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Abstract

In this document, we provide the complete proofs of the lemmas and propositions
from the main paper Machine Learning with Adversaries: Byzantine Tolerant
Gradient Descent. We also give the details of our variants of Krum aggregation
rule and the geometric median, and compare them. Finally, we provide additional
experimental results.

1 Byzantine Resilience

Lemma 1. Consider a choice function Flin of the form Flin(V1, . . . , Vn) =
∑n
i=1 λi · Vi, where the

λi’s are non-zero scalars. Let U be any vector in Rd. A single Byzantine worker can make F always
select U . In particular, a single Byzantine worker can prevent convergence.

Proof. If the Byzantine worker proposes vector Vn = 1
λn
· U −

∑n−1
i=1

λi

λn
Vi, then F = U . Note that

the parameter server could cancel the effects of the Byzantine behavior by setting, for example, λn to
0, but this requires means to detect which worker is Byzantine.

2 The Krum Function

Lemma 2. The expected time complexity of the Krum Function KR(V1, . . . , Vn), where V1, . . . , Vn
are d-dimensional vectors, is O(n2 · d)

Proof. For each Vi, the parameter server computes the n squared distances ‖Vi − Vj‖2 (timeO(n·d)).
Then the parameter server selects the first n − f − 1 of these distances (expected time O(n) with
Quickselect) and sums their values (time O(n · d)). Thus, computing the score of all the Vi’s takes
O(n2 · d). An additional term O(n) is required to find the minimum score, but is negligible relatively
to O(n2 · d).

Proposition 1. Let V1, . . . , Vn be any independent and identically distributed random d-dimensional
vectors s.t Vi ∼ G, with EG = g and E ‖G− g‖2 = dσ2. Let B1, . . . , Bf be any f random vectors,
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possibly dependent on the Vi’s. If 2f + 2 < n and η(n, f)
√
d · σ < ‖g‖, where

η(n, f) =
def

√
2

(
n− f +

f · (n− f − 2) + f2 · (n− f − 1)

n− 2f − 2

)
=

{
O(n) if f = O(n)
O(
√
n) if f = O(1)

,

then the Krum function KR is (α, f)-Byzantine resilient where 0 ≤ α < π/2 is defined by

sinα =
η(n, f) ·

√
d · σ

‖g‖
.

Proof. Without loss of generality, we assume that the Byzantine vectors B1, . . . , Bf occupy the last
f positions in the list of arguments of KR, i.e., KR = KR(V1, . . . , Vn−f , B1, . . . , Bf ). An index is
correct if it refers to a vector among V1, . . . , Vn−f . An index is Byzantine if it refers to a vector
among B1, . . . , Bf . For each index (correct or Byzantine) i, we denote by δc(i) (resp. δb(i)) the
number of correct (resp. Byzantine) indices j such that i→ j. We have

δc(i)+δb(i) = n− f − 2

n− 2f − 2 ≤δc(i) ≤ n− f − 2

δb(i) ≤ f.
We focus first on the condition (i) of (α, f)-Byzantine resilience. We determine an upper bound on
the squared distance ‖EKR − g‖2. Note that, for any correct j, EVj = g. We denote by i∗ the index
of the vector chosen by the Krum function.

‖EKR − g‖2 ≤

∥∥∥∥∥∥E
KR − 1

δc(i∗)

∑
i∗→ correct j

Vj

∥∥∥∥∥∥
2

≤ E

∥∥∥∥∥∥KR − 1

δc(i∗)

∑
i∗→ correct j

Vj

∥∥∥∥∥∥
2

(Jensen inequality)

≤
∑

correct i

E

∥∥∥∥∥∥Vi − 1

δc(i)

∑
i→ correct j

Vj

∥∥∥∥∥∥
2

I(i∗ = i)

+
∑
byz k

E

∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

I(i∗ = k)

where I denotes the indicator function2. We examine the case i∗ = i for some correct index i.∥∥∥∥∥∥Vi − 1

δc(i)

∑
i→ correct j

Vj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

δc(i)

∑
i→ correct j

Vi − Vj

∥∥∥∥∥∥
2

≤ 1

δc(i)

∑
i→ correct j

‖Vi − Vj‖2 (Jensen inequality)

E

∥∥∥∥∥∥Vi − 1

δc(i)

∑
i→ correct j

Vj

∥∥∥∥∥∥
2

≤ 1

δc(i)

∑
i→ correct j

E ‖Vi − Vj‖2

≤ 2dσ2.

We now examine the case i∗ = k for some Byzantine index k. The fact that k minimizes the score
implies that for all correct indices i∑

k→ correct j

‖Bk − Vj‖2 +
∑

k→ byz l

‖Bk −Bl‖2 ≤
∑

i→ correct j

‖Vi − Vj‖2 +
∑

i→ byz l

‖Vi −Bl‖2 .

2I(P ) equals 1 if the predicate P is true, and 0 otherwise.
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Then, for all correct indices i∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

≤ 1

δc(k)

∑
k→ correct j

‖Bk − Vj‖2

≤ 1

δc(k)

∑
i→ correct j

‖Vi − Vj‖2 +
1

δc(k)

∑
i→ byz l

‖Vi −Bl‖2︸ ︷︷ ︸
D2(i)

.

We focus on the termD2(i). Each correct process i has n−f−2 neighbors, and f+1 non-neighbors.
Thus there exists a correct worker ζ(i) which is farther from i than any of the neighbors of i. In
particular, for each Byzantine index l such that i→ l, ‖Vi −Bl‖2 ≤

∥∥Vi − Vζ(i)∥∥2. Whence∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

≤ 1

δc(k)

∑
i→ correct j

‖Vi − Vj‖2 +
δb(i)

δc(k)

∥∥Vi − Vζ(i)∥∥2

E

∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

≤ δc(i)

δc(k)
· 2dσ2 +

δb(i)

δc(k)

∑
correct j 6=i

E ‖Vi − Vj‖2 I(ζ(i) = j)

≤
(
δc(i)

δc(k)
·+ δb(i)

δc(k)
(n− f − 1)

)
2dσ2

≤
(
n− f − 2

n− 2f − 2
+

f

n− 2f − 2
· (n− f − 1)

)
2dσ2.

Putting everything back together, we obtain

‖EKR − g‖2 ≤ (n− f)2dσ2 + f ·
(
n− f − 2

n− 2f − 2
+

f

n− 2f − 2
· (n− f − 1)

)
2dσ2

≤ 2

(
n− f +

f · (n− f − 2) + f2 · (n− f − 1)

n− 2f − 2

)
︸ ︷︷ ︸

η2(n,f)

dσ2.

By assumption, η(n, f)
√
dσ < ‖g‖, i.e., EKR belongs to a ball centered at g with radius η(n, f) ·√

d · σ. This implies

〈EKR, g〉 ≥
(
‖g‖ − η(n, f) ·

√
d · σ

)
· ‖g‖ = (1− sinα) · ‖g‖2.

To sum up, condition (i) of the (α, f)-Byzantine resilience property holds. We now focus on
condition (ii).

E‖KR‖r =
∑

correct i

E ‖Vi‖r I(i∗ = i) +
∑
byz k

E ‖Bk‖r I(i∗ = k)

≤ (n− f)E ‖G‖r +
∑
byz k

E ‖Bk‖r I(i∗ = k).

Denoting by C a generic constant, when i∗ = k, we have for all correct indices i∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→correct j

Vj

∥∥∥∥∥∥ ≤
√√√√ 1

δc(k)

∑
i→ correct j

‖Vi − Vj‖2 +
δb(i)

δc(k)

∥∥Vi − Vζ(i)∥∥2

≤ C ·

√ 1

δc(k)
·
∑

i→correct j

‖Vi − Vj‖+

√
δb(i)

δc(k)
·
∥∥Vi − Vζ(i)∥∥


≤ C ·

∑
correct j

‖Vj‖ (triangular inequality).
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The second inequality comes from the equivalence of norms in finite dimension. Now

‖Bk‖ ≤

∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→correct j

Vj

∥∥∥∥∥∥+
∥∥∥∥∥∥ 1

δc(k)

∑
k→correct j

Vj

∥∥∥∥∥∥
≤ C ·

∑
correct j

‖Vj‖

‖Bk‖r ≤ C ·
∑

r1+···+rn−f=r

‖V1‖r1 · · · ‖Vn−f‖rn−f .

Since the Vi’s are independent, we finally obtain that E ‖KR‖r is bounded above by a linear
combination of terms of the form E ‖V1‖r1 · · ·E ‖Vn−f‖rn−f = E ‖G‖r1 · · ·E ‖G‖rn−f with
r1 + · · ·+ rn−f = r. This completes the proof of condition (ii).

3 Convergence Analysis

Proposition 2. Assume that (i) the cost function Q is three times differentiable with continuous
derivatives, and is non-negative, Q(x) ≥ 0; (ii) the learning rates satisfy

∑
t γt =∞ and

∑
t γ

2
t <

∞; (iii) the gradient estimator satisfies EG(x, ξ) = ∇Q(x) and ∀r ∈ {2, . . . , 4}, E‖G(x, ξ)‖r ≤
Ar+Br‖x‖r for some constants Ar, Br; (iv) there exists a constant 0 ≤ α < π/2 such that for all x

η(n, f) ·
√
d · σ(x) ≤ ‖∇Q(x)‖ · sinα;

(v) finally, beyond a certain horizon, ‖x‖2 ≥ D, there exist ε > 0 and 0 ≤ β < π/2− α such that

‖∇Q(x)‖ ≥ ε > 0

〈x,∇Q(x)〉
‖x‖ · ‖∇Q(x)‖

≥ cosβ.

Then the sequence of gradients∇Q(xt) converges almost surely to zero.

Proof. For the sake of simplicity, we write KRt = KR(V t1 , . . . , V
t
n). Before proving the main claim

of the proposition, we first show that the sequence xt is almost surely globally confined within the
region ‖x‖2 ≤ D.

(Global confinement). Let ut = φ(‖xt‖2) where

φ(a) =

{
0 if a < D

(a−D)2 otherwise

Note that
φ(b)− φ(a) ≤ (b− a)φ′(a) + (b− a)2. (1)

This becomes an equality when a, b ≥ D. Applying this inequality to ut+1 − ut yields

ut+1 − ut ≤
(
−2γt〈xt,KRt〉+ γ2t ‖KRt‖2

)
· φ′(‖xt‖2)

+ 4γ2t 〈xt,KRt〉2 − 4γ3t 〈xt,KRt〉‖KRt‖2 + γ4t ‖KRt‖4

≤ −2γt〈xt,KRt〉φ′(‖xt‖2) + γ2t ‖KRt‖2φ′(‖xt‖2)
+ 4γ2t ‖xt‖2‖KRt‖2 + 4γ3t ‖xt‖‖KRt‖3 + γ4t ‖KRt‖4.

Let Pt denote the σ-algebra encoding all the information up to round t. Taking the conditional
expectation with respect to Pt yields

E (ut+1 − ut|Pt) ≤ −2γt〈xt,EKRt〉+ γ2t E
(
‖KRt‖2

)
φ′(‖xt‖2)

+ 4γ2t ‖xt‖2E
(
‖KRt‖2

)
+ 4γ3t ‖xt‖E

(
‖KRt‖3

)
+ γ4t E

(
‖KRt‖4

)
.

Thanks to condition (ii) of (α, f)-Byzantine resilience, and the assumption on the first four moments
of G, there exist positive constants A0, B0 such that

E (ut+1 − ut|Pt) ≤ −2γt〈xt,EKRt〉φ′(‖xt‖2) + γ2t
(
A0 +B0‖xt‖4

)
.
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Thus, there exist positive constant A,B such that

E (ut+1 − ut|Pt) ≤ −2γt〈xt,EKRt〉φ′(‖xt‖2) + γ2t (A+B · ut) .

When ‖xt‖2 < D, the first term of the right hand side is null because φ′(‖xt‖2) = 0. When
‖xt‖2 ≥ D, this first term is negative because (see Figure 1)

〈xt,EKRt〉 ≥ ‖xt‖ · ‖EKRt‖ · cos(α+ β) > 0.

Hence
E (ut+1 − ut|Pt) ≤ γ2t (A+B · ut) .

We define two auxiliary sequences

µt =

t∏
i=1

1

1− γ2iB
−−−→
t→∞

µ∞

u′t = µtut.

Note that the sequence µt converges because
∑
t γ

2
t <∞. Then

E
(
u′t+1 − u′t|Pt

)
≤ γ2t µtA.

Consider the indicator of the positive variations of the left-hand side

χt =

{
1 if E

(
u′t+1 − u′t|Pt

)
> 0

0 otherwise

Then
E
(
χt · (u′t+1 − u′t)

)
≤ E

(
χt · E

(
u′t+1 − u′t|Pt

))
≤ γ2t µtA.

The right-hand side of the previous inequality is the summand of a convergent series. By the quasi-
martingale convergence theorem [2], this shows that the sequence u′t converges almost surely, which
in turn shows that the sequence ut converges almost surely, ut → u∞ ≥ 0.

Let us assume that u∞ > 0. When t is large enough, this implies that ‖xt‖2 and ‖xt+1‖2 are greater
than D. Inequality 1 becomes an equality, which implies that the following infinite sum converges
almost surely

∞∑
t=1

γt〈xt,EKRt〉φ′(‖xt‖2) <∞.

Note that the sequence φ′(‖xt‖2) converges to a positive value. In the region ‖xt‖2 > D, we have

〈xt,EKRt〉 ≥
√
D · ‖EKRt‖ · cos(α+ β)

≥
√
D ·
(
‖∇Q(xt)‖ − η(n, f) ·

√
d · σ(xt)

)
· cos(α+ β)

≥
√
D · ε · (1− sinα) · cos(α+ β) > 0.

This contradicts the fact that
∑∞
t=1 γt = ∞. Therefore, the sequence ut converges to zero. This

convergence implies that the sequence ‖xt‖2 is bounded, i.e., the vector xt is confined in a bounded
region containing the origin. As a consequence, any continuous function of xt is also bounded,
such as, e.g., ‖xt‖2, E ‖G(xt, ξ)‖2 and all the derivatives of the cost function Q(xt). In the sequel,
positive constants K1,K2, etc. . . are introduced whenever such a bound is used.

(Convergence). We proceed to show that the gradient ∇Q(xt) converges almost surely to zero. We
define

ht = Q(xt).

Using a first-order Taylor expansion and bounding the second derivative with K1, we obtain

|ht+1 − ht + 2γt〈KRt,∇Q(xt)〉| ≤ γ2t ‖KRt‖2K1 a.s.

Therefore
E (ht+1 − ht|Pt) ≤ −2γt〈EKRt,∇Q(xt)〉+ γ2t E

(
‖KRt‖2|Pt

)
K1. (2)
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r

η
√
dσα

β ∇Q(xt)

xt

Figure 1: Condition on the angles between xt,∇Q(xt) and EKRt, in the region ‖xt‖2 > D.

By the properties of (α, f)-Byzantine resiliency, this implies

E (ht+1 − ht|Pt) ≤ γ2tK2K1,

which in turn implies that the positive variations of ht are also bounded

E (χt · (ht+1 − ht)) ≤ γ2tK2K1.

The right-hand side is the summand of a convergent infinite sum. By the quasi-martingale convergence
theorem, the sequence ht converges almost surely, Q(xt)→ Q∞.

Taking the expectation of Inequality 2, and summing on t = 1, . . . ,∞, the convergence of Q(xt)
implies that

∞∑
t=1

γt〈EKRt,∇Q(xt)〉 <∞ a.s.

We now define
ρt = ‖∇Q(xt)‖2 .

Using a Taylor expansion, as demonstrated for the variations of ht, we obtain

ρt+1 − ρt ≤ −2γt〈KRt,
(
∇2Q(xt)

)
· ∇Q(xt)〉+ γ2t ‖KRt‖2K3 a.s.

Taking the conditional expectation, and bounding the second derivatives by K4,

E (ρt+1 − ρt|Pt) ≤ 2γt〈EKRt,∇Q(xt)〉K4 + γ2tK2K3.

The positive expected variations of ρt are bounded

E (χt · (ρt+1 − ρt)) ≤ 2γtE〈EKRt,∇Q(xt)〉K4 + γ2tK2K3.

The two terms on the right-hand side are the summands of convergent infinite series. By the quasi-
martingale convergence theorem, this shows that ρt converges almost surely.

We have

〈EKRt,∇Q(xt)〉 ≥
(
‖∇Q(xt)‖ − η(n, f) ·

√
d · σ(xt)

)
· ‖∇Q(xt)‖

≥ (1− sinα)︸ ︷︷ ︸
>0

·ρt.

This implies that the following infinite series converge almost surely
∞∑
t=1

γt · ρt <∞.

Since ρt converges almost surely, and the series
∑∞
t=1 γt = ∞ diverges, we conclude that the

sequence ‖∇Q(xt)‖ converges almost surely to zero.

4 Beyond Krum

In the main paper, we presented the strongest variant of Krum: the Multi-Krum aggregation rule.
We refer to this aggregation rule as mKrum in the following. In this section we present the other
aggregation rules that we tested.
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• The Medoid.
This aggregation rule is an easily computable variant of the geometric median. As discussed
in the last section of the main paper, the geometric median is known to have strong statistical
robustness, however there exists no algorithm yet [1] to compute its exact value 3. Recall
that the geometric median of a set of d-dimensional vectors V1, . . . , Vn is defined as follows:

med(V1, . . . , Vn) = arg min
x∈Rd

n∑
i=1

‖Vi − x‖

The geometric median does not necessarily lie among the vectors V1, . . . , Vn . A computable
alternative to the median are the medoids, which are defined as follows:

medoids(V1, . . . , Vn) = arg min
x∈{V1,...,Vn}

n∑
i=1

‖Vi − x‖.

A medoid is not unique, similarly to Krum, if more than a vector minimizes the sum, we
will refer to the Medoid as the medoid with the smallest index.

• 1− p Krum.
In this aggregation rule, the parameter server chooses the average of the proposed vectors
with probability p, and Krum with probability 1− p. Moreover, we choose p to depend on
the learning round. In our implementation pt = 1√

t
, where t is the round number. With

such a probability, and despite the presence of Byzantine workers, 1− p Krum has a similar
proof of convergence as Krum: the probability of choosing Krum goes to 1 when t 7→ ∞.
The rational is to follow averaging in the early phases, to accelerate learning in the absence
of Byzantine workers, while mostly following Krum in the later phases and guarantee
Byzantine resilience 4.

5 Experimental Details and Additional Results

We evaluate our algorithm on a distributed framework where we set some nodes to have an adversarial
behavior of two kinds: (a) The omniscient Byzantine workers: workers have access to all the training-
set (as if they breached into the other workers share of data). Those workers compute a rather precise
estimator of the true gradient, and send the opposite value multiplied by an arbitrarily large factor. (b)
The Gaussian Byzantine workers: Byzantine workers do not compute an estimator of the gradient
and send a random vector, drawn from a Gaussian distribution of which we could set the variance
high enough (200) to break averaging strategies.

On this distributed framework, we train two models with non-trivial (a-priori non-Convex) loss
functions: a 4-layer convolutional network (ConvNet) with a final fully connected layer, and a
classical multilayer perceptron (MLP) with two hidden layers, and on two tasks: spam filtering and
image classification. We use cross-validation accuracy to compare the performance of different
algorithms. The focus is on the Byzantine resilience of the gradient aggregation rules and not on the
performance of the models per se.

(Replacing an MLP by a ConvNet). In addition to what have been presented in the main paper, we
see from Figure 2 that, similarly to the situation on an MLP, mKrum is, despite attacks, comparable
to a non-attacked averaging. In the same veine, in Figure 3, we observe that like for an MLP, the
ConvNet only requires a reasonably low batch size for Krum to perform (despite 45 % Byzantine
workers) as good as a non-attacked averaging.

(Optimizing Krum). In Figure 4 we compare the different variants in the absence of Byzantine
workers, we see that Multi-Krum is comparably fast to averaging, then comes 1-p Krum, while Krum
and the Medoid are slower.

3The computable approximate ε-median [1] introduces a new parameter (ε) that should be studied with
respect to the risk of biasing the gradient estimator.

4Remember that the parameter server never knows if there are Byzantine workers or not. The latter can
behave like correct workers in the beginning and fool any fraud detection measure.
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Figure 2: Comparing an averaging aggregation with 0% Byzantine workers to mKrum facing 45%
omniscious Byzantine workers for the ConvNet on the MNIST dataset. The cross-validation error
evolution during learning is plotted for 3 sizes of the size of the mini-batch.

Figure 3: Test accuracy after 500 rounds as a function of the mini-batch size for an averaging
aggregation with 0% Byzantine workers for the ConvNet on the MNIST dataset versus mKrum facing
45% of omniscious Byzantine workers.
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Figure 4: Evolution of cross-validation accuracy with rounds for the different aggregation rules in the
absence of Byzantine workers. The model is the MLP and the task is spam filtering. The mini-batch
size is 3. Averaging and mKrum are the fastest, 1-p Krum is second, Krum and the Medoid are the
slowest.

Figure 5: Evolution of cross-validation accuracy with rounds for the different aggregation rules in the
presence of 33% Gaussian Byzantine workers. The model is the MLP and the task is spam filtering.
The mini-batch size is 3. Multi-Krum (mKrum) outperforms all the tested aggregation rules.
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In the presence of Byzantine workers (Figure 5), Krum, Medoid and 1-p Krum are similarly robust.
Unsurprisingly, averaging is not resilient (no improvement over time). Multi-Krum outperforms all
the tested aggregation rules.
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