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A Proof of Theorem

In this appendix p is a fixed but otherwise arbitrary distribution, with CDF F' and empirical CDF F,,.

Theorem|I.3]is a corollary of the following lemma, which gives a quantitative bound on the confidence
parameter §.

Lemma A.l. Letn € N, ¢ > 0 and a,p,q € (0,1). Assume that n > € Ta and p <
min{eﬁ7 1/e}. Then,

Inln(2) | p*5= )
Pr [Elt D |F(t) — Fu(t)| > e F(t)o‘} <q+ | —e + 2exp(—2n(ep®)?).

n €
Note that p and g appear only on the right-hand side, and therefore can be “tuned” in order to
minimize the upper bound. Our proof of Lemma[A.T|uses Theorem[I.2] To better understand the
parameters, we state the following corollary (whose first item is stronger than Theorem |1.3)).
Corollary A.2. There are constants c1,ca > 0 so that the following holds.

I Ifan)<1l-—c - l’llrllr(lr(g), then the probability of the event

Vi |F(t) — Fo(t)] < e F(t)*™

tends to 1 as n tends to oo.

2. Ifa(n) > 1 —co - = and  is uniform over |

e then the probability of the event

0,1]
Wt |F(t) — Fa(t)] 1i0 ()™

is at most /2, for all n > 2.

We leave as an open question to determine the behavior of these probabilities when

InIn(n) 1 } .

In(n) 1=e In(n)

a(n) € {1 —c1-
Corollary [A.2]is proven in Appendix [D]

Proof of Lemma Let €, o, q, p, n be as in the statement of the lemma. We partition the event in
question to three parts, depending on the value of ¢ as follows. Partition R to

q q
I[O,q/n]:{tERi OSF(t)SE}, I(q/nyp)Z{tER: E<F(t)§p}

and

I[p,l] Z{tER: p<F(t)§l}.
There are three corresponding events Ejg 4 /p), E(q/n,p) and Ej, 1); for example, Ejg /5 is the event
that 3¢ € Ijg /n) : B(t) = 1, where B(t) is the indicator of |F(t) — F,(t)| > e F(t)~.

The following three claims bound from above the probabilities of these three events. The three claims
and the union bound complete the proof of the theorem.

Claim A.3. Pr [E[O,q/n]} <gq.

Proof. Lett € Iy q/,) be so that B(t) = 1. For any t € Ijg 4/,) We have that F'(t) < 4/n < 1/n <
¢T= , where the last inequality is by our assumption on 7 and €. This implies that F'(t) < eF(t).

Since B(t) = 1 it must be the case that F,(t) > F(t) + ¢(F(t))" > 0, and therefore at least one
sample x; satisfies z; < t < 4/n. Now, by the union bound,

Pr([Ejgq/m] < Pr[3i € [n]: @ € Lo gm] <n- % —q. 0
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n l1—a
Claim Ad. Pr[E(, /] < F“n(zw P

ln(lj—a‘*) €

Proof. If 4/n > p then this event is empty and its probability is 0. Therefore, assume that 4/n < p,
and that this event is not empty.

Forall t € Iy ) since F(t) <p < ¢T= we have F(t) — eF(t)® < 0. So, it suffices to consider
the event
dt e I(q/n,p) : Fn(t) > F(t) +e€- F(t)a.

Consider the decreasing sequence of numbers pg, p1, - - . , P, defined by
pi = P(%)
where m is such that p,,, < 4/n < p,,,—1. Since p < 1/e, we can bound m < “:(IT%Q;—‘ Let
2a

ti =inf{t € Ig/np) : F(t) > pif-
Let Fi7 (t) = pin ({z : © < t}). We claim that
It € lgmp : Bt) =1 = Fi<m:F, (t;) >e-piyy,

Indeed, assume that t € (4, p satisfies F,(t) > F(t) + e F(t)*. Since p,, <t < po, there is
some 0 < ¢ < m — 1suchthat p;11 < F(t) < p;. Note that t,,1 <t < t;. Indeed, ¢;11 < t follows
since p;+1 < F(t), and ¢ < t; follows since F'(t;) > p; (which is implied by right continuity of F’).
Hence,

F,;(tl) > Fn(t) > F(t) +€- F(t)a > Dit1 +€'p;-l+1 > G'p?+1.

It hence remains to upper bound the union of these events. Note that
E[F, (t:)] = p({z: 2 <t;}) < pi.
Therefore, by Markov’s inequality:
i 1 (1za)(1te)’
PI‘[Fg(ti) > e~p?+1} < pT — 7p(12 )(12+a ) .
e, €

By the union bound,

m—1 . L\ . 1o In(2
Pr[Ji <m: Fu(ti) > pi1 + e pify] < % ZP(IT)(I;) < Tp < ’Vn n(g)
=0

Claim A.5. Pr[Ej, ;)] < 2exp(—2n(ep™)?).
Proof. Forallt € I}, 1) we have F'(t)* > p®. The claim follows by Theorem|1.2 O

Lemma [A-T]follows from combining Claims[A3] [A-4] and[A3] O

B Proof of Theorem [1.4]

Proof. Lete,§ <1/aand a < 1. By LemmalA.1]
Inln(3)

In(555)

€

Pr[at; |F(t) = Fo(t)| > e~F(t)‘X} <q+ { WPQ +2exp(—2n(ep®)?) (3

1 1
foreveryg < 1,n>¢ T-o and p < eT-=.

Set ¢, p so that each of the first two summands in Equation [3]is at most d. Specifically, ¢ = 4, and

n n( it %a
(%) > 1 then setp = (65~ : ( e ))1 , and

1n(12+7;¥) = 2Inln(%)

1. if
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2. if BInGE) 9 then setp = (65)ﬁ.

ln(I;rTa)

. . 1 1 . .
Note that indeed the requirements n > ¢~ == and p < eT-< are satisfied by p and by the desired n
(from the theorem statement).

Plugging these p and ¢ in the third summand in Equation [3]yields:

4o
lta) \ T-o
2exp | —2ne? <65 ln(%‘)>

' 2Inln(%)

2exp (—2ne2 (ed) 14&)
otherwise. In order for the above to be at most J, it suffices that
_da
(L) \ T
2ne® | ed - o—20 > In(2
ne (e 2Tnn(2) > In(2/s)

Inln(%)
Tta
In( o )

when >1,or

Qnez(ed)% > In(2/5)
otherwise. The second case implies an explicit bound of

n> IHQ(Z‘S) (6)” 155 )

To get an explicit bound on n in the first case, we need to solve a recursion of the following type:
find a lower bound on n so that the following inequality holds:

n> D(Inln(E - n))F,
da

where D > 0, E >4, F > 0. (Here D = In(®/s) (% . ln(H—O‘))_l_n, E = %, F = 147—0‘&.) Setting

2¢2 2a

4o

"= (DH)(10<IH(D+4)HH(FH)HH(E)))F = (D+1) (10-ln (4~ 53110)) e

suffices. Therefore, the probability (i.e., the sum of all three summands of Equation [3)) is bounded

by 34. Replacing ¢ by /3 in Equations E] and(and in the definition of D) yields the desired bound
on ng (€, 0, av). O

C Proof of Theorem 2.3
Proof. Let e > 0. Having E,,[F] < oo implies that there is vg € RT such that E,, [1{y5,,}F] < €.

Since we can write
E[f] = Ig[f v<oo}] +]E[f Ly suet]

o
it suffices to show that almost surely there exist ;1 such that
(Vn > ny) (Vf € F) : ‘IE[f Avzun] ~ B[S Lvsuy]| <2 (©6)

and that almost surely there exist no such that

(Vn = n) (Vf € F) : \Igl[f Qe —E[S- 1{@0}]’ < 3e. (7)

We begin by showing Equation (6)): the law of large numbers implies that almost surely, there exists nq
such that E,, | [1{V2vo}F] < 2e, for every n > ny. Since every f € F satisfies 0 < f < F, it
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follows that 0 < E,, [1{y543f] < € and 0 < E,, [1{vsu,1f] < 2¢ for n > ny. This implies
Equation (6)).

It remains to show Equation (7): set ¢’ =
almost surely there exists no such that
(vn > ng) (Vo € RY) ¢ [q(v) - gu(v)] < €.

Let f € F. By monotonicity of f, it follows that there is a sequence 0 = ag, a1, ...,any = vy such
that f does not change by more than € within each interval [a;, a;+1), (i€, SUP, ye(ai asi1) |f(x) —

m. The Glivenko-Cantelli Theorem implies that

f (y)| < €). Consider the piecewise constant function
flao) + Z (air1) = f(a) Lvza,y-

Note that f. gets the value f(a;) on each interval [a;, a;11). (v) = fe(v)| < € for every
Eu[flv<uy] = Eulfelivcuyl] < € and [B,,, [f] — By, [f]] < e So. it

sufﬁces to show that
(902 m2) ¢ [E[fclvcuny] = E[felivan]| < €
Indeed, for n > no:

[Efeliycun] = E[foliven]| € D (Flain) = £(a) - |a(a) = gu(as)]

< Z (aip1) — flai)) - € (by definition of 1)

<f (Uo) :

<e. (by definition of €)
]

D Proof of Corollary

Proof. We begin with the first item. Let § > 0. It suffices to prove that
Pr [Vt : [F(t) = Fu(t)] < e F(£)°0] <36

for a large enough n. To this end, we set ¢, p so that each of the first two summands in Lemma[A.T]is
at most §. Specifically,
q=29

(i) "
Inn(3) +n(42) '

As required by the premise of Lemma p < €T, (The other requirement, n > e Tw , will be
verified at the end of the proof.)

and

Plugging these values for p, g, the last summand becomes

(5ln(1+a) B
Inln(%) +ln(1+a)

We need to verify that the above expression becomes less than ¢ for large n. Equivalently, that

2exp(—2n(ep“)2) = 2exp | —2né?

4o

. 661n(1+a) e

e Inln(%) + ln( )
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Rewriting o« = 1 — 3 gives

4-45
eéln(l + %) .
lim n

n—reo lnln(%) + ln(l + ﬁ)

Since we are focusing on small value of 3 we can assume that § > 1/2. Using that z/2 < In(1+z) <
x for z € [0, 1] and 8 < 1/2, it suffices that we show

. €0B/2 s
im — ) =
oo\ In In(n/s) + 1 >

or, by taking “In”, that

n—oo

lim (lnn - %(hl(l/e) + In(1/s) + In(4/8) 4+ In(InIn(7/s) + 1))) = 0.

To this end, it suffices that 1/31n(1/g) < In(n)/2, which holds for 8 > ¢ - InIn(n)/in(n), where c is a
sufficiently large constant.

. . . _1 1, .
It remains to check that the condition stated in Lemma thatn > € T-o = ¢ 75, is satisfied.

Indeed, for a sufficiently large n

€F < 1L mne exp(cIn(Y/e) - m(W)/imin(n)) < exp(In(n)) = n.

For the second item, let Y7 < Y, < ... < Y, denote the sequence obtained by sorting
X1, Xs,...,X,. Note that it suffices to show that the probability that
1
Yi < —
! 2n

is at least 1/2: indeed, this event implies that

1
e (L) p(L)ol L
2n 2n n 2n
1
T on
1 [ 1\!"m=
210~<2) (since n > 2)
n
1——L1
1 1 2Inn
:—~F _— s
10 2n

which implies the conclusion with ¢ = 1/2.

Thus, it remains to show that with probability of at least 1, we have Y; < 5=

1 1 1\"
PrlVi>—|=Pr|Vi<n: X;>—|=(1-—1) >
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