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We start by deriving the variational parameters for mean-field gradient matching in section 7 followed
by a comparison of methods to estimate parameters and states of the protein signalling transduction
pathway in section 8.1. The subsequent sections demonstrate mean-field gradient matching for
various dynamical systems in the fields of fluid dynamics (i.e. Lorenz 96 system, section 8.2),
electrical engineering (i.e. FitzHugh-Nagumo system, section 8.3), system biology (i.e. glucose
uptake into yeast, section 8.4) and neuroscience (i.e. dynamic causal modelling, section 8.4.1). Lastly,
we compare the different kernels used for the estimation of each system in section 8.4.2.

7 Variational Parameters

The true conditional over ODE parameters is given by:

p(θ | X,Y,φ,γ,σ)
(a)
= p(θ | X,φ,γ)

(b)
= Z−1θ (X)

∫
p(Ẋ | X,θ,φ,γ)p(Ẋ | X,φ)dẊ

(c)
= Z−1θ (X)

∏
k

N
(
fk(X,θ) |mk,Λ

−1
k

)
(d)
= Z−1θ (X)

∏
k

N
(
Bθkθ + bθk |mk,Λ

−1
k

)
(e)
= Z

′−1
θ (X)

∏
k

N
(
θ |
(
BT
θkΛkBθk

)−1
BT
θkΛk(mk − fθk),

(
BT
θkΛkBθk

)−1)
(f)
= N (θ | rθ,Ωθ) ,

where Z−1θ (X) and Z
′−1
θ (X) normalize the distributions and mk and Λk are defined in equations

(6) and (9), respectively. In (a) we notice that θ does not directly depend on the observations Y but
instead indirectly through the states X. In (b) we substitute the product of experts and in (c) we
analytically integrate out the state derivatives. We rewrite the ODE fk as a linear combination of the
ODE parameters (i.e. Bθkθ + bθk

!
= fk(X,θ)) in (d) and in (e) we normalize each factor w.r.t. θ.

In (f) we normalize the product of Gaussians where mean and covariance are given by:

rθ := Ωθ
∑
k

BT
θkΛk(mk − bθk), Ω−1θ :=

∑
k

BT
θkΛkBθk.

The optimal variational parameters for the proxy distribution of ODE parameters are therefore given
by:

λ̂ :=

(
EQΩ−1θ rθ
− 1

2EQΩ−1θ

)
=

(
EQ
∑
k BT

θkΛk(mk − bθk)
− 1

2EQ
∑
k BT

θkΛkBθk

)
Similarly, for the latent states the true conditional distribution is given by:

p(xu | θ,X/{xu},Y,φ,γ) = Z−1u (θ)
∏
k

N
(
fk(X,θ) |mk,Λ

−1
k

)
N (xu | µu(Y),Σu)

(g)
= Z−1u (θ)

∏
k

N
(
Bukxu + buk |mk,Λ

−1
k

)
N (xu | µu(Y),Σu)

= Z
′−1
u (θ)

∏
k

N
(
xu |

(
BT
ukΛkBuk

)−1
BT
ukΛk(mk − buk),

(
BT
ukΛkBuk

)−1)
N (xu | µu(Y),Σu)

= N (xu | ru,Ωu) ,

where Zu(θ) and Z ′u(θ) normalize the distributions. For a partially observed system, the mean
µu(Y) and covariance Σu are given by µu(Y) := σ−2

(
σ−2ATA + Cφ

)−1
ATY and Σ−1u :=
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σ−2ATA + C−1φ , with matrix A accommodating for unobserved states by encoding the linear
relationship between latent states and observations (i.e. Y = AX + E, E ∼ N

(
0, σ2I

)
). Once

more, in (g) we define Buk and buk such that the ODE fk is expressed as a linear combination of the
state xk (i.e. Bukxu + buk

!
= fk(X,θ)). The mean and covariance are given by:

ru := Ω

(∑
k

BT
ukΛk(mk − buk) + Σ−1u µu(Y)

)
, Ω−1u :=

∑
k

BT
ukΛkBuk + Σ−1u .

The optimal variational parameters for the proxy distribution of ODE parameters are therefore given
by:

ψ̂u :=

(
EQΩ−1u ru
− 1

2EQΩ−1u

)
=

(
EQ
∑
k BT

ukΛk(mk − buk) + Σ−1u µu(Y)
− 1

2EQ
∑
k BT

ukΛkBuk + Σ−1u

)
.

12



8 Additional Experiments

8.1 Protein Signalling Transduction Pathway

Throughout this section we use different colors to denote the state dynamics and ODE parameter
estimators of the methods mean-field gradient matching (blue), AGM (green), Bayesian numerical
integration (purple) and Bayesian numerical integration initialized by estimates obtain from mean-
field gradient matching (yellow).

8.1.1 Gaussian Corrupted Data with Variance 0.01

Figure 6 shows the estimation of state dynamics as well as ODE parameters for simulated data of the
protein transduction model with additive Gaussian noise with variance 0.01. All methods, including
mean-field gradient matching, AGM, Bayesian numerical estimation estimate the state dynamics
well. Mean-field gradient matching demonstrates robustness against model misspecification since
it estimates all state dynamics and ODE parameters correctly except for k2 and at the same time
requires a considerably lower runtime than AGM.
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Figure 6: Comparison of estimation techniques by mean-field gradient matching (blue), AGM (green)
and Bayesian numerical integration (purple) for the state dynamics and ODE parameters in the protein
transduction model. Simulated data was corrupted with additive Gaussian noise with a variance of
0.01. Box-plots show the variance of the estimators over ten repeated experiments under the same
conditions.

13



8.1.2 Gaussian Corrupted Data with Variance 0.1

The estimation of state dynamics as well as ODE parameter inference is shown in figure 7 for
simulated data of the protein transduction model with additive Gaussian noise with variance 0.1. All
methods, including mean-field gradient matching, AGM, Bayesian numerical estimation estimate
the state dynamics well. In contrast to AGM, mean-field gradient matching and Bayesian numerical
integration yield more robust parameter estimates since those estimates are similar to the ones
obtained as in a similar experiment with a lower noise level (figure 6). Once more, the runtime of
mean-field gradient matching is considerably lower than AGM.
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Figure 7: Comparison of estimation techniques by mean-field gradient matching (blue), AGM (green)
and Bayesian numerical integration (purple) for the state dynamics and ODE parameters in the protein
transduction model. Simulated data was corrupted with additive Gaussian noise with a variance of
0.1. Box-plots show the variance of the estimators over ten repeated experiments under the same
conditions.
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8.1.3 Unobserved States S and Sd, Gaussian Corrupted Data with Variance 0.01

Figure 8 compares different estimators for the state dynamics and ODE parameters in the protein
transduction model with unobserved states S and Sd. Despite the deliberate model misspecification
mean-field variational inference yields relatively good estimates of both state dynamics compared to
AGM and even Bayesian numerical integration and requires a significantly lower runtime than AGM.
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Figure 8: Comparison of estimation techniques by mean-field gradient matching (blue), AGM (green)
and Bayesian numerical integration (purple) for the state dynamics and ODE parameters in the
protein transduction model with unobserved states S and Sd. Simulated data was corrupted with
additive Gaussian noise with a variance of 0.01. Box-plots show the variance of the estimators
over ten repeated experiments under the same conditions. "Bayes num. int mf" (yellow) denotes
Bayesian numerical integration initialized with state dynamics and parameter estimates obtained
from mean-field gradient matching.

15



8.1.4 Unobserved States S and Sd, Gaussian Corrupted Data with Variance 0.1

Figure 9 compares different estimators for the state dynamics and ODE parameters in the protein
transduction model with unobserved states S and Sd. Despite the deliberate model misspecification
mean-field variational inference (blue) yields relatively good estimates of both state dynamics
compared to AGM and even Bayesian numerical integration and requires a significantly lower
runtime than AGM.
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Figure 9: Comparison of estimation techniques by mean-field gradient matching (blue), AGM (green)
and Bayesian numerical integration (purple) for the state dynamics and ODE parameters in the protein
transduction model with unobserved states S and Sd. Simulated data was corrupted with additive
Gaussian noise with a variance of 0.1. Box-plots show the variance of the estimators over ten repeated
experiments under the same conditions. "Bayes num. int mf" (yellow) denotes Bayesian numerical
integration initialized with state dynamics and parameter estimates obtained from mean-field gradient
matching.
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8.2 Lorenz 96 System

The Lorenz 96 system is a minimalistic weather model that can be scaled arbitrarily as mentioned
previously in section 5.3 where the particular form of ODE’s are shown (equation (18)). Figure 10
demonstrates mean-field gradient matching for simultaneous parameter and state estimation in the
Lorenz 96 system with a total of 1000 states and one third of randomly chosen states remaining
unobserved. Our mean-field gradient matching method demonstrates good simultaneous parameter
and state estimation.
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Figure 10: Mean-field gradient matching is used for parameter and state estimation for the Lorenz 96
system with a total of 1000 states. The first 8 of 1000 states are shown where one third of randomly
chosen states are unobserved. Red bars and curves respectively denote the true parameters and
trajectories and purple denotes their estimation. Both the ODE parameter θ (top left-hand side) as
well as the states are estimated well.

8.3 FitzHugh-Nagumo System

Parameter inference for the FitzHugh-Nagumo system using gradient matching was already studied by
Macdonald et al. [2015]. In this section we investigate the parameter inference using our mean-field
gradient matching approach with the same experimental setup as in Macdonald et al. [2015]. The
ODE’s for the FitzHugh-Nagumo system are given by:

V̇ = ψ

(
V − V 3

3
−R

)
, Ṙ = − 1

ψ
(V − α+ βR) ,

where α and β are the ODE parameters and we assume that the parameter ψ is given and set to ψ = 3.
Notice that applying our mean-field gradient matching is not entirely straightforward since, although
the ODE’s are linear in the parameters α and β and the state R, the ODE’s are not linear in the state
V . To circumvent this we fix the state V to a GP fit through observations of the state V . In other
words, after fixing the state V to it’s GP fit, we don’t re-estimate the state in the mean-field coordinate
ascent framework.

Figure 11 demonstrates our mean-field gradient matching method for the fully observable system as
shown in figure 11. The computational time for the estimation is one second.
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Figure 11: The FitzHugh-Nagumo system is fully observed with an SNR=10. Red bars and curves
respectively denote the true parameters and trajectories and purple denotes their estimation. Black
curves show the trajectories obtained by numerical integration with the estimated ODE parameters.
The ODE parameters α and β are estimated well (left-hand side plot) using mean-field gradient
matching. Error bars indicate one standard deviation.

8.4 Glucose Uptake in Yeast

The ODE’s governing the glucose uptake in yeast are described by mass-action kinetics. We use the
same notation as Schillings et al. [2015] to describe the ODE’s:

ẋeGlc = −k1xeExeGlc + k−1x
e
E−Glc

ẋiGlc = −k2xiExiGlc + k−2x
i
E−Glc

ẋiE−G6P = k4x
i
Ex

i
G6P − k−4xiE−G6P

ẋiE−Glc−G6P = k3x
i
E−Glcx

i
G6P − k−3xiE−Glc−G6P

ẋiG6P = −k3xiE−GlcxiG6P + k−3x
i
E−Glc−G6P − k4xiExiG6P + k−4x

i
E−Glc

ẋeE−Glc = α
(
xiE−Glc − xeE−Glc

)
+ k1x

e
Ex

e
Glc − k−1xeE−Glc

ẋiE−Glc = α
(
xeE−Glc − xiE−Glc

)
− k3xiE−GlcxiG6P + k−3x

i
E−Glc−G6P + k2x

i
Ex

i
Glc − k−2xiE−Glc

ẋeE = β
(
xiE − xeE

)
− k1xeExeGlc + k−1x

e
E−Glc

ẋiE = β (xeE − xE)− k4xiExiG6P + k−4x
i
E−G6P − k2xiExiGlc + k−2x

i
E−Glc

where k1, k−1, k2, k−2, k3, k−3, k4, k−4, α and β are the ODE parameters. Notice that, due to the
mass-action kinetics form of the ODE’s, the ODE’s are linear in the parameters as well as linear in a
single state. We can therefore readily apply our mean-field gradient matching method to estimate
the parameters which is shown in figure 12 for the fully observed system and in figure 13 for the
indirectly observed system. The computational time for both estimations is ten seconds.
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true estimated by mean-field GM numerical integration with estimated parameters

Figure 12: Mean-field gradient matching is used to estimate the ODE parameters of the fully
observed glucose uptake into yeast. Red bars and curves respectively denote the true parameters
and trajectories and purple denotes their estimation. Black curves show the trajectories obtained
by numerical integration with the estimated ODE parameters. Although the ODE parameters are
not estimated perfectly, the state trajectories obtained by numerical integration with the estimated
parameters (black curves) approximate the true trajectories well. The trajectory of the state xiE is not
shown.
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Figure 13: Mean-field gradient matching is used to estimate the ODE parameters of the indirectly
observed glucose uptake into yeast where the states xeGlc, x

i
Glc and xiE−G6P are indirectly observed

through the combination (xeGlc + xiGlc + xiE−G6P )/3. Red bars and curves respectively denote
the true parameters and trajectories and purple denotes their estimation. Black curves show the
trajectories obtained by numerical integration with the estimated ODE parameters. The trajectory of
the state xiE is not shown.
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8.4.1 Dynamic Causal Models

Dynamic causal models (DCM) propose that the activity between neuronal populations are gov-
erned by ODE’s whose parameters and particular form can give insight into the mechanism behind
neurodegenerative diseases. The nonlinear ODE’s for DCM are given by:

ẋ =

A +

m∑
i=1

uiB
(i) +

m∑
j=1

xjD
(j)

x+ Cu neuronal activity

ṡ = x− κs− γ(f − 1) vasosignalling

ḟ = s blood flow induction

v̇ = τ−1
(
f − v1/α

)
blood volume changes

q̇ = τ−1
(
fE(f,E0)/E0 − v1/αq/v

)
deoxyhemoglobin changes

where the matrices A, B, D and C control the endogenous neuronal couplings, the modulation
of connectivity by external inputs u, the nonlinear modulation and the driving inputs, respectively.
The remaining parameters κ, γ, α, τ and E0 are hemodynamic parameters which we treat as given.
Notice that the DCM ODE’s are linear in the neuronal parameters A, B, C and D and linear in a
single neuronal state x as well as in the vasosignalling s. In order to apply our mean-field gradient
matching method we treat only the neuronal states x and the vasosignalling s as unobserved and the
remaining states f , v and q as observed. Similar to the FitzHugh-Nagumo system, we can therefore
fix the states f , v and q by a GP fit through the observations of the states f , v and q. The estimation
of neuronal parameters (i.e. neuronal couplings) as well as the neuronal state trajectories are shown
in figure 14 for the visual attention model (i.e. three state system) with the true parameters taken
from figure 7 in Stephan et al. [2008]. The computational time for the estimation is ten seconds.

ANTICIPATE: EFFICIENT AND
FLEXIBLE MODELLING FOR
DYNAMIC CAUSAL MODELS

                [state,bold_response] =
 simulate_trajectory_with_gm_param_est(state,state_orig,ode_param,bold_response,...
                    time,ode,state_sym,param_sym,symbols);

                plot_results(state,ode_param,bold_response,time,h,
[1,2],odes_true{i},odes_candidates{j});

Model selection
We use BIC and RMSE to score the mechanism used to fit the observations:

11

(V1, unobserved)

(V5, unobserved)(SPC, unobserved)

true estimated by mean-field GM numerical integration with 
estimated parameters

Figure 14: Mean-field gradient matching is used to estimate the ODE parameters of DCM for the
visual attention system. The true ODE parameters were taken from figure 7 in Stephan et al. [2008].
Red bars and curves denote respectively the true parameters and trajectories and purple denotes their
estimation. Black curves show the trajectories obtained by numerical integration with the estimated
ODE parameters. The parameters a(·,·), b(·,·,·), c(·,·) and d(·,·,·) denote the entries of the matrices
A, B(·), C and D(·), respectively. The first subscript gives the row index, the second the column
index and the third the matrix sheet for matrices B and D. The remaining entries of each matrix
are set to zero and are not estimated. Although the ODE parameters are not estimated perfectly, the
neuronal state trajectories obtained by numerical integration with the estimated parameters (black
curves) approximate the true trajectories well. No priors were placed directly on the parameters
except for the self-inhibitory parameters a11, a22 and a33.
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Contrary to existing methods for parameter estimation in DCM, we obtain reasonable parameter
estimates despite not placing any direct priors on the ODE parameters except of the self-inhibitory
parameters a11, a22 and a33.

8.4.2 Kernels

Gaussian process priors assigned to the various systems investigated in this paper, namely Lotka-
Volterra, protein signalling transduction pathway, Lorenz 96, FitzHugh Nagumo, dynamic causal
models and glucose uptake into yeast, are shown in figure 15.

Lotka-Volterra FitzHugh-Nagumo

Protein signalling transduction pathway

Lorenz 96

Glucose uptake into yeastDynamic causal models

SCALABLE VARIATION-
AL INFERENCE FOR DY-

NAMICAL SYSTEMS
writing proxy mean and variance in ./results/Lorenz96/
time taken: 11.2305 seconds
DONE

Published with MATLAB® R2017a

5

SCALABLE VARIATION-
AL INFERENCE FOR DY-

NAMICAL SYSTEMS

Published with MATLAB® R2017a

5

SCALABLE VARIATION-
AL INFERENCE FOR DY-

NAMICAL SYSTEMS

Published with MATLAB® R2017a

5

SCALABLE VARIATION-
AL INFERENCE FOR DY-

NAMICAL SYSTEMS

Published with MATLAB® R2017a

5

MEAN-FIELD VARIATION-
AL INFERENCE FOR

GRADIENT MATCHING WITH
GAUSSIAN PROCESSES

Published with MATLAB® R2017a

7

ANTICIPATE: EFFICIENT AND
FLEXIBLE MODELLING FOR
DYNAMIC CAUSAL MODELS

Gaussian process kernel
Prior on state dynamics.

                [kernel,time.est] =
 kernel_function(kernel_param,state,time.est);

9

Figure 15: Samples from the Gaussian process priors assigned to the various dynamical systems are
shown. Colored lines simply highlight randomly chosen samples. The radial basis function (rbf)
kernel was assigned to four systems and the sigmoid kernel to two other systems.

Ideally, the Gaussian process prior should approximate the functional form of the states. The radial
basis function (rbf) kernel is therefore suitable for the Lotka-Volterra-, Lorenz 96-, FitzHugh-Nagumo-
and Dynamic Causal Models systems. The sigmoid kernel is more suited for the protein signalling
transduction pathway and the glucose uptake in yeast system that exhibit a more steady-state behaviour
over time.
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