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Abstract

We study the ¢y-Low Rank Approximation Problem, where the goal is, given an
m X n matrix A, to output a rank-k matrix A’ for which ||A’ — Al|o is minimized.
Here, for a matrix B, || B||o denotes the number of its non-zero entries. This NP-
hard variant of low rank approximation is natural for problems with no underlying
metric, and its goal is to minimize the number of disagreeing data positions.

We provide approximation algorithms which significantly improve the running
time and approximation factor of previous work. For & > 1, we show how to
find, in poly(mn) time for every k, a rank O(klog(n/k)) matrix A’ for which
|A" — Allo < O(k*1og(n/k)) OPT. To the best of our knowledge, this is the first
algorithm with provable guarantees for the £p-Low Rank Approximation Problem
for k > 1, even for bicriteria algorithms.

For the well-studied case when k = 1, we give a (24 ¢)-approximation in sublinear
time, which is impossible for other variants of low rank approximation such as for
the Frobenius norm. We strengthen this for the well-studied case of binary matrices
to obtain a (1 + O())-approximation in sublinear time, where ) = OPT /|| Ao.
For small ), our approximation factor is 1 4 o(1).

1 Introduction

Low rank approximation of an m X n matrix A is an extremely well-studied problem, where the
goal is to replace the matrix A with a rank-k matrix A’ which well-approximates A, in the sense that
||[A — A’|| is small under some measure || - ||. Since any rank-k matrix A’ can be written as U - V,
where U is m x k and V is k X n, this allows for a significant parameter reduction. Namely, instead
of storing A, which has mn entries, one can store U and V', which have only (m +n)k entries in total.
Moreover, when computing Az, one can first compute Vx and then U (V' z), which takes (m + n)k
instead of mn time. We refer the reader to several surveys [19} 24, l40|] for references to the many
results on low rank approximation.

We focus on approximation algorithms for the low-rank approximation problem, i.e. we seek to
output a rank-k matrix A’ for which || A — A'|| < «||A — A||, where Ay = argmin,, ;)| A — B
is the best rank-k approximation to A, and the approximation ratio « is as small as possible. One of
the most widely studied error measures is the Frobenius norm || A = (3272, Y°7_; A7 )"/, for
which the optimal rank-k approximation can be obtained via the singular value decomposition (SVD).
Using randomization and approximation, one can compute an o = 1 + e-approximation, for any
€ > 0, in time much faster than the min(mn?, mn?) time required for computing the SVD, namely,
in O(||Allo + n - poly(k/¢)) time [9] 26, 29]], where || A||o denotes the number of non-zero entries
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of A. For the Frobenius norm || Ao time is also a lower bound, as any algorithm that does not read
nearly all entries of A might not read a very large entry, and therefore cannot achieve a relative error
approximation.

The rank-k matrix Ay, obtained by computing the SVD is also optimal with respect to any rotationally
invariant norm, such as the operator and Schatten-p norms. Thus, such norms can also be solved
exactly in polynomial time. Recently, however, there has been considerable interest [10, 3, 132]
in obtaining low rank approximations for NP-hard error measures such as the entrywise £,,-norm

lAll, = (Zu |A; ;|P) Up, where p > 1 is a real number. Note that for p < 1, this is not a norm,
though it is still a well-defined quantity. For p = oo, this corresponds to the max-norm or Chebyshev
norm. It is known that one can achieve a poly (k log(mn))-approximation in poly (mn) time for the
low-rank approximation problem with entrywise £,-norm for every p > 1 [36}[8]].

1.1 £y-Low Rank Approximation

A natural variant of low rank approximation which the results above do not cover is that of {y-low
rank approximation, where the measure || A||o is the number of non-zero entries. In other words, we
seek a rank-k matrix A’ for which the number of entries (i, j) with A} ; # A; ; is as small as possible.
Letting OPT = minw(p)=k 2_; ; 0(Ai; # A; ;), where 6(A; ; # A} ;) = Lif A; j # A; ; and 0
otherwise, we would like to output a rank-k matrix A’ for which there are at most « OPT entries
(4,7) with A; ; # A; ;. Approximation algorithms for this problem are essential since solving the
problem exactly is NP-hard [[12,[14], even when k& = 1 and A is a binary matrix.

The ¢y-low rank approximation problem is quite natural for problems with no underlying metric, and
its goal is to minimize the number of disagreeing data positions with a low rank matrix. Indeed, this
error measure directly answers the following question: if we are allowed to ignore some data - outliers
or anomalies - what is the best low-rank model we can get? One well-studied case is when A is binary,
but A’ and its factors U and V need not necessarily be binary. This is called unconstrained Binary
Matrix Factorization in [18]], which has applications to association rule mining [20], biclustering
structure identification [42} 43]], pattern discovery for gene expression [34], digits reconstruction [235]],
mining high-dimensional discrete-attribute data [21 22]], market based clustering [23]], and document
clustering [43]]. There is also a body of work on Boolean Matrix Factorization which restricts the
factors to also be binary, which is referred to as constrained Binary Matrix Factorization in [18]]. This
is motivated in applications such as classifying text documents and there is a large body of work on
this, see, e.g. [28}131]].

The ¢y-low rank approximation problem coincides with a number of problems in different areas. It
exactly coincides with the famous matrix rigidity problem over the reals, which asks for the minimal
number OPT of entries of A that need to be changed in order to obtain a matrix of rank at most k.
The matrix rigidity problem is well-studied in complexity theory [15} [16l [39] and parameterized
complexity [13]. These works are not directly relevant here as they do not provide approximation
algorithms. There are also other variants of /y-low rank approximation, corresponding to cases such
as when A is binary, A’ = UV is required to have binary factors U and V/, and multiplication is
either performed over a binary field [41} 17,12l 30], or corresponds to an OR of ANDs. The latter is
known as the Boolean model [4} 12} 27,133/ 135]138]]. These different notions of inner products lead to
very different algorithms and results for the {y-low rank approximation problem. However, all these
models coincide in the special and important case in which A is binary and k£ = 1. This case was
studied in [20} 34, [18]], as their algorithm for k£ = 1 forms the basis for their successful heuristic for
general k, e.g. the PROXIMUS technique [20].

Another related problem is robust PCA [6], in which there is an underlying matrix A that can
be written as a low rank matrix L plus a sparse matrix .S [7]]. Candeés et al. [7]] argue that both
components are of arbitrary magnitude, and we do not know the locations of the non-zeros in .S nor
how many there are. Moreover, grossly corrupted observations are common in image processing,
web data analysis, and bioinformatics where some measurements are arbitrarily corrupted due to
occlusions, malicious tampering, or sensor failures. Specific scenarios include video surveillance,
face recognition, latent semantic indexing, and ranking of movies, books, etc. [[7]. These problems
have the common theme of being an arbitrary magnitude sparse perturbation to a low rank matrix
with no natural underlying metric, and so the {y-error measure (which is just the Hamming distance,
or number of disagreements) is appropriate. In order to solve robust PCA in practice, Candes et al. [[7]



relaxed the £y-error measure to the ¢1-norm. Understanding theoretical guarantees for solving the
original ¢y-problem is of fundamental importance, and we study this problem in this paper.

Finally, interpreting 0° as 0, the £5-low rank approximation problem coincides with the aforemen-
tioned notion of entrywise ¢,,-approximation when p = 0. It is not hard to see that previous work [8]
for general p > 1 fails to give any approximation factor for p = 0. Indeed, critical to their analysis is
the scale-invariance property of a norm, which does not hold for p = 0 since ¢, is not a norm.

1.2 Our Results

We provide approximation algorithms for the ¢y-low rank approximation problem which significantly
improve the running time or approximation factor of previous work. In some cases our algorithms
even run in sublinear time, i.e., faster than reading all non-zero entries of the matrix. This is provably
impossible for other measures such as the Frobenius norm and more generally, any £,,-norm for p > 0.
For k > 1, our approximation algorithms are, to the best of our knowledge, the first with provable
guarantees for this problem.

First, for k = 1, we significantly improve the polynomial running time of previous (2 + €)-
approximations for this problem. The best previous algorithm due to Jiang et al. [18] was based on
the observation that there exists a column u of A spanning a 2-approximation. Therefore, solving the
problem min,, || A — uv||o for each column u of A yields a 2-approximation, where for a matrix B the
measure || B||o counts the number of non-zero entries. The problem min, ||A — uv||o decomposes
into >, min, ||A. ; — vyullo, where A. ; is the i-th column of A, and v; the i-th entry of vector v.
The optimal v; is the mode of the ratios A; ;/u;, where j ranges over indices in {1, 2,...,m} with
u; # 0. As a result, one can find a rank-1 matrix uv” providing a 2-approximation in O(|| Allon)
time, which was the best known running time. Somewhat surprisingly, we show that one can
achieve sublinear time for solving this problem. Namely, we obtain a (2 + €)-approximation in
(m + n) poly(e 1=t log(mn)) time, for any ¢ > 0, where v = OPT /|| A||o. This significantly
improves upon the earlier O (|| Al|on) time for not too small € and ). Our result should be contrasted
to Frobenius norm low rank approximation, for which Q(||Al|o) time is required even for k = 1, as
otherwise one might miss a very large entry in A. Since ¢y-low rank approximation is insensitive to
the magnitude of entries of A, we bypass this general impossibility result.

Next, still considering the case of & = 1, we show that if the matrix A is binary, a well-studied
case coinciding with the abovementioned GF'(2) and Boolean models, we obtain an approximation
algorithm parameterized in terms of the ratio v = OPT /|| Al|o, showing it is possible in time
(m +mn)~! poly(log(mn)) to obtain a (1 + O(x)))-approximation. Note that our algorithm is again
sublinear, unlike all algorithms in previous work. Moreover, when A is itself very well approximated
by a low rank matrix, then v may actually be sub-constant, and we obtain a significantly better
(1 + o(1))-approximation than the previous best known 2-approximations. Thus, we simultaneously
improve the running time and approximation factor. We also show that the running time of our
algorithm is optimal up to poly(log(mn)) factors by proving that any (1 + O(%)))-approximation
succeeding with constant probability must read 2((m + n)1~!) entries of A in the worst case.

Finally, for arbitrary k& > 1, we first give an impractical algorithm that runs in time n°(*) and achieves
an « = poly(k)-approximation. To the best of our knowledge this is the first approximation algorithm
for the £y-low rank approximation problem with any non-trivial approximation factor. To make our
algorithm practical, we reduce the running time to poly(mn), with an exponent independent of k, if
we allow for a bicriteria solution. In particular, we allow the algorithm to output a matrix A’ of some-
what larger rank O(klog(n/k)), for which [|A — A'[|g < O(k?log(n/k)) minw s)=k [|A — Bllo.
Although we do not obtain rank exactly &£, many of the motivations for finding a low rank approxima-
tion, such as reducing the number of parameters and fast matrix-vector product, still hold if the output
rank is O(klog(n/k)). We are not aware of any alternative algorithms which achieve poly(mn) time
and any provable approximation factor, even for bicriteria solutions.

2 Preliminaries

For an matrix A € A™*" with entries A; ;, we write A; . for its i-th row and A. ; for its j-th column.



Input Formats We always assume that we have random access to the entries of the given matrix A,
i.e. we can read any entry A; ; in constant time. For our sublinear time algorithms we need more
efficient access to the matrix, specifically the following two variants:

(1) We say that we are given A with column adjacency arrays if we are given arrays By, ..., B,, and
lengths 41, . .., £, such that for any 1 < k < ¢; the pair B,[k] = (i, A; ;) stores the row ¢ containing
the k-th nonzero entry in column j as well as that entry A; ;. This is a standard representation of
matrices used in many applications. Note that given only these adjacency arrays By, ..., B, in order
to access any entry A; ; we can perform a binary search over 5;, and hence random access to any
matrix entry is in time O(logn). Moreover, we assume to have random access to matrix entries in
constant time, and note that this is optimistic by at most a factor O(logn).

(2) We say that we are given matrix A with row and column sums if we can access the numbers
>_;Aijfori € [m]and}’; A;; for j € [n] in constant time (and, as always, access any entry A;
in constant time). Notice that storing the row and column sums takes O(n + m) space, and thus
while this might not be standard information it is very cheap to store.

We show that the first access type even allows to sample from the set of nonzero entries uniformly in
constant time.

Lemma 1. Given a matrix A € R™*™ with column adjacency arrays, after O(n) time preprocessing
we can sample a uniformly random nonzero entry (i, j) from A in time O(1).

The proof of this lemma, as well as most other proofs in this extended abstract, can be found in the
full version of the paper.

3 Algorithms for Real £y-rank-k

Given a matrix A € R™*", the {y-rank-k problem asks to find a matrix A’ with rank % such that the
difference between A and A’ measured in £y norm is minimized. We denote the optimum value by

OPT(k) def min ||A—A/H0 = min ||A_UV||O. (1)
rank(A’)=k UeR™*xk VeRkxn

In this section, we establish several new results on the ¢-rank-k problem. In Subsection[3.1] we prove
a structural lemma that shows the existence of k columns which provide a (k + 1)-approximation

to OPT® and we also give an ()(k)-approximation lower bound for any algorithm that selects k
columns from the input matrix A. In Subsection[3.2] we give an approximation algorithm that runs in
poly(n*, m) time and achieves an O(k?)-approximation. To the best of our knowledge, this is the
first algorithm with provable non-trivial approximation guarantees. In Subsection[3.3] we design a
practical algorithm that runs in poly(n,m) time with an exponent independent of k, if we allow for a
bicriteria solution.

3.1 Structural Results

We give a new structural result for ¢y showing that any matrix A contains k& columns which provide a
(k + 1)-approximation for the ¢o-rank-% problem ().

Lemma 2. Let A € R™*" be a matrix and k € [n]. There is a subset J**) C [n] of size k and a
matrix Z € R¥™ such that ||A — A, ju Z||o < (k + 1)OPT®),

Proof. Let Q(® be the set of columns j with UV, ; = 0, and let R £ [n] \ Q). Let §© & [p],

7O &) We split the value OPT®) into OPT(5®, R®) £ || 450 por — UV o ||o and
OPT(S©®, Q) &

= | As© g — UVswo oo llo = [[As0 oo o
Suppose OPT(S© R(©)) > |SO||R©)|/(k + 1). Then, for any subset J*) it follows that
minz |4 — Ago sw Zo < |SO|RO| + [ Agw oo lo < (k +1)OPT®). Otherwise, there is a
column () such that || Agw) ;) — (UV) g0 s I, < OPT(S©, R®)/|RO)| < OPT® /|R©)].



Let 7™ be the set of indices on which (UV) g ;1) and Ag ;) disagree, and similarly S) def

SO\TM) on which they agree. Then we have |T(1)] < OPT®) /|R(©)|. Hence, in the submatrix
TM x RO the total error is at most |71 | - [R©| < OPT® Let RV, D) be a partitioning of
R such that A5<1>,j is linearly dependent on AS(U,i(l) iff j € D Then by selecting column
A. ;) the incurred cost on matrix S (1) x DM is zero. For the remaining submatrix S x R, we
perform a recursive call of the algorithm.

We make at most k recursive calls, on instances S x R for £ € {0,...,k — 1}. In the
¢t iteration, either OPT(S, R®)) > |S||R®)|/(k + 1 — £) and we are done, or there is a
column “*1) which partitions S into S¢+1) TU+D and R® into R“+D, DU+ such that
|SED] > m - T, (1 — =) = 5 - mand for every j € D) the column Ag(e+1) ; belongs
to the span of {As(£+1),i(t) }fﬂ

Suppose we performed k recursive calls. We show now that the incurred cost in submatrix S*) x R(¥)
is at most OPT(S™®), R*)) < OPT®). By construction, the sub-columns {Agw i }iegon are lin-
early independent, where 1) = {i(l), o ,i(k)} is the set of the selected columns, and As(k)’j(k) =
(UV)sw . Since rank(Agem) o)) = k, it follows that rank(Ugw) .) = k, rank(V, ;) = k
and the matrix V, ;) € R¥*¥ is invertible. Hence, for matrix Z = (V. ;o)) ™'V, pv we have
OPT(S®), RW)) = || Agr ge — Agr v Z|jo.

The statement follows by noting that the recursive calls accumulate a total cost of at most & - opT®)
in the submatrices 7“1 x R® for ¢ € {0,1,...,k — 1}, as well as cost at most OPT®*) in
submatrix S*) x R(*), O

We also show that any algorithm that selects k columns of a matrix A incurs at least an Q(k)-
approximation for the ¢y-rank-k problem.

Lemma 3. Let k < n/2. Suppose A = (Gixn; Inxn) € ROE)X7 s g matrix composed of a
Gaussian random matrix G € R¥*™ with Gi,j ~ N(0,1) and identity matrix I, . Then for any

subset J) C [n] of size k, we have mingcprxn ||A — A, jo0 Z|lo = Q(k) - opT®,

3.2 Basic Algorithm

We give an impractical algorithm that runs in poly(n*, m) time and achieves an O (k?)-approximation.
To the best of our knowledge this is the first approximation algorithm for the £y-rank-k problem with
non-trivial approximation guarantees.

Theorem 4. Given A € R™*" and k € [n] we can compute in O(nk*tm?2k“*1) time a set of k
indices J*) C [n] and a matrix Z € R¥*™ such that | A — A, jo» Z|jo < O(K?) - opT®,

Our result relies on a subroutine by Berman and Karpinski [5] (attributed also to Kannan in that
paper) which given a matrix U and a vector b approximates min,, |[Uz — b|| in polynomial time.
Specifically, we invoke in our algorithm the following variant of this result established by Alon,
Panigrahy, and Yekhanin [2].

Theorem 5. [2] There is an algorithm that given A € R™** and b € R™ outputs in O(m2?k“+1)
time a vector z € R¥ such that w.h.p. ||Az — b||, < k - min, || Az — b||,.

3.3 Bicriteria Algorithm

Our main contribution in this section is to design a practical algorithm that runs in poly(n, m) time
with an exponent independent of &, if we allow for a bicriteria solution.

Theorem 6. Given A € R™*™ and k € [1,n], there is an algorithm that in expected poly(m,n)
time outputs a subset of indices J C [n] with |J| = O(klog(n/k)) and a matrix Z € RVI*™ such
that |A — A. ;Z|, < O(k?log(n/k)) - OPT®).

The structure of the proof follows a recent approximation algorithm [8, Algorithm 3] for the ¢,-low
rank approximation problem, for any p > 1. We note that the analysis of [8, Theorem 7] is missing an



O(logl/ P'n) approximation factor, and naively provides an O(k log!/P n)-approximation rather than
the stated O(k)-approximation. Further, it might be possible to obtain an efficient algorithm yielding
an O(k? log k)-approximation for Theorem [6| using unpublished techniques in [37]]; we leave the
study of obtaining the optimal approximation factor to future work.

There are two critical differences with the proof of [8, Theorem 7]. We cannot use the earlier [}
Theorem 3] which shows that any matrix A contains k& columns which provide an O(k)-approximation
for the /,-low rank approximation problem, since that proof requires p > 1 and critically uses
scale-invariance, which does not hold for p = 0. Our combinatorial argument in Lemma@] seems
fundamentally different than the maximum volume submatrix argument in [§] for p > 1.

Second, unlike for ¢,-regression for p > 1, the £y-regression problem min, ||Uz —bl|o given a matrix
U and vector b is not efficiently solvable since it corresponds to a nearest codeword problem, which
is NP-hard [1]]. Thus, we resort to an approximation algorithm for ¢y-regression, based on ideas for
solving the nearest codeword problem in [22} |5]].

Note that OPT¥) < || A|o. Since there are only mn + 1 possibilities of OPT*), we can assume
we know OPT® and we can run the Algorithm |1| below for each such possibility, obtaining a
rank-O(k logn) solution, and then outputting the solution found with the smallest cost. This can
be further optimized by forming instead O(log(mn)) guesses of OPT®). One of these guesses is
within a factor of 2 from the true value of OPT®), and we note that the following argument only
needs to know OPT*) up to a factor of 2.

We start by defining the notion of approximate coverage, which is different than the corresponding
notion in [§]] for p > 1, due to the fact that £y-regression cannot be efficiently solved. Consequently,
approximate coverage for p = 0 cannot be efficiently tested. Let Q C [n] and M = A, g be an
m X |Q| submatrix of A. We say that a column M. ; is (.S, Q)-approximately covered by a submatrix

M, s of M. if |S| = 2k and min, | M, sz — M, ;[jo < 2200+HOPTE.

Lemma 7. (Similar to |8, Lemma 6], but using Lemma LetQ C [n]and M = A. g be a submatrix
of A. Suppose we select a subset R of 2k uniformly random columns of M. Then with probability at
least 1/3, at least a 1/10 fraction of the columns of M are (R, Q)-approximately covered.

Proof. To show this as in [8]], consider a uniformly random column index ¢ not in the set R. Let

T RU {i} and 77 = mlnmnk(B) &l M. 7 — Bllo. Since T is a uniformly random subset of 2k + 1

(k) (k) %)
columns of M, Epn < (2’f+1|)§|PTM < (2’“+1‘)C§‘PT . Let & be the event 7 < %.

Then, by a Markov bound, Pr[&;] > 9/10.

Fix a configuration ' = R U {i} and let L(T)) C T be the subset guaranteed by Lemma [2] such
that |L(T")| = k and minx || M. (1) X — M llo < (k+ 1) mingani(gy=k || M. 7 — Bl|o. Notice that
E; [ming | M. pcmyx — M. 4llo | T] = 2k+1 minx || M. 1) X — M. r||o, and thus by the law of total

probability we have Ep [mlnx | M. pryx — M.;llo] < gzi)ln

Let &, denote the event that min,, || M. pz— M. ;|0 < %ﬁ)". By a Markov bound, Pr[€2] > 9/10.

Further, as in [8]], let £3 be the event that i ¢ L. Observe that there are (kzl) ways to choose a subset

R’ C T such that |R'| = 2k and L C R’. Since there are (2];:1) ways to choose R, it follows that

PrlILC R|T] = 2’“,:;11 > 1/2. Hence, by the law of total probability, we have Pr[€3] > 1/2.

As in [8]], Pr[&1 A &2 A Es] > 2/5, and conditioned on &1 A & A Es, ming || M. gz — M. ;|0 <
, )
min, | M.z — M. ;|lo < méZE)" < 100(k+‘8‘OPT , where the first inequality uses that L is a

subset of R given &3, and so the regression cost cannot decrease, while the second inequality uses the
occurrence of & and the final inequality uses the occurrence of &;.

As in [8]], if Z; is an indicator random variable indicating whether ¢ is approximately covered

by R, and Z = ), Zi, then Eg[Z] > Q‘SQ‘ and Eg[|Q| — Z] < 3‘5@. By a Markov bound,
Pr[|Q|— Z > 9|1(g|] < 2. Thus, probability at least 1/3, at least a 1/10 fraction of the columns of
M are (R, Q)- appr0x1mately covered. O



Algorithm 1 Selecting O(klog(n/k)) columns of A.

Require: An integer k, and a matrix A.
Ensure: O(klog(n/k)) columns of A
APPROXIMATELY SELECTCOLUMNS (k, A):
if number of columns of A < 2k then
return all the columns of A
else
repeat
Let R be a set of 2k uniformly random columns of A
until at least (1/10)-fraction columns of A are nearly approximately covered
Let A3 be the columns of A not nearly approximately covered by 12
return R U APPROXIMATELY SELECTCOLUMNS(k, A%)
end if

Given Lemma[7] we are ready to prove Theorem [6] As noted above, a key difference with the
corresponding [8, Algorithm 3] for £, and p > 1, is that we cannot efficiently test if a column ¢ is
approximately covered by a set R. We will instead again make use of Theorem 5]

Proof of Theorem[f] The computation of matrix Z force us to relax the notion of (R,Q)-
approximately covered to the notion of (R, Q)-nearly-approximately covered as follows: we say
that a column M. ; is (R, Q)-nearly-approximately covered if, the algorithm in Theorem [5|returns a
vector z such that | M. gz — M. ;o < w. By the guarantee of Theorem , if M., is
(R, Q)-approximately covered then it is also w.h.p. (R, ())-nearly-approximately covered.

Suppose Algorithmmakes t iterations and let A:7U§:1 R, and Z be the resulting solution. We bound
now its cost. Let By = [n], and consider the i-th iteration of Algorithm[I] We denote by R; a set of 2k
uniformly random columns of B;_1, by G; a set of columns that is (R;, B;_1)-nearly-approximately
covered, and by B; = B;_1\{G; U R;} a set of the remaining columns. By construction, |G;| >
|Bi—1|/10 and |B;| < 2%|B;_1| — 2k < 55|B;_1]. Since Algorithmterminates when By < 2k,
we have 2k < [B;| < (1 — 15)'n, and thus the number of iterations ¢ < 10log(n/2k). By
construction, |G| = (1 — a;)|B;_1| for some a; < 9/10, and so 0_, IJIB?_i‘l\ <t < 10log 5.

. . . 2 (k) .

Since min, || A, g,w@) — A, [l < 2EOPT wehave S0, 3 e | Anr 2@ — Ao <
et Yjeq, kming A g 2@ — A, ;o < O (k- log %) - OPTH).

By Lemma([7} the expected number of iterations of selecting a set R; such that |G;| > 1/10|B;_|
is O(1). Since the number of recursive calls ¢ is bounded by O(log(n/k)), it follows by a Markov
bound that Algorithm 1| chooses O(k log(n/k)) columns in total. Since the approximation algorithm
of Theorem [5]runs in polynomial time, our entire algorithm has expected polynomial time. O

4 Algorithm for Real £,-rank-1

Given a matrix A € R™*"™, the {y-rank-1 problem asks to find a matrix A" with rank 1 such that the
difference between A and A’ measured in £y norm is minimized. We denote the optimum value by

OPTH Y min A- A= min_ [A—w]o. @
rank(A))=1 u€R™ veR™

In the trivial case when OPT(}) = 0, there is an optimal algorithm that runs in time O(|| A||o) and
finds the exact rank-1 decomposition uvT of a matrix A. In this work, we focus on the case when
OPTW > 1. We show that Algorithm yields a (2 + ¢)-approximation factor and runs in nearly

linear time in || A||o, for any constant € > 0. Furthermore, a variant of our algorithm even runs in

sublinear time, if || A|o is large and ¢ & opT™® /1| 4|lo is not too small. In particular, we obtain

time o(|| Aljo) when OPT™) > (¢~'log(mn))* and || Ao > n(e~* log(mn))*.



Algorithm 2
Input: A € R™*™ and e € (0,0.1).
1. Partition the columns of A into weight-classes S = {S(®), ..., §Uogn+1)} guch that S(©) contains
all columns j with || A, ;o = 0 and S contains all columns j with 2° =1 < [|A. ;o < 2.
2. For each weight-class S(*) do:

2.1 Sample a set OV of ©(e~2logn) elements uniformly at random from S().

2.2 Find a vector (/) € R™ such that |A — A ;[z)]T o < (1 + %) min, |[A— A, joT
each column 4. ; € C.
3. Compute a (1 + 15)-approximation Y; of ||A — A, ;[2\D)]T ||, for every j € Uieps cw,

0, for

Return: the pair (A, ;, 2(4)) corresponding to the minimal value Y;.

Theorem 8. There is an algorithm that, given A € R™ "™ with column adja-
cency arrays and orPTY > 1, and given ¢ € (0,0.1], runs wh.p. in time

0 ((% + min {[|Alo, n + 1/}7110;#})1()35’%2") and outputs a column A. ; and a vector z that

satisfy wh.p. |A—A. ;2T o < (2+ €)OPTW. The algorithm also computes a value Y satisfying
whp. (1 —€)OPTW <y < (2+ 2¢)0PTW,

The only steps for which the implementation details are not immediate are Steps 2.2 and 3. We will
discuss them in Sections [d.T]and [.2] respectively. Note that the algorithm from Theorem [§]selects a
column A. ; and then finds a good vector z such that the product A. ; 2T approximates A. We show
that the approximation guarantee 2 + € is essentially tight for algorithms following this pattern.

Lemma 9. There exist a matrix A € R™ ™ such that min,||A — A. ;27 ||o > 2(1 — 1/n)OPT(1),
for every column A. ;.

4.1 Implementing Step 2.2

The Step 2.2 of Algorithm 2]uses the following sublinear procedure, given in Algorithm 3]

Lemma 10. Given A € R™*", y € R™ and ¢ € (0,1) we can compute in O(e~*nlogm) time a
vector z € R™ such that w.h.p. || A. ; — ziullo < (1 4 €) miny, ||A. ; — viul|o for every i € [n].

Algorithm 3
Input: A € R™*" € R™and e € (0,1).
def _92 def def
Let Z = ©(e *logm), N = supp(u), and p = Z/|N|.
1. Select each index ¢ € N with probability p and let S be the resulting set.

2. Compute a vector z € R™ such that z; = arg min,cg||As ; — r - uglo forall j € [n].
Return: vector z.

4.2 Implementing Step 3

In Step 3 of Algorithmwe want to compute a (1 + 1% )-approximation Y; of [|A — A, ; (2017
for every j € Uz‘e[\ S C). We present two solutions, an exact algorithm (see Lemma and a
sublinear time sampling-based algorithm (see Lemma|l3).

Lemma 11. Suppose A, B € R™*" are represented by column adjacency arrays. Then, we can
compute in O(||Allo + n) time the measure ||A — Blo.

For our second, sampling-based implementation of Step 3, we make use of an algorithm by Dagum
et al. [L1] for estimating the expected value of a random variable. We note that the runtime of their
algorithm is a random variable, the magnitude of which is bounded w.h.p. within a certain range.

Theorem 12. [[[1]] Let X be a random variable taking values in [0,1] with u 4 E[X] > 0. Let
0 <e€d < 1andpx = max{Var[X],eu}. There is an algorithm with sample access to X that
computes an estimator [i in time t such that for a universal constant c we have:
DPr(l—e)p<p<(Q+eu>1-6 and ii)Prlt>ce ?log(1/8)px/u?] < 6.



We state now our key technical insight, on which we build upon our sublinear algorithm.

Lemma 13. There is an algorithm that, given A, B € R™*" with column adjacency arrays and

|A— Bllo > 1, and given € > 0, computes an estimator Z that satisfies w.h.p. (1 — €)||A — Bllo <

Z < (14 ¢)||A — Bllo. The algorithm runs w.h.p. in time O(n + 6_2% logn}).

We present now our main result in this section.

Theorem 14. There is an algorithm that, given A € R™*"™ with column adjacency arrays and
orPT® > 1, and given j € [n], v € R™ and ¢ € (0,1), outputs an estimator Y that satisfies
whp. (1 —€)|A— A 7)o <Y < (1 +¢)||A— A jvl|lo. The algorithm runs w.h.p. in time
O(min{||Allo, n + e 20~ logn}), where » = OPTW /|| A 0.

To implement Step 3 of Algorithm we simply apply Theoremwith A, eand v = 219 to each
sampled column j € Up<;<iogn41 cw.

5 Algorithms for Boolean £,-rank-1

Our goal is to compute an approximate solution of the Boolean ¢y-rank-1 problem, defined by:

def .
= I

OPT = OPT,4 = min A —uv?|lg, where A € {0,1}m*". 3)
ue{0,1}m,ve{0,1}

In practice, approximating a matrix A by a rank-1 matrix uv” makes most sense if A is close to being
rank-1. Hence, the above optimization problem is most relevant when OPT < || A||o. In this section,
we focus on the case OPT/||Al|o < ¢ for sufficiently small ¢ > 0. We prove the following.

Theorem 15. Given A € {0,1}™*™ with row and column sums, and given ¢ € (0,1/80] with
OPT/||Allo < ¢, we can compute vectors i, v with ||A — ad™ |lo < (14 5¢)OPT + 37¢2|| Al in
time O(min{||Allo +m + n, ¢~ (m + n) log(mn)}).

In combination with Theorem [§ we obtain the following.

Theorem 16. Given A € {0, 1}"*™ with column adjacency arrays and with row and column sums,
for 1 = OPT/||Allo we can compute vectors i, with ||A — @vT ||g < (1 + 500¢)OPT in time
w.h.p. O(min{||Allo + m + n, 9~ (m +n)} - log®(mn)).

A variant of the algorithm from Theorem [I5]can also be used to solve the Boolean ¢-rank-1 problem
exactly. This yields the following theorem, which in particular shows that the problem is in polynomial

time when OPT < O(+/[|A]lo log(mn)).
Theorem 17. Given a matrix A € {0,1}"*™, if OPT 4 /|| Allo < 1/240 then we can exactly solve
the Boolean {y-rank-1 problem in time 2°(OPT/V1I4llo) . poly(mn).

6 Lower Bounds for Boolean £-rank-1

We give now a lower bound of Q2(n/¢) on the number of samples of any 1 + O(¢)-approximation
algorithm for the Boolean ¢y-rank-1 problem, where OPT/|| Al < ¢ as before.

Theorem 18. Let C > 1. Given an n X n Boolean matrix A with column adjacency arrays and

with row and column sums, and given \/log(n)/n < ¢ < 1/100C' such that OPT 4/||Allo < ¢,
computing a (1 + C¢)-approximation of OPT 4 requires to read Q(n/ ) entries of A.

The technical core of our argument is the following lemma.

Lemma 19. Let ¢ € (0,1/2). Let X1,..., X}, be Boolean random variables with expectations
Dly- .-, Pk Wherep; € {1/2 — ¢,1/2 + ¢} for each i. Let A be an algorithm which can adaptively
obtain any number of samples of each random variable, and which outputs bits b; for every i € [1 : k].
Suppose that with probability at least 0.95 over the joint probability space of A and the random
samples, A outputs for at least a 0.95 fraction of all i thatb; = 1ifp; = 1/2+ ¢ and b; = 0
otherwise. Then, with probability at least 0.05, A makes Q(k/$?) samples in total.
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