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A Upper bound of the numerator

Briefly speaking, the numerator can be bounded by controlling the complexity of the parameter space
Θ. Here, the complexity of the model is measured by the metric entropy. A general discussion
of metric entropy can be found in [4]. In this section, we introduce a form of metric entropy with
bracketing corresponding to the relavent parameter space, and provide an upper bound for the metric
entropy of the approximating spaces defined in Section 2. These bounds lead to upper bounds for the
items in the numerator of (9).
Definition A.1. Let (Θ, ρ) be a seperable pseudo-metric space. Θ(ε) is a finite set of pairs of
functions {(fLj , fUj ), j = 1, · · · , N} satisfying

ρ(fLj , f
U
j ) ≤ ε for j = 1, · · · , N, (11)

and for any f ∈ Θ, there is a j such that

fLj ≤ f ≤ fUj . (12)
Let

N(ε,Θ, ρ) = min{card Θ(ε) : (11) and (12) are satisfied}. (13)
Then, we define the metric entropy with bracketing of Θ to be

H(ε,Θ, ρ) = logN(ε,Θ, ρ). (14)

Recall that Θ1, · · · ,ΘI , · · · are the approximating spaces defined in Section 2. The next lemma is
devoted to an upper bound for the bracketing metric entropy of ΘI .
Lemma A.2. Take ρ to be the Hellinger distance. Let Θd

I = {f ∈ ΘI : ρ(f, f0) ≤ d}. Then,

H(ε,Θd
I , ρ)

≤ I log p+ (I + 1) log(I + 1) +
I

2
log I + I log

d

ε
+ c′, (15)

where c is a constant not dependent on I or d.

Proof. See [5] proof of Lemma 3.1 and Lemma 3.2.

Our next theorem, which is Theorem 1 in [7], gives a uniform exponential bound for likelihood ratios.
Theorem A.3 (Wong and Shen (1995)). There exist positive constants a > 0, c, c1 and c2, such that,
for any ε > 0, if ∫ √2ε

ε2/8

H1/2(u/a,P, ρ)du ≤ cn1/2ε2, (16)

then

Pf0
(

sup
{ρ(f,f0)≥ε,f∈P}

n∏
i=1

f(Yi)

f0(Yi)
≥ exp(−c1nε2)

)
≤ 4 exp(−c2nε2),

where Pf0 is understood to be the outer probability mesure under f0. The constants c1 and c2 can be
chosen in (0, 1) and c can be set as (2/3)5/2/512.
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Finally, the next lemma provides an upper bound for the items in the numerator in (9) when I is
sufficiently large.

Lemma A.4. Let δn,I = ( I log I
n/ logn )1/2. When n is sufficiently large, we have

Pf0
(

sup
{ρ(f,f0)≥δn,I ,f∈ΘI}

n∏
i=1

f(Yi)

f0(Yi)
≥ exp(−c1nδ2

n,I)
)
≤ 4 exp(−c2nδ2

n,I).

Proof. See [5] proof of Corollary 3.1.

Remark A.1. Since the metric entropy decreases as ε increases, this lemma also holds for any
ε ≥ δn,I . This property is quite useful in the proof of the main theorem.

B Lower bound of the denominator

In this section, we study how the prior distribution concentrates on the shrinking neighborhoods
around the true density function. This is the key to bounding the denominator of (9) from below. We
develop our results through a series of lemmas. The connection between the lower bounds of the
items in the denominator of (9) and the concentration rate of the prior distribution is first derived
(B.1). By employing a property of Dirichlet distribution (Lemma B.3) and inequalities bounding
Kullback-Leibler divergence by Hellinger distance (Lemma B.2), we obtain lower bounds of the
terms in the denominator of (9) in Lemma B.4.

To begin with, we cite a result from [6]. In this lemma, it is shown that with probability close to 1,
the denominator is bounded from below by the prior probability mass concentrating on a ball around
f0 multiplied by a coefficient depending on the radius of the ball. Before stating the result, we define

K(f0, f) = Ef0
(

log
f0(Y )

f(Y )

)
, (17)

and

V (f0, f) = Varf0
(

log
f0(Y )

f(Y )

)
. (18)

Lemma B.1 (Shen and Wasserman (2001) Lemma 1). Let K(·, ·) and V (·, ·) be as defined in (17)
and (18), and let S(t) = {f ∈ Ω : K(f0, f) ≤ t, V (f0, f) ≤ t}. Set Sn = S(tn). When tn is a
sequence of positive numbers satisfying ntn →∞,

Pnf0

∫
Ω

n∏
j=1

f(Yi)

f0(Yi)
dΠ(f) ≤ 1

2
Π(Sn)e−2ntn

 ≤ 2

ntn
.

More explicitly, from this lemma we learn that, given the condition ntn → ∞,∫
Ω

∏n
j=1

f(Yi)
f0(Yi)

dΠ(f) ≥ 1
2Π(Sn)e−2ntn with probability close to 1.

It is well known that Hellinger distance can be bounded by the Kullback-Leibler divergence. In
[7], it is shown that the other direction also holds under an integrability condition. Their results are
summarized in the lemma below.
Lemma B.2 (Wong and Shen (1995) Theorem 5). Let f , f0 be two densities, ρ2(f, f0) ≤ ε2. Suppose
that M2

δ =
∫
{f0/f≥e1/δ} f0(f0/f)δ < ∞ for some δ ∈ (0, 1]. Then for all ε2 ≤ 1

2 (1 − e−1)2, we
have ∫

f0 log(
f0

f
) ≤

[
6 +

2 log 2

(1− e−1)2
+

8

δ
max

(
1, log(

Mδ

ε
)
)]
ε2,∫

f0

(
log(

f0

f
)
)2 ≤ 5ε2

[1
δ

max
(
1, log(

Mδ

ε
)
)]2

.

Based on this result, if ρ2(f, f0) ≤ ε2, then

max
(
K(f0, f),Ef0

(
(log

f0(Y )

f(Y )
)2
))

= O
(
ε2(log

Mδ

ε
)2
)
.
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This further implies that, there exists a constant L, such that{
f : ρ(f, f0) ≤ Lε

log Mδ

ε

}
⊂

{
f : K(f0, f) ≤ ε2,Ef0

(
(log

f0(Y )

f(Y )
)2
)
≤ ε2

}
. (19)

This lemma allows us to work on a Hellinger ball instead of a Kullback-Leibler one. The transition
is necessary because it is more straightforward to apply a property of the Dirichlet distribution to
estimate the probability mass on a Hellinger ball around the true density function. In the lemma
below, this particular property of the Dirichlet distribution is stated in terms of L1 distance, which is
equivalent to the Hellinger distance. We want to point out that this lemma is a variation of Lemma
6.1 in [2] and the proof is adapted from their paper.

Lemma B.3. (X1, · · · , XI) is distributed according to the Dirichlet distribution. Let (x10, · · · , xI0)
be any point on the I-simplex. Take ε < 1/I . With τ < ε2, we have

P
( I∑
i=1

|Xi − xi0| ≤ 2ε,Xi ≥ τ for all i
)
≥ Γ(αI)

(Γ(α))I
(ε2 − τ)I . (20)

Proof. We can find an index i such that xi0 > 1/I . By relabeling, we can assume that i = I . if
|xi − xi0| ≤ ε2 for i = 1, · · · , I − 1, then

I−1∑
i=1

xi ≤ 1− xI0 + (I − 1)ε2 ≤ (I − 1)(ε2 + 1/I) ≤ 1− ε2 < 1.

Therefore, there exists x = (x1, · · · , xI) in the simplex with these first I − 1 coordinates. And

I∑
i=1

|xi − xi0| ≤ 2

I−1∑
i=1

|xi − xi0| ≤ 2ε2(I − 1) ≤ 2ε.

Therefore, the probability on the left hand side of (20) is bounded below by

P (|Xi − xi0| ≤ ε2, Xi ≥ τ, i = 1, · · · , I − 1)

≥ Γ(αI)

(Γ(α))I

I−1∏
i=1

∫ min((xi0+ε2),1)

max((xi0−ε2),τ)

xα−1
i dxi.

Since α < 1, we can lower bound the integrand by 1 and the interval of integration contains at least
an interval of length ε2 − τ . Therefore, the result above can be further lower bounded by

Γ(αI)

(Γ(α))I
(ε2 − τ)I−1 ≥ Γ(αI)

(Γ(α))I
(ε2 − τ)I .

This finishes the proof.

Now, we are ready to derive lower bounds for the prior probability mass on ΘI ’s when I varies
within a certain range. Before stating the result, we want to briefly review the assumptions we made
in Section 3. First, in terms of approximation error, we assume that for any f0 ∈ F0, there exists a
sequence of fI ∈ ΘI , such that A1I

−r ≤ ming∈ΘI ρ(g, f) ≤ ρ(fI , f) ≤ A2I
−r for some positive

constants A1 and A2 (If the lower bound does not hold, we can always obtain a faster concentration
rate). Second, we imposed a moment condition on F0. For any f ∈ F0, we assume that

∫
f2 <∞.

At last, given a partition of size I , the weights on the subregions within the partition follow a Dirichlet
distribution truncated from below, with the truncation parameter τ = DI−η (D, η > 0). Under these
three assumptions, we will derive the lower bound in the lemma below.
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Lemma B.4. Assume that f0 ∈ F0. Π is the prior probability specified in Section 2. Let tn,I =

ε2n,I = I log I
n/ logn . Take I = n

1
2r+1 , we have

Pnf0
(∫

ΘI

n∏
j=1

f(Yi)

f0(Yi)
dΠ(f)

≤ 1

2
Π(ΘI) exp(−2ntn,I − c∗I log I − 4ωI log n− I log Γ(α))

)
≤ 2

ntn,I
,

where ω = max(1, 1/2r), and c∗ is the constant introduced in Section 2.2.

Proof. Let Sn,I = {f ∈ ΘI : K(f0, f) ≤ tn,I , V (f0, f) ≤ tn,I}. From lemma B.1, we have the
bound

Pnf0
(∫

ΘI

n∏
j=1

f(Yi)

f0(Yi)
dΠ(f) ≤ 1

2
Π(Sn,I)e

−2ntn,I
)
≤ 2

ntn,I
. (21)

Next step, we will search a lower bound for Π(Sn,I). The way to approach this is to find a subset of
Sn,I to which we can apply Lemma B.3. Our argument is as the following.

Define S̃n,I = {f ∈ ΘI : K(f0, f) ≤ tn,I ,Ef0
(
(log f0(Y )

f(Y ) )2
)
≤ tn,I , f ≥ τ}, where τ is a

truncation parameter which will be specified later. Note that Ef0
(
(log f0(Y )

f(Y ) )2
)
≥ V (f0, f), we have

S̃n,I ⊂ Sn,I . From (19), we know that

Wn,I := {f ∈ ΘI : ρ(f0, f) ≤ Lεn,I

log Mδ

εn,I

, f ≥ τ} ⊂ S̃n,I .

Set τ to be DI−η with η > max{2, 4r}, then Mδ = O(Iδη
∫
f

(1+δ)
0 ). Furthermore,

εn,I

log Mδ

εn,I

= O


(
I log I
n/ logn

)1/2

log
(
Iδη
∫
f

(1+δ)
0 (n/ logn

I log I )1/2
)


= O

((
I log I

n log n

)1/2
)
. (22)

Under the assumptions that I = n
1

1+2r , there exists fI ∈ ΘI , such that ρ(f0, fI) <
Lεn,I

log
Mδ
εn,I

. If we

define
W̃n,I := {f ∈ ΘI : ρ(f, fI) ≤

Lεn,I

log Mδ

εn,I

− ρ(f0, fI), f ≥ τ},

by triangle inequality, we know that W̃n,I ⊂Wn,I . Together with the previous result, we claim that
there exists a constant L′, such that

B̃n,I := {f ∈ ΘI : ρ(f, fI) ≤ L′
(
I log I

n log n

)1/2

, f ≥ τ} ⊂ W̃n,I ,

Next, from the fact ρ2(f, g) ≤ ‖f − g‖L1
, we have

Bn,I := {f ∈ ΘI : ‖fI − f‖L1 ≤
L′2I log I

n log n
, f ≥ τ} ⊂ B̃n,I .

Note that Π(Bn,I) = Π(ΘI)Π(Bn,I |ΘI). Assume that fI is supported by the binary partition
{Ωi0}Ii=1. Let F0 = {f ∈ ΘI : f =

∑I
i=1

θi
|Ωi0|1Ωi0 , θi ≥ 0,

∑I
i=1 θi = 1} be the collection of all

the density functions in ΘI which are supported by the same binary partition as fI . Then

Π(Bn,I |ΘI) ≥ Π(Bn,I |F0)Π(F0|ΘI) ≥ exp(−c∗I log I)Π(Bn,I |F0). (23)
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Now we apply Lemma B.3 to bound Π(Bn,I |F0) from below. We will works with an L1-ball with
radius (L

′2I log I
n logn )ω, where ω is chosen to be max(1, 1/2r). We can always assume that L′ < 1,

otherwise we can work with a ball shringking to zero at a faster rate instead. Obviously, this
ball is contained in Bn,I . When I = n

1
2r+1 , we have (L

′2I log I
n logn )ω < 1

I . Under the assumptions

η > max(2, 4r), we know that when I/nγ1 = o(1) with γ1 = 2ω
2ω+η , DI−η = o(( I log I

n logn )2ω). By
setting xi0 in the lemma to be the probability mass on Ωi0 under fI , we have

Π(Bn,I |F0) ≥ Γ(αI)

(Γ(α))I
((
L′2I log I

2n log n
)2ω −DI−η)I

≥ exp(−I log Γ(α)− 4ωI log n). (24)

Combine (21), (23) and (24) together, we get the desired result.

C Proof of Theorem 3.1

In this section, we will combine the upper bound in Section A and the lower bound in Section B
together to derive the posterior concentration rate.

Proof of Theorem 3.1. Let εn = n−
r

2r+1 (log n)2+ 1
2r and ηn,I =

(
I(log I)1/r+1

n/ logn

)1/2

. First, we divide
the items in (9) into three blocks. We define

INum =

N1−1∑
I=1

∫
{f :ρ(f,f0)≥Mεn}∩ΘI

n∏
j=1

f(Yj)

f0(Yj)
dΠ(f),

IINum =

N2∑
I=N1

∫
{f :ρ(f,f0)≥Mεn}∩ΘI

n∏
j=1

f(Yj)

f0(Yj)
dΠ(f),

IIINum =

n/ logn∑
I=N2+1

∫
{f :ρ(f,f0)≥Mεn}∩ΘI

n∏
j=1

f(Yj)

f0(Yj)
dΠ(f),

where N1 = D1n
1

2r+1 (log n)−
1
r and N2 = D2n

1
2r+1 (log n)2.

We deal with each block in the numerator separately. Roughly speaking, when I is small, the
approximation error to f0 dominates, and these items can be bounded by the Hellinger distance
between f and f0. The items in the middle range can be bounded by controlling the metric entropy
of ΘI . The items in the last block are negligible because the prior probability decays to zero fast.

We assume that there exists a sequence of fI ∈ ΘI , such that A1I
−r ≤ ming∈ΘI ρ(g, f) ≤

ρ(fI , f) ≤ A2I
−r for some positive constants A1 and A2. Let N3 = D3n

1
2r+1 (log n)−

2
r−

1
2r2 . With

an appropriately chosen D3, when I < N3, A1I
−r is greater than Mεn. Therefore,

N3−1∑
I=1

∫
{f :ρ(f,f0)≥Mεn}∩ΘI

n∏
j=1

f(Yj)

f0(Yj)
dΠ(f)

=

N3−1∑
I=1

∫
ΘI

n∏
j=1

f(Yj)

f0(Yj)
dΠ(f). (25)

When N3 ≤ I < N1, given that A1I
−r < Mεn, we have

N1−1∑
I=N3

∫
{f :ρ(f,f0)≥Mεn}∩ΘI

n∏
j=1

f(Yj)

f0(Yj)
dΠ(f)

≤
N1−1∑
I=N3

∫
{f :ρ(f,f0)≥A1I−r}∩ΘI

n∏
j=1

f(Yj)

f0(Yj)
dΠ(f). (26)
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Combine (25) and (26) together and apply Lemma A.4 by setting δn,I to be A1I
−r, we obtain

INum ≤
N1−1∑
I=1

∫
{f :ρ(f,f0)≥A1I−r}∩ΘI

n∏
j=1

f(Yj)

f0(Yj)
dΠ(f)

≤
N1−1∑
I=1

Π(ΘI) exp(−A1nI
−2r)

≤ (

N1−1∑
I=1

exp(−2A1nI
−2r))1/2.

The last line is based on the Caucy-Schwarz inequality. Now, we will estimate the order of the summa-
tion in the last line. In order to simplify the notation, we will discuss the order of

∑N1−1
I=1 exp(− 2A1n

I2r )
in detail.

We know that the mass is centered around I = N1 − 1. Power series expansion around that point
gives

(1−ε)N1∑
I=1

≤ (1− ε)N1 exp

(
− 2A1n

((1− ε)N1)2r

)
,

which is a lower order term compared to the last term in the summation and thus does not contribute
significantly to the summation. Let 1− δ = I

N1
, expand

(1− δ)−2r = 1 + 2rδ +

(
−2r

2

)
δ2 + o(δ2).

N1−1∑
I=(1−ε)N1

exp(−2A1n

I2r
) ≤

∫ N1

(1−ε)N1

exp(−2A1n

x2r
)dx

∼
∫ ε

0

exp

(
−2

A1

D2r
1

n
1

2r+1 (log n)2(1− δ)−2r

)
N1dδ

∼
∫ ε

0

exp

(
−2

A1

D2r
1

n
1

2r+1 (log n)2(1 + 2rδ + o(δ))

)
N1dδ

∼ 1

(log n)1/r+2
exp

(
−2

A1

D2r
1

n
1

2r+1 (log n)2

)
.

Therefore

INum ≤ (log n)−1− 1
2r exp(− A1

D2r
1

n
1

2r+1 (log n)2). (27)

From Lemma A.4, we know that if the result applies for δn,I , then it also applies to Mηn,I > δn,I .
We have that when N1 ≤ I ≤ N2,

IINum ≤
N2∑
I=N1

∫
{f :ρ(f,f0)≥Mηn,I}∩ΘI

n∏
j=1

f(Yj)

f0(Yj)
dΠ(f)

≤
N2∑
I=N1

exp(−λI log I) exp(−M2I(log I)1+ 1
r log n)

≤

(
N2∑
I=N1

exp(−2λI log I)

)1/2( N2∑
I=N1

exp
(
−2M2I(log I)1+ 1

r log n
))1/2

∼ exp
(
−M2n

1
2r+1 (log n)2

)
,

where the last line is obtained by integration by part.
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For the last block IIINum, we have

IIINum ≤
n/ logn∑
I=N2+1

∫
ΘI

n∏
j=1

f(Yj)

f0(Yj)
dΠ(f)

∼ exp

(
−n
∫
f0 log(f0)

) n/ logn∑
I=N2+1

∫
ΘI

n∏
j=1

f(Yj)dΠ(f). (28)

If we use xI to represent a partition of size I , and XI to denote the collection of all binary partitions
of size I , then the integral in (28) can be divided into the integral over each partition as the following:

IIINum

. exp

(
−n
∫
f0 log(f0)

) n/ logn∑
I=N2+1

∑
xI∈XI

∫
θ1,...,θI

n∏
j=1

f(Yj |θ1, . . . , θI , xI)

×Π(θ1, . . . , θI |xI)Π(xI)dθ1 . . . dθI

. exp

(
−n
∫
f0 log(f0)

)

×
n/ logn∑
I=N2+1

exp(−λI log I)

TI

∑
xI∈XI

D(α+ n1, . . . , α+ nI)

D(α, . . . , α)

I∏
i=1

1

|Ωi|ni
,

The last inequality is obtained by integrating out θi’s. Now, we focus on the part inside the summation,
and apply Stirling’s approximation to the gamma function,

D(α+ n1, . . . , α+ nI)

D(α, . . . , α)

I∏
i=1

1

|Ωi|ni

= exp

(
log Γ(αI)− I log Γ(α) +

I∑
i=1

log Γ(α+ ni)

− log Γ(αI + n) +

I∑
i=1

ni log
1

|Ωi|

)

. exp

(
(αI − 1) log(αI − 1)− (αI − 1)− I log Γ(α)− (αI + n− 1) log(αI + n− 1) + αI + n− 1

+
∑
i:ni≥1

(
(α+ ni − 1) log(α+ ni − 1)− (α+ ni − 1) +

1

2
log(α+ ni − 1) + log

√
2π

)

+
∑
i:ni≥1

ni log
1

|Ωi|

)
, (29)

Let C(α) = log
√

2π + 1− log Γ(α)− α, then

(29)

. exp

(
(αI − 1) log

αI − 1

αI + n− 1
− n log(αI + n− 1) + C(α)I + (α− 1

2
)I log

n+ (α− 1)I

I

+
∑
i:ni≥1

ni log
ni
|Ωi|

)
. (30)
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Next, we will find an upper bound of
∑
i:ni≥1 ni log ni

|Ωi| . Given a partition {Ωi}Ii=1, define µi =∫
Ωi
f0, µ̂i = ni/n, νi = µi/|Ωi|, and fxI =

∑I
i=1 νi1Ωi . Then,

(30)

= exp

−n log
αI + n− 1

n
+ C(α)I +

∑
i:ni≥1

ni log
µ̂i
µi

+
∑
i:ni≥1

ni log νi


≤ exp

(
− n log

αI + n− 1

n
+ C(α)I + n

∫
f0 log(f0)− nK(f0, f̂xI )

+n
∑
i:ni≥1

µ̂i log
µ̂i
µi

+ n
∑
i:ni≥1

(µ̂i − µi) log(νi)

)

Next, we will use large deviations to study the last two items in the summation. Applying a result in
[3] (Corollary 2.5 in the paper), we have

Pnf0

 ∑
i:ni≥1

µ̂i log
µ̂i
µi
≥ ηI log I

n

 . exp(−ηI log I),

where η is a constant. We can choose η such that this result holds for all partitions of size I with
probability tending to 1.

Based on this, we know that when I is between N2 and n/ log n, the integral over each partition
is bounded given that λ is large enough. Indeed, the condition on λ is that λ > η and η > c∗. For
example, we can set λ = 3 and η = 2. If we plug in this result into the summation, we have

IIINum .
n/ logn∑
I=N2

exp(−I log I)

≤ exp(−D2n
1

2r+1 (log n)2).

Therefore

(9)

.
(log n)−1− 1

2r exp(−(A1/D
2r
1 )n

1
2r+1 (log n)2) + exp(−M2n

1
2r+1 (log n)2 + exp(−D2n

1
2r+1 (log n)2))∑∞

I=1

∫
ΘI

∏n
j=1

f(Yj)
f0(Yj)

dΠ(f)

≤ (log n)−1− 1
2r exp(−(A1/D

2r
1 )n

1
2r+1 (log n)2) + exp(−M2n

1
2r+1 (log n)2) + exp(−D2n

1
2r+1 (log n)2)

1
2 exp

(
− 2

2r+1n
1

2r+1 (log n)2 − ( c∗

2r+1 + 4ω)n
1

2r+1 log n− n
1

2r+1 (log Γ(α) + 1)
) ,

where the last inequality is obtained by applying Lemma B.4 to the space ΘI with I = n
1

2r+1 . The
last line goes to zero when A1/D1, M2 and D2 are all greater than 2

2r+1 .

Therefore, we have

Π (f : ρ(f, f0) ≥Mεn|Y1, · · · , Yn) ≤ exp
(
−bn

1
2r+1 (log n)2

)
,

with probability tending to 1, where b is a positive constant. This concludes the proof.

D Proof of Corollaries

D.1 High-dimensional Haar basis

We first provide more details about high-dimensional Haar basis. In one dimension, the Haar wavelet’s
mother wavelet function is

ψ(y) =


1 if 0 ≤ y < 1/2,

−1 if 1/2 ≤ y < 1,

0 otherwise.
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And its scaling function is

φ(y) =

{
1 if 0 ≤ y < 1,

0 otherwise.

Here, we take the two-dimensional case to illustrate how the system is built. This construction can be
extended to high dimensional cases as well.

The two-dimensional scaling function is defined to be

φφ(y1, y2) := φ(y1)φ(y2),

and three wavelet functions are

φψ(y1, y2) := φ(y1)ψ(y2),

ψφ(y1, y2) := ψ(y1)φ(y2),

ψψ(y1, y2) := ψ(y1)ψ(y2).

If we use a superscript l to index the scaling level of the wavelet function and subscripts i and j (i
and j can be 0, 1, · · · , 2l − 1) to denote the horizontal and vertical translations respectively, then the
scales and translates of the three wavelet functions φψ, ψφ and ψψ are defined to be

φψlij(y
1, y2) := (

√
2)2·lφψ(2ly1 − i, 2ly2 − j),

ψφlij(y
1, y2) := (

√
2)2·lψφ(2ly1 − i, 2ly2 − j),

ψψlij(y
1, y2) := (

√
2)2·lψψ(2ly1 − i, 2ly2 − j).

These functions together with the single scaling function φφ define the two-dimensional Haar wavelet
basis Ψ.

D.2 Spatial sparsity

Lemma D.1. Suppose f0 is a p-dimensional density function. g0 =
√
f0 satisfies the condition

(10). Then there exists a sequence of fI ∈ ΘI , such that ρ(f0, fI) . I−(q−1/2), or equivalently,
ρ(f0, fI) ≤ cI−(q−1/2), where c may depend on q and p but not I .

Proof. See [5] proof of Lemma 4.1.

The proof of Corollary 3.2 follows directly from this lemma and Theorem 3.1.

D.3 Density functions of bounded variation

Let Λ be the set of indices for the wavelet basis. Each element in Λ is a pair of scale and location
parameters. We will denote by ΣN the spaces consisting of N -term approximation in the Haar
system, in other words,

ΣN := {
∑
λ∈E

cλψλ : E ⊂ Λ, |E| ≤ N},

where |E| denotes the cardinality of the discrete set E.

First, we cite a result from [1]. It provides a bound for the approximation rate to a function of bounded
variation by ΣN .
Lemma D.2. If f ∈ BV (Ω) has mean value zero on Ω, we have

inf
g∈ΣN

‖f − g‖L2(Ω) ≤ CN−1/2VΩ(f), (31)

with C = 2592(3
√

5 +
√

3).

Assume f0 is a density function on Ω of bounded variation. By subtracting the mean, we can always
assume that

√
f0 has mean value zero over Ω. For the square root of f0, applying the lemma above,

we can find an N -term approximation g in the Haar system, such that ‖
√
f0 − g‖L2(Ω) . N−1/2.

Translating this inequality into the size of partition, we reach the conclusion that for a density function
in BV (Ω), we can find an approximation in ΘI , such that ρ(f0, fI) . I−1/2. Corollary 3.3 follows.

9



D.4 Hölder space

Lemma D.3. If
√
f0 is Hölder continuous (when p = 1) or mixed-Hölder continuous (when p ≥ 2)

with regularity parameter β ∈ (0, 1], then there exists a sequence of fI ∈ ΘI , such that ρ(f0, fI) .
I−β/p(log I)p/2.

Proof. See [5] proof of Lemma 6.1.

The proof of Corollary 3.4 follows from this.
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