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1 Problem Formulation

1.1 Notation

In this document, we refer to pointers in the main text using the prefix MT. For example, equation
MT-1 refers to equation 1 in the main text.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



We use T , X , and Z to represent input, signal, and noise tensors. For matrices we use bold-faced
upper case letters, for vectors we use bold-faced lower case letters, and for scalars we use regular
lower case letters. For example, X represents a matrix, x represents a vector, and x represents a
scalar number. For any set J , |J | denotes its cardinality. In1×n2

and 1n1×n2
are the identity and all

one matrices of size n1 × n2, respectively. When no confusion arises, we drop the subscripts. [n]
represents the set {1, 2, ..., n}. For J ⊂ [n], u(J) means that u(j) = 0 if j ∈ J . J̄ = [n]− J . Ix=y
is the indicator function of the event x = y. ei is a vector whose i-th entry is one and its other entries
are zero. X d

= Y means random variables X and Y have the same distribution.

Tr(X) and Xt represent the trace and the transpose of the matrix X, respectively. diag(x) is a
diagonal matrix whose diagonal elements are equal to x, while diag(X) is a vector of the diagonal
elements of the matrix X. ‖x‖2 = (xtx)1/2 is the second norm of the vector x. When no confusion
arises, we drop the subscript. ‖x‖∞ is the infinity norm of the vector x (i.e., ‖x‖∞ = max(|xi|)).
‖X‖ is the operator norm of the matrix X, while ‖X‖F is its Frobenius norm. < x,y > is the
inner product between vectors x and y. x ⊥ y indicates that vectors x and y are orthogonal. The
matrix inner product is defined as < X,Y >= Tr(XYt). ‖X‖2F =< X,X >. Inner product
and Frobenius norm of a tensor are defined similarly. det(X) is the determinant of X. X ⊗ Y
indicates kronecker product of matrices X and Y. DKL(P1‖P2) represents the Kullback–Leibler
(KL) divergence between two distributions P1 and P2.

The asymptotic notation a(n) = O(b(n)) means that, there exists a universal constant c such that for
sufficiently large n, we have |a(n)| < cb(n). If there exists c > 0 such that a(n) = O(b(n) log(n)c),
we use the notation a(n) = Õ(b(n)). The asymptotic notation a(n) = Ω(b(n)) and a(n) =

Ω̃(b(n)) is the same as b(n) = O(a(n)) and b(n) = Õ(a(n)), respectively. Moreover, we write
a(n) = Θ(b(n)) iff a(n) = Ω(b(n)) and b(n) = Ω(a(n)). Similarly, we write a(n) = Θ̃(b(n)) iff
a(n) = Ω̃(b(n)) and b(n) = Ω̃(a(n)).

1.2 Signal and Noise Models

Consider q = 1 in MT-(1), the tensor biclustering model simplifies to

T = X + Z = σ1u1w1vr + Z, (1)

In this section, we explain noise models I and II with more details:

- Noise Model I: In this model, the variance of the noise within and outside of bicluster indices is
assumed to be the same. Thus, under this model we have

σ2
z = 1. (2)

This is the noise model often considered in analysis of sub-matrix localization [1, 2] and tensor
PCA [3, 4, 5, 6, 7, 8, 9]. Although this model simplifies the analysis, it has the following drawback:
under this noise model, for every value of σ2

1 , the average trajectory length within the bicluster
is larger than the average trajectory length outside of the bicluster. To see this, let T1 ∈ Rm×k2

be a matrix whose columns include trajectories T (j1, j2, :) for (j1, j2) ∈ J1 × J2 (i.e., T1 is the
unfolded T (J1, J2, :)). We can write T1 = X1 + Z1 where X1 and Z1 are unfolded X (J1, J2, :)
and Z(J1, J2, :), respectively. The squared Frobenius norm of X1 is equal to ‖X1‖2F = σ2

1 .
Moreover, the squared Frobenius norm of Z1 has a χ-squared distribution with mk2 degrees
of freedom. Thus, the average squared Frobenius norm of T1 is equal to σ2

1 + σ2
zmk

2. Let
T2 ∈ Rm×k2 be a matrix whose columns include only noise trajectories. Using a similar argument,
we have E[‖T2‖2F ] = mk2, which is smaller than σ2

1 +mk2.

- Noise Model II: In this model, σ2
z is modeled to minimize the difference between the average

trajectory lengths within and outside of the bicluster. If σ2
1 < mk2, without noise, the average

trajectory lengths in the bicluster is smaller than the one outside of the bicluster. In this regime,
having σ2

z = 1− σ2
1/mk

2 makes the average trajectory lengths within and outside of the bicluster
comparable. This regime is called the low-SNR regime. If σ2

1 > mk2, the average trajectory
lengths in the bicluster is larger than the one outside of the bicluster. This regime is called the
high-SNR regime. In this regime, adding noise to signal trajectories increases their lengths and
makes solving the tensor biclustering problem easier. Therefore, in this regime we assume σ2

z = 0
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to minimize the difference between average trajectory lengths within and outside of the bicluster.
Therefore, under the noise model II, we have

σ2
z = max(0, 1− σ2

1

mk2
). (3)

1.3 Related Work

A related model to tensor biclustering (1) is the spiked tensor model [3]:

T = σ1v ⊗ v ⊗ v + Z. (4)

Unlike the tensor biclustering model which is asymmetric along tensor dimensions, the spiked tensor
model has a symmetric structure. Assuming the noise tensor Z has i.i.d. standard normal entries,
reference [4] has shown that, if σ2

1 < (1− ε)n, no algorithm based on a spectral statistical test can
detect the existence of such signal structure, with error probability vanishing as n→∞. References
[6, 5] have shown that the inference of the signal tensor is possible using a polynomial time algorithm
if σ2

1 = Ω̃(n3/2). A variation of this bound also appears in the analysis of our tensor folding method
(Theorem MT-1). Moreover, statistical and computational trade-offs of a generalized tensor PCA
model have been studied in [9].

In the model (1), if m = 1, the tensor can be viewed as a matrix. Let u1(j1) = 1/
√
k and

w1(j2) = 1/
√
k for (j1, j2) ∈ J1 × J2, and consider noise model I. In this case, elements of the

sub-matrix T (J1, J2, 1) have i.i.d. Gaussian distributions with µ = σ1/k means and unit variances.
Elements of the matrix outside of indices J1 × J2 have normal distributions. In this special case,
the tensor biclustering problem simplifies to the sub-matrix localization problem [1, 2]. Note that
the bicluster structure in this special case comes from scaling coefficients u1 and w1 since v1 = 1.
This problem is closely related to the planted clique, bi-clustering (co-clustering), and community
detection problems. In this case, our statistical lower bound (Theorem MT-6) and the achievability
bound of the MLE (Theorem MT-5) match with the ones derived specifically for the sub-matrix
localization problem [1, 2].

2 Details of Tensor Biclustering Methods

2.1 Algorithms

In this section, we provide more details on three tensor biclustering methods, namely tensor unfold-
ing+spectral, thresholding sum of squared trajectory lengths, and thresholding individual trajectory
lengths.

Algorithm 1 Tensor Unfolding+Spectral

Input: T , k
Compute x̂, the top right singular vector of Tunfolded

Let Ĵ1 be the set of tensor row indices of k2 largest entries of |x̂|
Let Ĵ2 be the set of tensor column indices of k2 largest entries of |x̂|
Output: Ĵ1 and Ĵ2

Algorithm 2 Thresholding Individual Trajectory Lengths

Input: T , k
Compute Ĵ1, the set of first indices of k2 largest trajectories
Compute Ĵ2, the set of second indices of k2 largest trajectories
Output: Ĵ1 and Ĵ2
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Algorithm 3 Thresholding Sum of Squared Trajectory Lengths

Input: T , k
Compute d1(j1) =

∑n
j2=1 ‖T (j1, j2, :)‖2 for 1 ≤ j1 ≤ n

Compute d2(j2) =
∑n
j1=1 ‖T (j1, j2, :)‖2 for 1 ≤ j2 ≤ n

Compute Ĵ1, the index set of k largest components of d1

Compute Ĵ2, the index set of k largest components of d2

Output: Ĵ1 and Ĵ2

2.2 Computational Complexity

In Table MT-1 we summarize computational complexity of different tensor biclustering methods.
Tensor unfolding+spectral, thresholding sum of squared trajectory lengths, and thresholding indi-
vidual trajectory lengths have linear computational complexity with respect to the tensor size n2m.
Computational complexity of the tensor folding+spectral is O(n2m2) which is higher than linear and
lower than quadratic with respect to the tensor size. Computational complexity of the MLE method is
exponential in n.

Figure 1 shows the empirical running time of different tensor biclustering methods with respect to
the tensor size N = n2m. In Figure 1-a, we vary the tensor size by varying m, while in Figure
1-b we increase the tensor size by increasing the size of all dimensions. In both setups, tensor
unfolding+spectral method has the worst empirical running time compared to other methods. In the
setup of panel (a), tensor folding+spectral method has a larger running time compared to thresholding
individual and sum of squared trajectory lengths since its computational complexity depends on m2

while the computational complexity of other methods depend on m. Our empirical running time
analysis has been performed on an ordinary laptop using implementations of tensor biclustering
methods in MATLAB.

3 Details of Numerical Experiments

3.1 Synthetic Data

In Section MT-6.1, we evaluate the performance of different tensor biclustering methods in synthetic
datasets. We use the statistical model described in Section MT-4.1 to generate the input tensor T .
Let (Ĵ1, Ĵ2) be estimated bicluster indices (J1, J2) where |Ĵ1| = |Ĵ2| = k. To evaluate the inference
quality we compute the following score:

|Ĵ1 ∩ J1|
2k

+
|Ĵ2 ∩ J2|

2k
. (5)

This score is always between zero and one. If (Ĵ1, Ĵ2) = (J1, J2), this score achieves its maximum
value one.

Tensor unfolding+spectral method (Algorithm 1) and thresholding individual trajectory lengths
method (Algorithm 2) may have an output (Ĵ1, Ĵ2) where |Ĵ1| > k or |Ĵ2| > k. This is because these
algorithms ignore the block structure formed by bicluster indices. To have a fair comparison with
other methods, we select k most repeated indices in their outputs as an estimate of bicluster indices.

3.2 Real Data

In Section MT-6.2, we apply different tensor biclustering methods to the roadmap epigenomics
dataset [10] which provides histon mark signal strengths in different segments of human genome
in various tissues and cell types. This dataset can be viewed as a three dimensional tensor whose
dimensions represent segments of genome, tissues (cell types), and histon marks. Reference [10] has
shown that in a tissue, segments of genome with similar histon mark values are often have similar
functional roles (e.g., they are enhancers, promoters, etc.). Moreover, histon marks of a specific
genome segment can vary across different tissues and cell-types.

Here we consider a portion of the roadmap epigenomics dataset to demonstrate applicability of tensor
biclustering methods to this data type. A full analysis of the roadmap epigenomics dataset along
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Figure 1: Empirical running time of different tensor biclustering methods with respect to the tensor
size n2m. In panel (a) we consider n = 40, m = α40 and vary α, while in panel (b) we consider
n = m = α1/340. Experiments have been repeated 10 times for each point.

with biological validations of inferences are beyond the scope of the present paper. We consider
genome segments of chromosome 20 in human. Each segment has 1000 base pairs. In each genome
segment, we consider the average value of the signal strength for every histon mark. We only consider
segments with at least one non-zero histon mark value. In the roadmap epigenomics dataset, some
tissues (cell-types) do not have data for some histon marks. Thus, we only consider a subset of tissues
(cell-types) and a subset of histon marks with complete data. After these filtering steps, we obtain a
data tensor T ∈ Rn1×n2×m where n1 = 49 is the number of tissues (cell-types), n2 = 1457 is the
number of genome segments, and m = 7 is the number of histon marks. Our seven histon marks
include the core set of five histone modification marks reported in reference [10] (i.e., H3K4me3,
H3K4me1, H3K36me3, H3K27me3, and H3K9me3), along with two additional marks (i.e., H3K27ac
and H3K9ac). T (j1, j2, i) provides the signal strength of histon mark i in the genome segment j2 of
tissue j1. Our goal is to find J1 ⊂ [n1] and J2 ⊂ [n2] where {T (j1, j2, :) : (j1, j2) ∈ J1 × J2} form
a low dimensional subspace.

To evaluate the quality of the inferred bicluster, we compute the total absolute pairwise correlations
among vectors in the inferred bicluster, i.e.,∑

(j1,j2) 6=(j′1,j
′
2)∈Ĵ1×Ĵ2

|ρ(T (j1, j2, :), T (j′1, j
′
2, :))|

(|Ĵ1||Ĵ2|)2 − |Ĵ1||Ĵ2|
(6)

where ρ(., .) indicates the Pearson’s correlation between two vectors. If all vectors in the inferred
bicluster are parallel to each other, this value will be one. If vectors in the inferred bicluster are
orthogonal to each other, this value will be zero.

We evaluate the quality of inferred biclusters for different cluster sizes in Figure 2. Similar to the
setup considered in the main text, in these cases the tensor folding+spectral method continues to
outperform other tensor biclustering methods.

4 Proofs

4.1 Preliminary Lemmas

For a sub-Gaussian variable X , ‖X‖ψ2 denotes the sub-Gaussian norm of X defined as

‖X‖ψ2 , sup
p≥1

p−
1
2 (E [|X|p])1/p. (7)

If X is a centered Gaussian variable with variance σ2, then ‖X‖ψ2
≤ cσ where c is an absolute

constant.
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Figure 2: The quality of inferred biclusters by different tensor biclustering methods and uniformly
randomly selected bicluster indices when (a) |Ĵ1| = 5, |Ĵ2| = 200, and (b) |Ĵ1| = 20 and |Ĵ2| = 800.

Lemma 1. Let X1,...,XN be independent, centered sub-Gaussian random variables. Then, for every
a = (a1, ..., aN )T ∈ RN and every t ≥ 0, we have

P

[
|
N∑
i=1

aiXi| > t

]
< e exp

(
− ct2

σ2
m‖a‖22

)
, (8)

where σm = maxi ‖Xi‖ψ2
and c > 0 is an absolute constant.

Proof. See Proposition 5.10 in [11].

Let Y be a sub-exponential random variable. ‖Y ‖ψ1
denotes the sub-exponential norm of Y , defined

as

‖Y ‖ψ1
, sup

p≥1
p−1(E[|Y |p])1/p. (9)

If X is sub-Gaussian, Y = X2 is sub-exponential, and vice versa. Moreover, we have

‖X‖2ψ2
≤ ‖Y ‖ψ1 ≤ 2‖X‖2ψ2

. (10)

Lemma 2. Let Y1,...,YN be independent, centered sub-exponential random variables. Then, for
every a = (a1, ..., aN )T ∈ RN and every t ≥ 0, we have

P

[
|
N∑
i=1

aiYi| > t

]
< 2 exp

[
−cmin

(
t2

σ2
m‖a‖22

,
t

σm‖a‖∞

)]
, (11)

where σm = maxi ‖Yi‖ψ1
and c > 0 is an absolute constant.

Proof. See Proposition 5.16 in [11].

To bound the operator norm of sum of random matrices we use the following lemma:
Lemma 3. Let Y1,...,YN be n1 × n2 independent random matrices such that for all j ∈ [N ]

P
[
‖Yj − E[Yj ]‖ ≥ β

]
≤ p1. (12)

Moreover suppose we have ∥∥E[Yj ]− E
[
YjI‖Yj‖<β

]∥∥ ≤ p2. (13)

Let

µ2 = max

∥∥∥∥∥∥
N∑
j=1

E[YjY
t
j ]− E[Yj ]E[Yt

j ]

∥∥∥∥∥∥ ,
∥∥∥∥∥∥
N∑
j=1

E[Yt
jYj ]− E[Yt

j ]E[Yj ]

∥∥∥∥∥∥
 (14)

Then for Y =
∑N
j=1 Yj , we have

P [‖Y − E[Y]‖ ≥ t] ≤ Np1 + (n1 + n2) exp

(
−(t−Np2)2

2(µ2 + β(t−Np2)/3)

)
. (15)
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Proof. See Proposition A.7 in [5].
Lemma 4. Let Z1,...,ZN be m× n independent random matrices such that Zr(i, j) has a standard
normal distribution for every i, j. Then, for some constant c > 0, with high probability, we have∥∥∥∥∥∥

N∑
j=1

ZtjZj −NmI

∥∥∥∥∥∥ < cmax(n,m)
√
N log(N). (16)

Proof. Let n1 = max(n,m). Let Yj = ZtjZj . We have ‖Yj‖ = ‖Zj‖2. Since ‖Zj‖ has a
sub-Gaussian tail distribution, for some constant c > 0, we have

P
[
‖Zj‖ >

√
tn1
]
≤ exp(−ct). (17)

Therefore, we have

P [‖Yj − E[Yj ]‖ > (t+ 1)n1] ≤ P [‖Yj‖ > tn1] ≤ exp(−ct). (18)

Moreover, we have∥∥E [Yj ]− E
[
YjI‖Yj‖<β

]∥∥ = P [‖Yj‖ > β] ‖E[Yj ]‖ = m exp

(
−cβ
n1

)
< n1 exp

(
−cβ
n1

)
.

(19)

Thus, for a large enough constant c′ > 0 and having β = c′n1 log(n) in (18) and (19), we can satisfy
conditions (12) and (13) of Lemma 3 for p1 = p2 = n−c2 , for a sufficiently large c2 > 0.

Next we compute µ2 in (14). Since Yj is symmetric we have

µ2 =

∥∥∥∥∥∥
N∑
j=1

E[YjY
t
j ]− E[Yj ]E[Yt

j ]

∥∥∥∥∥∥ (20)

≤

∥∥∥∥∥∥
N∑
j=1

E[YjY
t
j ]

∥∥∥∥∥∥+Nm2

≤
N∑
j=1

E[
∥∥YjY

t
j

∥∥] +Nm2,

where the last step follows form Jenson’s inequality. Moreover, we have

E[‖YjY
t
j‖] =

∫ ∞
0

P
[∥∥YjY

t
j

∥∥ > t
]
dt (21)

=

∫ ∞
0

P
[
‖Zj‖ > t1/4

]
dt

=

∫ ∞
0

exp

(
−c
√
t

n1

)
=

2n21
c2

Therefore, with high probability, µ2 = Õ(Nn21). Substituting p1, p2 and µ2 in (15) completes the
proof of this lemma.
Lemma 5. Let x = (x1, x2, . . . , xn) ∈ Rn be a random vector with independent sub-Gaussian
entries xi with Exi = 0 and ‖xi‖ψ2

≤ K. For A ∈ Rn×n, t ≥ 0, we have

P {|〈x,Ax〉 − E 〈x,Ax〉|} ≤ 2 exp

{
−cmin

(
t2

K4 ‖A‖2F
,

t

K2 ‖A‖

)}
(22)

for some constant c > 0.
Proof. See reference [12].
Lemma 6. Let Y = xxT + σW, where x ∈ Rn, ‖x‖2 = 1 and W ∈ Rn×n =∑N
j=1

(
zjz

T
j − Ezjz

T
j

)
where zj are i.i.d. N (0, In×n) gaussian random vectors. Let x̃ ∈ Rn,

7



‖x̃‖2 = 1 be the eigenvector corresponding to the largest eigenvalue of the matrix Y. Let the
operator norm of the matrix W be such that

‖W‖2 ≤ λn,N , (23)

with probability at least 1−O(n−2). Further, let

σ ≤ c0
λn,N

, (24)

for some positive constant c0 < 1/6. Letting M = ‖x‖∞, we have

‖x̃− x‖∞ ≤ O
(
σ
(√

N logN +Mλn,N

))
, (25)

with high probability as n→∞.
Proof. Our proof is based on the technique used in [13]. However, in [13], x ∈ Cn, W ∈ Cn×n
and |xi| = 1 for 1 ≤ i ≤ n. In addition, in [13], it is assumed that W is a complex Wigner random
matrix which is not the case in our model. Hence, we will develop a bound that fits our model. For
1 ≤ l ≤ n, we denote the l-th row (or column) of W by wl. Further, we define W(l) ∈ Rn×n as

W
(l)
i,j ,Wi,j , for i 6= l, j 6= l, (26)

W
(l)
i,j , 0, if i = l or j = l.

Further, we define ∆W(l) , W −W(l). Note that (23) results in∥∥∥W(l)
∥∥∥
2
≤ λn,N ,

∥∥∥∆W(l)
∥∥∥
2
≤ λn,N , ‖wl‖2 ≤ λn,N , (27)

with probability at least 1−O(n−2). Let x̃(l) be the eigenvector corresponding to the top eigenvalue
of the matrix Y(l) = xxT + W(l). Note that for any 1 ≤ l ≤ n, we can write

|x̃l − xl| =
∣∣∣∣ (Yx̃)l
λ1 (Y)

− xl
∣∣∣∣ =

∣∣∣∣∣
(
xxT x̃

)
l
+ σ (Wx̃)l

λ1 (Y)
− xl

∣∣∣∣∣ (28)

≤
∣∣∣∣ |〈x, x̃〉|λ1 (Y)

− 1

∣∣∣∣M +
σ |(Wx̃)l|
λ1 (Y)

.

Hence,

‖x̃− x‖∞ ≤
∣∣∣∣ |〈x, x̃〉|λ1 (Y)

− 1

∣∣∣∣M +
σ ‖Wx̃‖∞
λ1 (Y)

. (29)

Next we bound the term ‖Wx̃‖∞. Note that for 1 ≤ l ≤ n, we have

|(Wx̃)l| = |〈wl, x̃〉| =
∣∣∣〈wl, x̃

(l)
〉∣∣∣+

∣∣∣〈wl, x̃− x̃(l)
〉∣∣∣ ≤ ∣∣∣〈wl, x̃

(l)
〉∣∣∣+ ‖wl‖2

∥∥∥x̃− x̃(l)
∥∥∥
2
.

(30)

Note that Y = Y(l) + σ∆W(l). Hence, using the Davis-Kahan sin Θ Theorem (see, e.g., Lemma 11
in [13]), we have ∥∥∥x̃− x̃(l)

∥∥∥
2
≤

σ
√

2
∥∥∆W(l)x̃(l)

∥∥
2

δ
(
Y(l)

)
− σ

∥∥∆W(l)
∥∥
2

, (31)

where δ
(
Y(l)

)
= λ1(Y(l)) − λ2(Y(l)) is the spectral gap of the matrix Y(l). Note that using the

Weyl’s inequality we can write

δ
(
Y(l)

)
≥ δ

(
xxT

)
− 2σ

∥∥∥W(l)
∥∥∥
2
≥ 1− 2σλn,N , (32)

where we have used (27) in the last inequality. Therefore, using (31), (27), (24) we get∥∥∥x̃− x̃(l)
∥∥∥
2
≤ σ

√
2

1− 3σλn,N

∥∥∥∆W(l)x̃(l)
∥∥∥
2
≤
√

2

3λn,N

∥∥∥∆W(l)x̃(l)
∥∥∥
2
, (33)

8



with probability at least 1−O(n−2). Putting this in (30) we get,

|(Wx̃)l| ≤
∣∣∣〈wl, x̃

(l)
〉∣∣∣+

√
2 ‖wl‖2
3λn,N

∥∥∥∆W(l)x̃(l)
∥∥∥
2
, (34)

with probability at least 1−O(n−2). Note that
∥∥∆W(l)x̃(l)

∥∥
2
≥
∣∣〈wl, x̃

(l)
〉∣∣. Hence, by (27), we

get

|(Wx̃)l| .
∥∥∥∆W(l)x̃(l)

∥∥∥
2
, (35)

with probability at least 1 − O(n−2). Thus, we need to bound the term
∥∥∆W(l)x̃(l)

∥∥
2
. Note that

here we can leverage the independence between ∆W(l) and x̃(l) to get a tight bound on ‖x̃− x‖∞.
We can write∥∥∥∆W(l)x̃(l)

∥∥∥2
2

=
∣∣∣(∆W(l)x̃(l)

)
l

∣∣∣2 +
∑
k 6=l

∣∣∣∣(∆W(l)x̃(l)
)2
k

∣∣∣∣
≤
〈
wl, x̃

(l)
〉2

+
∣∣∣x̃(l)
l

∣∣∣2 ‖wl‖22 ≤
〈
wl, x̃

(l)
〉2

+
∣∣∣x̃(l)
l

∣∣∣2 λ2n,N ,
(36)

with probability at least 1−O(n−2). In order to bound the term
〈
wl, x̃

(l)
〉
, it suffices to bound the

term 〈wl,u〉, where ‖u‖2 is a fixed vector. Hence, using the independence between wl, x̃(l), the
bound for

〈
wl, x̃

(l)
〉

follows by first conditioning on x̃(l) and then using the bound for 〈wl,u〉. Now
for a fixed vector u ∈ Rn, ‖u‖2 = 1, we can write

〈wl,u〉 =
(
WTu

)
l

=
〈
WTu, el

〉
=

N∑
j=1

〈
zjz

T
j u, el

〉
− E

N∑
j=1

〈
zjz

T
j u, el

〉
(37)

=

N∑
j=1

uT zjz
T
j el − E

N∑
j=1

uT zjz
T
j el =

N∑
j=1

zTj ueTl zj − E
N∑
j=1

zTj ueTl zj

=

N∑
j=1

〈zj ,Ulzj〉 − E
N∑
j=1

〈zj ,Ulzj〉 = 〈z,Uz〉 − E 〈z,Uz〉 ,

where

Ul = ueTl ∈ Rn×n , U =


U1

U2

U3

. . .
UN

 ∈ RnN×nN , w ∈ RnN =


w1

w2

w3

...
wN

 ∼ N (0, InN×nN ).

(38)

Now, using Lemma 5 for t > 0 we have

P {|〈wl,u〉| > t} = P {|〈z,Uz〉 − E 〈z,Uz〉| > t} ≤ 2 exp

{
−C min

{
t2

‖U‖2F
,

t

‖U‖2

}}
(39)

= 2 exp

{
−C min

{
t2

N
, t

}}
, (40)

for some constant C > 0. Therefore, by taking t = C ′
√
N logN , where C ′C ≥ 3, we have with

probability at least 1− 2n−3,

|〈wl,u〉| ≤ C ′
√
N logN. (41)

Hence, using the union bound over 1 ≤ l ≤ n, with probability at least 1−O(n−2),

|〈wl,u〉| ≤ C ′
√
N logN, for 1 ≤ l ≤ n. (42)
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Combining this with (36), (35) and since
√
a2 + b2 ≤ a+ b for a, b ≥ 0,

‖Wx̃‖∞ ≤ O
(√

N logN +

(
max
1≤l≤n

∣∣∣x̃(l)
l

∣∣∣)λn,N) , (43)

with high probability as n→∞. Now notice that for any 1 ≤ l ≤ n,(
Y(l)x̃(l)

)
l

= λ1(Y(l))x̃
(l)
l =

〈
x, x̃(l)

〉
xl + σ

(
W(l)x̃(l)

)
l

=
〈
x, x̃(l)

〉
xl. (44)

Therefore, using Weyl’s inequality and (24)∣∣∣x̃(l)l ∣∣∣ =

∣∣〈x, x̃(l)
〉
xl
∣∣

λ1(Y(l))
≤

M
∣∣〈x, x̃(l)

〉∣∣
1− σ

∥∥W(l)
∥∥
2

≤ M

1− c0
≤ 6M/5. (45)

Hence, (43) results in

‖Wx̃‖∞ ≤ O
(√

N logN +Mλn,N

)
, (46)

with high probability as n→∞. Moreover, note that using the “sin Θ” theorem, under (24)
‖x̃− x‖2 ≤ O (σλn,N ) . (47)

In addition, note that we can choose x̃ such that |〈x, x̃〉| = 〈x, x̃〉. Thus,

|〈x, x̃〉| = 1− (1/2) ‖x̃− x‖22 ≥ 1−O(σ2λ2n,N ) , |〈x, x̃〉| ≤ 1. (48)

Also we use Weyl’s inequality 1− σλn,N ≤ λ1(Y) ≤ 1 + σλn,N . Finally, putting these and (43) in
(29), under (24), we get

‖x̃− x‖∞ ≤
∣∣∣∣ |〈x, x̃〉|λ1 (Y)

− 1

∣∣∣∣M +
σ ‖Wx̃‖∞
λ1 (Y)

(49)

. ||〈x, x̃〉| − 1|M + |λ1(Y)− 1|M + σ
(√

N logN +Mλn,N

)
≤ σ

(√
N logN +M

(
2λn,N + λ2n,Nσ

))
≤ O

(
σ
(√

N logN +Mλn,N

))
, (50)

with high probability as n→∞, and this completes the proof.
Lemma 7. Let Y = uvT + σW, where u ∈ Rm, v ∈ Rn, ‖v‖2 = ‖u‖2 = 1 and W ∈ Rm×n
where Wij are i.i.d. N (0, 1) gaussian random variables. Let ũ ∈ Rm, ṽ ∈ Rn, ‖ṽ‖2 = ‖ũ‖2 = 1
be the left and right singular vectors corresponding to the largest singularvalue of the matrix Y,
respectively. Let the operator norm of the matrix W be such that

‖W‖2 ≤ λm,n, (51)

with probability at least 1−O((mn)−1). Further, let

σ ≤ c0
λm,n

, (52)

for some positive constant c0 < 1/6. Letting, M1 = max ‖u‖∞, M2 = max ‖v‖∞, we have

‖ũ− u‖∞ ≤ Ω
(
σ
(√

n log n+M1λn,N

))
, (53)

‖ṽ − v‖∞ ≤ Ω
(
σ
(√

m logm+M2λn,N

))
, (54)

with high probability as n→∞.
Proof. This lemma can be proved similarly to Theorem 4 of [13] (the `∞ perturbation bound on
eigenvectors) with slight modifications that we describe below.

If we let ũ and ṽ be the top left and right eigenvectors of the matrix Y = uvT + σW where W is a
random matrix with i.i.d. N (0, 1) entries, similar to the proof of results stated in [13] we can write

|ũl − ul| =
∣∣∣∣ (Yṽ)l
σ1(Y)

− ul
∣∣∣∣ =

∣∣∣∣∣
((

uvT + σW
)
ṽ
)
l

σ1(Y)
− ul

∣∣∣∣∣ ≤
∣∣∣∣( 〈ṽ,v〉σ1(Y)

− 1

)
ul

∣∣∣∣+

∣∣∣∣ (Wṽ)l
σ1(Y)

∣∣∣∣σ
(55)

≤
∣∣∣∣( 〈ṽ,v〉σ1(Y)

− 1

)∣∣∣∣M ′ + σ |(Wṽ)l|
σ1(Y)

,

(56)
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where M1 = maxl |ul|, for 1 ≤ l ≤ n. Note that this bound is exactly the same as the bound stated
in (28) and in [13]. Therefore, by defining W(l) ∈ Rm×n as

W
(l)
i,j ,Wi,j , for i 6= l, (57)

W
(l)
i,j , 0, if i = l. (58)

we can follow exactly the same steps in [13] to prove the `∞ perturbation bound on ‖ũ− u‖∞. The
only part that needs a slight change is the `2 perturbation bound on the singular vectors (similar to
bound to the bound we used in (31)). Here instead of the Davis-Kahan “sin Θ” Theorem, we can use
the Wedin’s Theorem [14] to have

∥∥∥ṽ − ṽ(l)
∥∥∥
2
≤
σ
√

2 max
{∥∥∆W(l)ṽ(l)

∥∥
2
,
∥∥∥∆W(l)T ũ(l)

∥∥∥
2

}
δ
(
Y(l)

)
− σ

∥∥∆W(l)
∥∥
2

. (59)

Using the definition of ∆W(l) = W −W(l), we have∥∥∥∆W(l)ṽ(l)
∥∥∥
2

=
∣∣∣〈wl, ṽ

(l)
〉∣∣∣ , (60)∥∥∥∆W(l)T ũ(l)

∥∥∥
2
≤ ‖wl‖2

∥∥∥ũ(l)
∥∥∥
∞
, (61)

where wl is the l-th row of W. Using these inequalities, bounding the term
∣∣〈wl, ṽ

(l)
〉∣∣, using the

independence between wl and ṽ(l) and Gaussian concentration (Bernstein Inequality) and bounding∥∥ũ(l)
∥∥
∞ (as in (45)) will give us the singular value version of the `∞ perturbation bound in the

following lemma. Using the same argument for YT will give a similar bound on ‖ṽ − v‖∞.
Lemma 8. Let P0,...,PM be probability measures on the same probability space where M ≥ 2. If
for some 0 < α < 1, we have

1

M + 1

M∑
i=0

DKL(Pi‖P̄) ≤ α log(M) (62)

where

P̄ =
1

M + 1

M∑
i=0

Pi (63)

Then,

pe,M ≥
log(M + 1)− log(2)

log(M)
− α (64)

where pe,M is the minimax error for the multiple testing problem.
Proof. See reference [15].
Lemma 9. Let Pi be a multivariate Gaussian distribution with mean µi and covariance Γi, for
i = 1, 2. Then

D(P1‖P2) =
1

2

(
Tr
(
Γ−12 Γ1

)
+ (µ1 − µ2)

t
Γ−12 (µ1 − µ2) + ln

(
det(Γ2)

det(Γ1)

))
(65)

Lemma 10. Let Z be a tensor whose entries are i.i.d. normal. We have

E [exp (< A,Z >)] = exp

(
‖A‖2F

2

)
. (66)

Lemma 11. Let v = (v1, ..., vm) be a vector distributed uniformly over the unit sphere. We have

E[exp(αv1)] = c exp

(
α2

2m

)
. (67)

where c is a constant and α can grow with m.
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Proof. We have v1
d
=
√

x2
1

x2
1+Sm−1

where x1 is normal and Sm−1 has a χ-squared distribution with
m− 1 degrees of freedom [4].

We have

E[exp(αv1)] =

∫ exp(α)

1

P(exp(αv1) ≥ y)dy (68)

=

∫ exp(α)

1

P(v1 ≥
log(y)

α
)dy.

On the other hand, we have

P(v1 ≥
log(y)

α
) = P(

Sm−1
x21

≤ α2

log(y)2
). (69)

Using Lemma 2, we have

P
(
Sm−1 ≤ m− 1− 2

√
(m− 1)t

)
≤ exp(−t). (70)

Similarly we have

P
(
x21 ≥ 1 + 2

√
t+ 2t

)
≤ exp(−t). (71)

Combining (70) and (71), we have

P
(
Sm−1
x21

≤ c1
m−

√
mt

t

)
< exp(−t), (72)

where c1 is a constant. Choosing

t =
4m(

1 +
√

1 + 4α2

c1 log(y)2

)2 (73)

we have

P
(
Sm−1
x21

≤ α2

log(y)2

)
≤ exp

(
−c2

m log(y)2

α2

)
(74)

where c2 is a constant. Moreover, we have∫ exp(α)

1

exp

(
−c2

m log(y)2

α2

)
dy ≤ c3 exp

(
α2

m

)
. (75)

Combining (68) and (75) completes the proof.

4.2 Proof of Theorem MT-1

First, we prove Theorem MT-1 for the noise model I where σ2
z = 1. Without loss of generality we

assume J1 = {1, 2, ..., k} and J2 = {1, 2, ..., k}. Recall that T(j,1) ∈ Rm×n is the j-th horizontal
matrix slice of the tensor T . We have T(j,1) = X(j,1) + Z(j,1) where X(j,1) and Z(j,1) are the j-th
horizontal matrix slices of signal and noise tensors X and Z .

For j ∈ [k], we have

X(j,1) = σ1u1(j) (11×n ⊗ v1) Diag (w1(1), ...,w1(k), 0, ..., 0) . (76)

Thus for j ∈ [k],

Xt
(j,1)X(j,1) = σ2

1(u1(j))2w1(w1)t. (77)

Summing this over j and using the fact that ‖u1‖ = 1, we have
n∑
j=1

Xt
(j,1)X(j,1) = σ2

1w1(w1)t. (78)
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Thus the largest eigenvalue of the matrix
∑n
j=1 Xt

(j,1)X(j,1) is σ2
1 which corresponds to the eigen-

vector w1. Note that entries of this eigenvector is all zero outside of the bicluster index set J2.

Next we bound the operator norm of noise terms. For j ∈ [k], we have

Tt
(j,1)T

t
(j,1) = Xt

(j,1)X(j,1) + Zt(j,1)Z(j,1) + Xt
(j,1)Z(j,1) + Zt(j,1)X(j,1). (79)

For j > k, we have

Tt
(j,1)T

t
(j,1) = Zt(j,1)Z(j,1). (80)

Summing these terms over j ∈ [n] we have

n∑
j=1

Tt
(j,1)T

t
(j,1) =

n∑
j=1

Xt
(j,1)X(j,1) +

n∑
j=1

Zt(j,1)Z(j,1)︸ ︷︷ ︸
noise term I

+

k∑
j=1

Xt
(j,1)Z(j,1) + Zt(j,1)X(j,1)︸ ︷︷ ︸

noise term II

(81)

Using Lemma 4, with high probability, we have∥∥∥∥∥∥
n∑
j=1

Zt(j,1)Z(j,1) − nmI

∥∥∥∥∥∥ < c
√
nmax(n,m) log(n) (82)

where c > 0 is a universal constant. Also according to the argument explained in the last paragraph
of Section 3.1, we also have ∥∥∥∥∥∥

n∑
j=1

Zt(j,1)Z(j,1) − nmI

∥∥∥∥∥∥ < cnm log(n) (83)

Let

λz,1 , min(
√
nmax(n,m), nm) log(n). (84)

Thus, the operator norm of the noise term I subtracted from its mean is bounded by λz,1. Note that
since the mean of the noise term I is a scaled identity matrix, subtracting this term does not change
the eigenvector structure.

Next, we bound the operator norm of the noise term II in (81). We have

Xt
(j,1)Z(j,1) = σ1u1(j)w1z

t
j (85)

where zj is a vector of length n whose entries have i.i.d. normal distributions. Since |u1(j)| ≤ 1/
√
k,

using Lemma 2, as n→∞, with high probability,

∥∥∥Xt
(j,1)Z(j,1)

∥∥∥ ≤ σ1

√
n+

√
n log (n)

√
k

. (86)

As n→∞, using Lemma 3 for matrices Xt
(j,1)Z(j,1) for 1 ≤ j ≤ k, with high probability, we have∥∥∥∥∥∥

k∑
j=1

Xt
(j,1)Z(j,1)

∥∥∥∥∥∥ ≤ cλz,2 (87)

where

λz,2 , σ1
√
n log(n) (88)

According to (78), the operator norm of the folded signal tensor is σ2
1 . According to (84) and (88),

the operator norm of the noise is bounded by max(λz,1, λz,2). If λz,1 � λz,2, then using Lemma 6,
to have vanishing error probability it suffices to have√

n log(n) + λz,1/
√
k

σ2
1

≤ c 1√
k
, (89)
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which leads to the condition σ2
1 = Ω(min(

√
nmax(n,m), nm) log(n)). If λz,2 � λz,1, using an

l∞ Davis-Kahan bound similarly to Lemma 6, we need to have σ2
1 = Ω(n log(n)) which is always

dominated by the previous case (later in this section we show that the argument of Lemma 6 holds
for the noise term II as well.).

For the noise model II, the operator norm of the folded signal is equal to σ2
1 . Since Θ(n− k) = n,

the operator norm of noise terms can be bounded similarly. The rest of the proof is similar to the case
of noise model I.

Next we show a similar result to the one of Lemma 6 holds for the noise term II as well. To prove
this, note that we can write

k∑
j=1

XT
(j,1)Z(j,1) = σ1

w1

k∑
j=1

u1(j)zTj +

k∑
j=1

u1(j)zjw
T
1

 = σ1
(
w1z̃

T
j + z̃jw

T
1

)
, (90)

where

z̃j =

k∑
j=1

u1(j)zj (91)

is a gaussian random vector with i.i.d. N (0, 1) entries. In the proof of Lemma 6, except the last part
which bounds the term 〈wl,u〉, all steps will go through similarly after replacing the noise matrix W

in the lemma with
∑k
j=1 XT

(j,1)Z(j,1). For bounding the term 〈wl,u〉 in this case, for a fixed vector
u ∈ Rn, ‖u‖2 = 1, we can write k∑

j=1

XT
(j,1)Z(j,1)u


l

= σ1
(
(w1)l 〈z̃j ,u〉+ (z̃j)l 〈w1,u〉

)
, (92)

since ‖w1‖2 = ‖u‖2 = 1, using Cauchy-Schwarz inequality, |〈w1,u〉| ≤ 1. Thus, k∑
j=1

XT
(j,1)Z(j,1)u


l

≤ σ1
(
(w1)l 〈z̃j ,u〉+

∣∣(z̃j)l∣∣) = σ1 max {〈z̃j , (w1)lu + el〉 , 〈z̃j , (w1)lu− el〉}

(93)

Using |(w1)l| ≤ 1, we have k∑
j=1

XT
(j,1)Z(j,1)u


l

≤ σ1 |〈z̃j ,u + el〉| . (94)

Now, using Lemma 2, for t > 0 we have,

P {|〈z̃j , σ1(u + el)〉| > t} ≤ e exp

(
−Ct2

σ2
1 ‖u + el‖22

)
≤ e exp

(
−Ct2

4σ2
1

)
, (95)

for some constant C > 0. Hence, by taking t = C ′σ1
√
n log n, where C ′C > 12, with probability at

least 1− en−3 we have  k∑
j=1

XT
(j,1)Z(j,1)u


l

≤ C ′σ1
√
n log n. (96)

Using union bound over 1 ≤ l ≤ n, with probability at least 1−O(n−2) we have∥∥∥∥∥∥
 k∑
j=1

XT
(j,1)Z(j,1)u

∥∥∥∥∥∥
∞

≤ C ′σ1
√
n log n. (97)
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Therefore, if we denote the top eigenvector after adding the noise term II by x̃ and take λ′n,N such
that ∥∥∥∥∥∥

k∑
j=1

XT
(j,1)Z(j,1)

∥∥∥∥∥∥
2

≤ λ′n,N , (98)

the same argument used to prove the `∞ perturbation bound in Lemma 6, can be used here to show
that

‖x̃− x‖∞ ≤ Ω
(
σ
(√

n log n+Mλ′n,N

))
, (99)

with high probability as n→∞.

4.3 Proof of Theorem MT-2

First we consider the noise model I where σ2
z = 1. Since ‖u1 ⊗w1‖ = 1, we have

‖Xunfolded‖ = σ1. (100)

Moreover, as n → ∞, since Since ‖Zunfolded‖ has a sub-Gaussian tail distribution, with high
probability, we have

‖Zunfolded‖ = O
(
max(n,

√
m) log (n)

)
. (101)

Using (100), (101), with Lemma 7 completes the proof for the case of σ2
z = 1. The bounds for the

noise model II are similar to the ones of σ2
z = 1 since Θ(n− k) = n.

4.4 Proof of Theorem MT-3

First we consider the noise model I where σ2
z = 1. If (j1, j2) ∈ J1 × J2, we have

‖T (j1, j2, :)‖2 = ‖X (j1, j2, :) + Z(j1, j2, :)‖2 (102)

= ‖X (j1, j2, :)‖2 + ‖Z(j1, j2, :)‖2 + 2X (j1, j2, :)
tZ(j1, j2, :)

= σ2
1u1(j1)2w1(j2)2 + ‖Z(j1, j2, :)‖2 + 2σ1|u1(j1)w1(j2)|vt1Z(j1, j2, :)

Note that since ‖v1‖ = 1, vt1Z(j1, j2, :) has a standard normal distribution. Thus, using Lemma 1,
the term 2σ1|u1(j1)w1(j2)|vt1Z(j1, j2, :) can be ignored compared to the term σ2

1u1(j1)2w1(j2)2.
Moreover, we have

σ2
1u1(j1)2w1(j2)2 ≥ σ2

1∆4. (103)

Since the noise variance is one, ‖Z(j1, j2, :)‖2 has a χ-squared distribution with m degrees of
freedom. Thus, for every (j1, j2) ∈ J1 × J2, using Lemma 2, if σ2

1 = Ω̃(
√
m/∆4), we have

P
[
‖T (j1, j2, :)‖2 −m ≥

σ2
1∆4

2

]
> 1− n−c (104)

where c > 0 is a universal constant.

If (j1, j2) /∈ J1 × J2, we have

‖T (j1, j2, :)‖2 = ‖Z(j1, j2, :)‖2, (105)

where ‖Z(j1, j2, :)‖2 has a χ-squared distribution with m degrees of freedom. Thus, using Lemma 2
and the union bound, if σ2

1 = Ω̃(
√
m/∆4), we have

P
[

max
(j1,j2)/∈J1×J2

‖T (j1, j2, :)‖2 −m ≥
σ2
1∆4

2

]
≤ n−c (106)

where c > 0 is a universal constant. This complete the proof for the noise model I.

For the case of noise model II, if (j1, j2) ∈ J1 × J2 in (102), ‖Z(j1, j2, :)‖2/σ2
z has a χ-squared

distribution with m degrees of freedom. Similarly, X (j1, j2, :)
tZ(j1, j2, :)/σz has a Gaussian

distribution with mean zero and variance ‖X (j1, j2, :)‖2. If (j1, j2) /∈ J1 × J2 in (105), ‖T (j1, j2, :
)‖2 has a χ-squared distribution with m degrees of freedom. The rest of the proof is similar to the
case of noise model I.
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4.5 Proof of Theorem MT-4

First we consider the noise model I where σ2
z = 1. If j1 ∈ J1, using (102), we have

dj1 =

n∑
j2=1

‖T (j1, j2, :)‖2 (107)

= σ2
1u1(j1)2 +

n∑
j2=1

‖Z(j1, j2, :)‖2 + 2σ1|u1(j1)|vt1
k∑

j2=1

|w1(j2)|Z(j1, j2, :).

Similarly to (102), using Lemma 1, the term 2σ1|u1(j1)|vt1
∑k
j2=1 |w1(j2)|Z(j1, j2, :) can be ig-

nored against σ2
1u1(j1)2. Moreover, we have

σ2
1u1(j1)2 ≥ σ2

1∆2 (108)

Since the noise variance is one,
∑n
j2=1 ‖Z(j1, j2, :)‖2 has a χ-squared distribution with mn degrees

of freedom. Thus, for every (j1, j2) ∈ J1 × J2, using Lemma 2, if σ2
1 = Ω̃(

√
nm/∆2), we have

P
[
dj1 −mn ≥

σ2
1∆2

2

]
> 1− n−c (109)

where c > 0 is a universal constant.

If j1 /∈ J1, dj1 has a χ-squared distribution with nm degrees of freedom. Thus, using Lemma 2 and
the union bound, if σ2

1 = Ω̃(
√
nm/∆2), we have

P
[

max
j1 /∈J1

dj1 −mn ≥
σ2
1∆2

2

]
≤ n−c (110)

where c > 0 is a universal constant. This completes the proof for the noise model I. The proof for the
noise model II follows from similar steps.

4.6 Proof of Theorem MT-5

Let Ĉ = Ĵ1 × Ĵ2. Let C̄ be remaining tuple indices. First we consider the noise model I where
σ2
z = 1. Thus MT-(4) simplifies to

P
[
(Ĵ1, Ĵ2)|T

]
∝ vt1

∑
(j1,j2)∈Ĉ

T (j1, j2, :). (111)

Suppose T is generated by (J1, J2). Let a = |J1∩Ĵ1| and b = |J2∩Ĵ2|. If (j1, j2) ∈ C∩Ĉ, we have
T (j1, j2, :) = σ1/kv1 +zj1,j2 where entries of zj1,j2 have normal distributions. If (j1, j2) ∈ Ĉ−C,
we have T (j1, j2, :) = zj1,j2 where entries of zj1,j2 have normal distributions. Thus,

vt1
∑

(j1,j2)∈C

T (j1, j2, :) =
σ1ab

k
+ Z (112)

where Z has a standard normal distribution. Using the union bound and Lemma (1), we have

P

max
Ĉ

∣∣∣∣∣∣vt1
∑

(j1,j2)∈Ĉ

T (j1, j2, :) > t

∣∣∣∣∣∣
 < exp (−ck log(ne/k)) , (113)

where c > 0 is a universal constant. Thus, if σ1k > Ω(
√
k log(ne/k)), the probability of error goes

to zero.

For the noise model II, if σ2
1 > mk2, the likelihood score of every Ĉ 6= C is−∞ while the likelihood

score of C is finite. Thus, Theorem MT-5 holds in this case. Next we assume σ2
1 < mk2. In this

regime the likelihood score MT-(4) simplifies to

P
[
(Ĵ1, Ĵ2)|T

]
∝ vt1

∑
(j1,j2)∈Ĉ

T (j1, j2, :)−
σ1

2mk

∑
(j1,j2)∈Ĉ

‖T (j1, j2, :)‖2. (114)
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Note that, under the noise model II, the expected value of
∑

(j1,j2)∈Ĉ ‖T (j1, j2, :)‖2 is the same for

every Ĉ. Thus, using Lemma 2, if

σ1k = Ω
( σ1
mk

√
mk2 log(mk)

√
k log(n/k)

)
(115)

the effect of the second term is negligible as n → ∞. This holds if mk � log(n/k). Thus, this
simplifies the problem to the case of noise model I. This completes the proof.

4.7 Proof of Theorem MT-6

First we consider the noise model I where σ2
z = 1. We have

|Jall| =
(
n

k

)2

≤ (
ne

k
)2k. (116)

Thus, log(|Jall|) ≤ 2k log(ne/k).

Let Pi be the probability measure induced by the model J (i) ∈ Jall. Let

P̄ =
1

|Jall|

|Jall|∑
i=1

Pi. (117)

Thus, for every 1 ≤ i ≤ |Jall|, we have

DKL(Pi‖P̄) ≤ 1

|Jall|

|Jall|∑
j=1

DKL(Pi‖Pj) ≤ max
j

DKL(Pi‖Pj) (118)

where the first inequality comes from the convexity of the KL divergence.

Consider two tensor biclustering models J (i), J (j) ∈ Jall where their bicluster indices are non-
overlapping. This is possible since k < n/2. Using Lemma 9, for such Pi and Pj we have
DKL(Pi‖Pj) = σ2

1 . If bicluster indices of tensor biclustering models J (i) and J (j) overlap with
each other, the KL divergence between their induced probability measures is smaller than σ2

1 . Thus,

max
i,j

DKL(Pi‖Pj) = σ2
1 (119)

Using Lemma 8, if σ2
1 < α log(|Jall|), the minimax error is lower bounded by 1 − α −

log(2)/ log(|Jall|). Using (116) completes the proof for the case of having noise model I.

Now consider the case of noise model II. If σ2
1 > mk2, a simple algorithm based on thresholding

individual trajectory lengths can solve the tensor biclustering problem with vanishing error probability
(Theorem MT-3). Thus, without loss of generality, we assume σ2

1 < mk2. Using a similar argument
to the one of noise model I, one can show that

max
i,j

DKL(Pi‖Pj) =
1

1− σ2
1/mk

2
σ2
1 (120)

Then, using lemma 8, if

σ2
1 < O(

k log(n/k)

1 + log(n/k)/mk
) (121)

the minimax error is lower bounded by 1− α− log(2)/ log(|Jall|). This completes the proof.

4.8 Proof of Theorem MT-7

Recall the ML optimization MT-(6). Suppose T is generated by (J1, J2). Let a = |Ĵ1 ∩ J1| and
b = |Ĵ2 ∩ J2|. Let Ĉ = (Ĵ1, Ĵ2) and C = (J1, J2). If (j1, j2) ∈ Ĉ ∩ C, we have T (j1, j2, :) =

σ1/kv1 + zj1,j2 where entries of zj1,j2 have normal distributions. If (j1, j2) ∈ Ĉ − C, we have
T (j1, j2, :) = zj1,j2 where entries of zj1,j2 have normal distributions. Thus,∑

(j1,j2)∈Ĉ

T (j1, j2, :) =
σ1ab

k
v1 + kz (122)
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where z is a vector of length m with i.i.d. normal distributions. Thus, we have

‖
∑

(j1,j2)∈Ĉ

T (j1, j2, :)‖2 = (
σ1ab

k
)2 + k2Sm + 2σ1abZ, (123)

where Sm has a χ-squared distribution with m degrees of freedom and Z is normal. Let t = k2σ2
1/2.

Using Lemma 2, we have

P
[
|k2Sm − k2m| > t

]
< exp

(
−min(

t2

mk4
,
t

k2
)

)
(124)

< exp

(
−min(

σ4
1

4m
,
σ2
1

2
)

)
< exp (−k log(n/k)) ,

if σ1 satisfies conditions of the theorem. A similar argument can be stated for the cross noise terms
σ1abZ. Using a union bound over

(
n
k

)2
choices for Ĵ completes the proof.

4.9 Proof of Theorem MT-8

Let A1 , u1 ⊗w1 ⊗ v1. Under the model described in Section 8, we have

Pσ1
(X ) =

1(
n
k

)2 ∑
J

∫
exp

(
−‖X −A1‖2F /2

)
µ(dv1) (125)

where µ(.) is the uniform measure on the unit sphere. We also have

P0(X ) = exp
(
‖X‖2F /2

)
. (126)

Let Λ be the Radon-Nikodym derivative of Pσ1 with respect to P0. Thus, we have

Λ =
dPσ1

dP0
=

1(
n
k

)2 ∑
J

∫
exp

(
−σ2

1/2 + σ1 < A1,X >
)
µ(dv1) (127)

Squaring (127), we have

Λ2 =
1(
n
k

)4 ∑
J,J ′

exp(−σ2
1)

∫
exp (σ1 < A1 +A′1,X >)µ(dv1)µ(dv′1) (128)

Therefore using Lemma 10 we have

E0[Λ2] =
1(
n
k

)4 ∑
J,J ′

∫
exp

(
σ2
1/2 < A1,A′1 >

)
µ(dv1)µ(dv′1) (129)

=
1(
n
k

)2 ∑
J

∫
exp

(
σ2
1/2 < A1,Afixed >

)
µ(dv1)

where in the last step we used the rotational invariance of probability measures. Afixed is a fixed
tensor with J ′1 = J ′2 = [k] and v′1 = e1. Let ρJ1 be the overlap ratio of J1 with J ′1 = [k]:

ρJ1 ,
|J1 ∩ J ′1|

k
. (130)

ρJ2 is defined similarly. Thus, using Lemma 11 we have

E0[Λ2] =
1(
n
k

)2 ∑
J

∫
exp

(
σ2
1ρJ1ρJ2 < v1, e1 > /2

)
µ(dv1) (131)

≤ c
∑

ρJ1
,ρJ2

P(ρJ1 = ρ1, ρJ2 = ρ2) exp(σ4
1ρ

2
1ρ

2
2/2m)
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where c is a constant. Let a = ρ1k. We have

P(ρJ1 = ρ1) =

(
k
a

)(
n−k
k−a
)(

n
k

) ≤
exp

(
a log( eka )

)
exp

(
(k − 1) log( e(n−k)k−a )

)
exp

(
k log(nk )

) (132)

≤ c1 exp
(
−k
(
ρ1 log(

n

k
) + ρ1 log(ρ1) + (1− ρ1) log(1− ρ1)

))
≤ c2 exp

(
−kρ1 log(

n

k
)
)
.

A similar argument can be written for P(ρJ2 = ρ2). Under the condition of Theorem MT-8, using
(132) in (131) results in a bounded E0[Λ2]. Then Lemma 2 of [4] completes the proof.
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