristic works reasonably in the experiments in their paper, it does not
match to the philosophy of Bayesian.

Learning without Forgetting. We compare the work of Li and Hoiem [7]. Although LwF does not
explicitly assume Bayesian, the approach can be represented nonetheless as follows:

K-1

log p1xc ~ log p(yxc| X, 0) + A+ > log p(jk| Xxc, 6) (20)
k=1

Where yj, is the output from g, with input X g. This framework is promising where the properties
of a pseudo training set of kth task (X, yx) is similar to the ideal training set (X, yx)-

13

APPENDIX C. Example Algorithms of Incremental Moment Matching

Two moment matching methods: mean-IMM and mode-IMM, and three transfer learning tech-
niques: weight-transfer, L2-transfer, and drop-transfer, are combined to make various continual
learning algorithms in our study. Algorithm [I] describes mean-IMM and mode-IMM with weight-
transfer and L2-transfer.

APPENDIX D. Experimental Details

Appendix D further explains following issues, 1) additional explanation of the untuned setting and
tuned setting 2) techniques for IMM with a different class output layer for each task 3) other exper-
imental details.

D.1 Disjoint MNIST Experiment

We first explain the untuned setting and the tuned setting in detail. The untuned setting refers to the
most natural hyperparameter in the equation of each algorithm, whereas the tuned setting refers to
using heuristic hand-tuned hyperparameters. For mean-IMM, it is most natural to evenly average
K models and 1/K is the most natural oy, value for K sequential tasks. For EWC, 1 is the most
natural A value in Equation [19] because EWC is derived from the equation of sequential Bayesian.
For L2-transfer, there is no natural hyperparameter value in Equation[I0} so we need to heuristically
choose a A value, which is not too small but does not damage the performance of the new network
for the new task.

In the SGD, the number of epochs for the dataset (epoch per dataset) for the second task corresponds
to the hyperparameter. The unit is how much of the network is trained from the whole data at once.
In the L2-transfer and EWC, X in Equations [10]and [19| corresponds to their hyperparameter. In the
mean-IMM and mode-IMM, af in Equations 4] and [/] corresponds to the hyperparameter. In the
drop-transfer, dropout ratio p in Equation [TT|corresponds to the hyperparameter.

All of the explained hyperparameters are devised to balance the information between the old and
new tasks. If A\/(1 + \) = 1 or @3 = 1, the final network of the algorithms is the same as the
network for the first task. If 1/(1 + A) = 1 or agx = 1, the final network is the same as the network
for the last task.

We used multi-layer perceptrons (MLP) with [784-800-800-10] as the number of nodes, ReLU as
the activation function, and vanilla SGD as the optimizer for all of the experiments. We set the epoch
per dataset to 10, unless otherwise noted. The entire IMM model uses weight-transfer to smooth the
loss surface of the model. Without weight-transfer, our IMM model does not work at all. In our
experiments, all models only use one 10-way softmax output layer. For only SGD, dropout is used
as proposed in Goodfellow et al. [3]], but dropout does not help much.

Each accuracy was measured by averaging the results of 10 experiments. In the experiment, IMM
outperforms comparative models by a significant margin. In the tuned experiment, the performance
of the IMM models exceeds 90%, and the performance increases more when more transfer tech-
niques are applied. Among all the models, weight-transfer + L2-transfer + drop-transfer + mode-
IMM performs the best and its performance is greater than 94%. However, the comparative models
fail to reach greater than 90%. Existing regularizer including dropout does not improve the compar-
ative models.

D.2 Shuffled MNIST Experiment

The second experiment is the shuffled MNIST experiment for three sequential tasks. For the hyper-
parameter of IMM, we set «; and 5 as the same value, and tune only 3. Table I (Bottom) shows
the experimental results. The performance of SGD + dropout and EWC + dropout comes from the
report in [8]. Changing only the epoch does not significantly increase the performance in SGD. The
results show that our IMM paradigm performs similarly to EWC in a case where EWC performs
well. Dropout regularization in the task makes both our models and comparative models perform
better.

14

The ImageNet2CUB experiment The ImageNet2CUB experiment

—4— First Task, Mean-IMM —4— First Task, Mean-IMM
o0.62f —v—- Second Task, Mean-IMM o0.62f —v—- Second Task, Mean-IMM
—&— First Task, Mode—IMM —o&— First Task, (Scaled) Mode-IMM
—=— Second Task, Mode-IMM —=— Second Task, (Scaled) Mode-IMM
06 —#— Second Task, (naive) Mode-IMMjs# 06l o
— / P2
B =
v I's P
> < I > ~
8 0.58[- 8 058 %
3 - 3 e
g —A—— —% o g fEs So—ng o o
ot Ao X P '*%z&,,,
3 0.56 s - A 3 0.56] & R
° _ = o - Re
. S
o g7 S35
0541 ~ P 0541 ~ S
7 —— 7z
s " s
~ E/B ;z/ N
. a8 -
0524 8 / osegy

¢ 012 alpha '2;4weighmg M(?jr?etwovks 018 1‘ 0 012 alpha, Ig.‘r‘tlveighmg lwg“r?emorks 018 ;
Figure 5: (Left) [llustration of the effect of the strategy of re-weighing on the new last-layer. Mode-
IMM refers to the original mode-IMM devised for the ImageNet2CUB experiments. In naive mode-
IMM, the second last-layer of the second network is used for the second last-layer of the final IMM
model. (Right) The results of mode-IMM with changing the balancing hyperparameter « to the
re-scaled balancing hayperparameter & with the scale of the Fisher matrix of each network.

In our IMM framework, weight-transfer, L2-transfer, and drop-transfer all take 151 as the reference
models of the transfer for training py. In other words, weight-transfer initializes uy with pg—1, L2-
transfer uses a regularization term to minimize the Euclidean distance between g1 and gy, and
drop-transfer uses a u;—1 as the zero point of the dropout procedure. All three transfer techniques

can be considered to change the reference point to, for example, ,uf}f,gfl) or p’{f(",gfl), as previous

works do [8]. However, all these alternatives make performances worse in our shuffled MNIST
experiment. We argued that our utilization of transfer techniques is devised not to minimize the
distance between 1 and pg, but to help find a py with a smooth and convex-like loss space
between g1 and .

D.3 ImageNet to Other Image Datasets

When each task needs a different class output layer, IMM requires additional techniques. There is
no counterpart weight matrix in the last-layer of the first network representing the second task, nor
the second last-layer of the first network. To tackle this problem, we add the training process of the
last-layer fine-tuning model to the IMM procedure; we match the moments of the last-layer fine-
tuning model with the original new network for the new task. Last-layer fine-tuning is the model the
last-layer is only fine-tuned for each new task; thus it does not make a performance loss for the first
task, but does not often learn enough for new tasks.

The technique utilizing the last-layer fine-tuning model makes mean-IMM work in the case of dif-
ferent class output layers, but it is not enough for mode-IMM. It is not possible to calculate a proper
Fisher matrix of the second last-layer in the first network for the first dataset. As the Fisher matrix is
defined with the gradient from the loss of the first task, elements of the Fisher matrix have a value of
zero. However, a zero matrix not only is what we do not want but also degenerates the performance
of mode-IMM. To tackle this problem, we apply mean-IMM for the last-layer with a re-scaling. We

] conli .
ToaTi]a,] for the re-scaling, where |t | and

|ws] is the average of the whole element of weight matrix in the layer before the last-layer, in the
first and the second task.

change the mixing ratios oy : g to &1 : Go =g @ o -

In our ImageNet2CUB experiment, the moments of the last-layer fine-tuning model and the LwF
model are matched. Though LwF does not perform well in our previous experiments, it is known
that LwWF performs well when the size of a new dataset is small relative to the old dataset, as in the
ImageNet2CUB experiment.

Figure [5 (Left) compares the performances of mode-IMM models with different assumptions on the
Fisher matrix. In naive mode-IMM, the Fisher matrix of the second last-layer of the first network
is a zero matrix. In other words, the second last-layer of the final naive mode-IMM is the second
last-layer of the second network. Naive mode-IMM does not yield a good performance as we expect.

15

Table 3: Experimental results on the Lifelog dataset. Mean-IMM uses weight-transfer. Classification
accuracies among different classes (Top) and different subjects (Bottom). In the experiment, our
IMM paradigm achieves competitive results with the approach using an ensemble network, without
additional cost for inference and learning.

Algorithm Location Sub-location Activity
Dual memory architecture [12] 78.11 72.36 52.92
Mean-IMM 77.60 73.78 52.74
Mode-IMM 77.14 75.76 54.07
Online fine-tuning 68.27 64.13 50.00
Last-layer fine-tuning 74.58 69.30 52.22
Naive incremental bagging 74.48 67.18 47.92
Incremental bagging w/ transfer 74.95 68.53 49.66
Algorithm A B C
Dual memory architecture [12]] 67.02 58.80 77.57
Mean-IMM 67.03 57.73 79.35
Mode-IMM 67.97 60.12 78.89
Online fine-tuning 53.01 56.54 72.85
Last-layer fine-tuning 63.31 55.83 76.97
Naive incremental bagging 62.24 53.57 73.77
Incremental bagging w/ transfer 61.21 56.71 75.23

In Figure [5| scaled mode-IMM denotes the results of mode-IMM re-plotted by the & as we de-
fined above. The result shows that re-scaled mode-IMM performs similarly to mean-IMM in the
ImageNet2CUB experiment.

D.4 Lifelog Dataset

The Lifelog dataset is the dataset recorded from Google Glass over 46 days from three participants.
The 660,000 seconds of the egocentric video stream data reflects the behaviors of the participants.
The dataset consists of 10 days of training data and 4 days of test data in order of time for each
participant respectively. In the framework of Lee et al. [[12], the network can be updated every day,
but a new network can be made for the 3rd, 7th, and 10th day, with training data of 3, 4, and 3 days,
respectively. Following this framework, our network is made in the 3rd, 7th, and 10th day, and then
merged to previously trained networks. Our IMM used AlexNet pretrained by the ImageNet dataset
[29] as the initial network. The experimental results on the Lifelog dataset are in Table[3] where the
performance of models is from Lee et al. [[12]] except IMM.

16

	Introduction
	Previous Works on Catastrophic Forgetting
	Incremental Moment Matching
	Mean-based Incremental Moment Matching (mean-IMM)
	Mode-based Incremental Moment Matching (mode-IMM)

	Transfer Techniques for Incremental Moment Matching
	Weight-Transfer
	L2-transfer
	Drop-transfer

	Experimental Results
	Discussion
	Conclusion

