
Supplementary Material for
“Dual Discriminator Generative Adversarial Nets”

Tu Dinh Nguyen, Trung Le, Hung Vu, Dinh Phung
Deakin University, Geelong, Australia

Centre for Pattern Recognition and Data Analytics
{tu.nguyen, trung.l, hungv, dinh.phung}@deakin.edu.au

This document presents supplementary material to complement the manuscript entitled “Dual Dis-
criminator Generative Adversarial Nets”. We first describe the pseudo-code of learning algorithm for
our proposed model, then present network architectures and hyperparameter settings in details and
additional experimental results.

1 Framework

In our proposed method, two discriminators D1 and D2, and a generator G are deep (convolutional)
neural networks parameterized by θD1

, θD2
and θG respectively. The pseudo-code of learning those

parameters is describe in Alg. 1. The discriminators and generator are alternatively updated using
stochastic gradient ascent and descent, respectively. The update of D1, D2 can perform in parallel.

Algorithm 1 Alternative training of D2GAN using stochastic gradient ascent and descent.
1: for number of training iterations do
2: Sample a minibatch of M noise samples

(
z(1), z(2), ..., z(M)

)
from the prior pz.

3: Sample a minibatch of M data points
(
x(1),x(2), ...,x(M)

)
from the data distribution pdata.

4: Update the discriminator D1 by ascending along its gradient:

∇θD1

1

M

M∑
m=1

[
α× logD1

(
x(m)

)
−D1

(
G
(
z(m)

))]
5: Update the discriminator D2 by ascending along its gradient:

∇θD2

1

M

M∑
m=1

[
β × logD2

(
G
(
z(m)

))
−D2

(
x(m)

)]
6: Sample a minibatch of M noise samples

(
z(1), z(2), ..., z(M)

)
from the prior pz.

7: Update the generator G by descending along its gradient:

∇θG

1

M

M∑
m=1

[
β × logD2

(
G
(
z(m)

))
−D1

(
G
(
z(m)

))]
8: end for

2 Details of the Experiments

In this section we present the network architectures, hyperparameter settings and additional experi-
mental results of our proposed method for each experiment.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



2.1 Synthetic 2D Gaussian data

First we describe the network architecture, hyperparameter settings and experimental details for
experiment in Section 4.1. The true data is sampled from a 2D mixture of 8 Gaussian distributions
with a covariance matrix 0.02I and means arranged in a circle of zero centroid and radius 2.0. We
use a simple architecture of a generator with two fully connected hidden layers and discriminators
with one hidden layer. All hidden layers contain the same number of 128 ReLU units. The input
layer of generator contains 256 noise units sampled from isotropic multivariate Gaussian distribution
N (0, I). We do not use batch normalization in any layer. We refer to Tab. 1 for more specifications
of the network and hyperparameters.

Table 1: Network architecture and hyperparameters for 2D Gaussian data.

Operation Feature maps Nonlinearity
G (z) : z ∼ N (0, I) 256

Fully connected 128 ReLU
Fully connected 128 ReLU
Fully connected 2 Linear
D1 (x) , D2 (x) 2
Fully connected 128 ReLU
Fully connected 1 Softplus

Learning rate 0.0002
Batch size 512

Number of iterations 25,000
Leaky ReLU slope 0.2

Regularization constants α = 0.1, β = 1.0
Optimizer Adam(β1 = 0.5, β2 = 0.999)

Weight, bias initialization N (µ = 0, σ = 0.01), 0

Besides the results presented in the main manuscript, we have conducted additional experiments to
investigate the performance of our proposed D2GAN on this synthetic data. First we examine the
effect of individual discriminator by teasing out the two discriminators in the loss function. The
model with only D1 fails to learn the generator because D1 (x) became very large while D1 (G (z))
very small (since D1 targets Pdata/PG), and thus D1 easily dominated G. On the other hand, the
model with only D2 had learned a much better generator since D2 (G (z)) was large, thus G could
compete with D2 and generate samples to a certain extent of quality; nonetheless the performance
was still far worse than the current model where both D1 and D2 employed.

We next setup two more experiments wherein the initialized distributions of generator and true data
are disjoint. We freeze the generator and train two discriminators in the first experiment, whilst
we update discriminators once after every 500 updates of generator in the second experiment. The
learning behaviors are (as expected): in the first experiment, the loss would go to infinity since
discriminators target the ratios of two densities whose denominators are close to zero. In the second
experiment, the generator would put all mass to a single point since discriminators are not sufficiently
trained to push generated samples closer to true data. As the result, jointly training and frequently
updating generator and discriminators are important considerations for successful learning for our
proposed model.

2.2 Handwritten digit images

Next we describe the convolutional neural network that is used to predict the label probabilities for
MNIST images. The network contains 2 convolutional layers, followed by a max-pooling and two
fully connected layers, with ReLU and Softmax activations. Dropout is used in the max-pooling layer
and the fully connected layer next to it. This is a simple, yet effective model that can obtain 0.65%
error on MNIST testing set. Tab. 2 reports the network design and hyperparameter settings, where we
note that the dropout rate denotes the probability of dropping a neuron, thus 0.0 means no dropout.

2



Table 2: Network architecture and hyperparameters of convolutional net serving as a MNIST classifier.

Operation Kernel Strides Feature maps Dropout Nonlinearity
Input 28×28×1

Convolution 3×3 1×1 32 0.0 ReLU
Convolution 3×3 1×1 64 0.0 ReLU

Max-pooling 2×2 2×2 64 0.25
Fully connected 128 0.5 ReLU
Fully connected 10 0.0 Softmax

Batch size 128
Number of epochs 30
Leaky ReLU slope 0.2

Learning rate 0.001
Optimizer Adam(β1 = 0.9, β2 = 0.999)

Weight, bias initialization N (µ = 0, σ = 0.01), 0

2.2.1 The standard MNIST

In the grid search on the standard MNIST dataset, we use fully connected layers and refer to Tab. 3
for parameter ranges of all networks. This is an extremely extensive searching that ran at full load on
10 GPU cards for about 10 days. We did not observe substantial differences in the average MODE
scores obtained by different network sizes through the parameter searching. The result reported in
the main manuscript is obtained by our minimal network with the smallest number of layers (2 for all
generator and discriminators) and hidden units (256 for discriminators and 400 for generator) and no
dropout.

Table 3: Grid search specification on the standard MNIST dataset.

Setting Description GAN Reg-GAN D2GAN
nLayerG number of layers in G {2, 3, 4, 5} {2, 3, 4} {2, 3, 4}
nLayerD number of layers in D {2, 3, 4, 5} {2, 3, 4} {2, 3, 4}
sizeG number of neurons in G {400, 800, 1600, 3200} {400, 800, 1600, 3200} {400, 800, 1600, 3200}
sizeD number of neurons in D {128, 256, 512, 1024} {256, 512, 1024} {256, 512, 1024}
dropoutD is to use dropout in D {True, False} {True, False} {True, False}
optimG to use Adam or SGD for G {SGD, Adam} {SGD, Adam} Adam
optimD to use Adam or SGD for D {SGD, Adam} {SGD, Adam} Adam
lr learning rate {0.01, 0.001, 0.0001} {0.01, 0.001, 0.0001} {0.0002, 0.0001}
α regularization constant – – {0.01, 0.05, 0.1, 0.2}
β regularization constant – – {0.01, 0.05, 0.1, 0.2}

2.2.2 MNIST-1K

In the experiment on the extended MNIST-1K dataset, we use a network with convolutional layers
for discriminators and transposed convolutions for the generator, and employ batch normalization for
several layers. This is a more powerful model than the one applied on the standard MNIST. We refer
to Tab. 4 for network architecture and hyperparameter settings. BN is short for batch normalization.
Fig. 1 shows image with RGB color channels generated by our D2GAN. It can be visually observed
that our proposed model can generate very good quality and diverse images in each color channel. In
addition, different numbers can be seen across 3 channels, thus demonstrating that our D2GAN is
capable of generating samples of all 1,000 classes ranging from 000 to 999.

2.3 Natural scene datasets

In the last experiments on three large-scale natural scene datasets (CIFAR-10, STL-10, ImageNet),
we closely follow the network architecture and training procedure of DCGAN. Tabs. (5, 6, 7) report
the specifications of our models trained on CIFAR-10, STL-10 and Imagenet datasets, respectively.
BN is short for batch normalization. The training is terminated after 250 epochs scanning through the
entire training data. To inspect the progress in generating data of our model through the training, we
randomly fix a set of noise samples, and then generate the corresponding data samples after some
certain epochs. Fig. 2 shows the evolution of images generated by our proposed method for the three

3



Table 4: Network architecture and hyperparameters for MNIST-1K dataset.

Operation Kernel Strides Feature maps BN? Nonlinearity
G (z) : z ∼ N (0, I) 256

Fully connected 4×4×512
√

ReLU
Transposed convolution 5×5 2×2 256

√
ReLU

Transposed convolution 5×5 2×2 128
√

ReLU
Transposed convolution 5×5 2×2 3 × Tanh

D1 (x) , D2 (x) 28×28×3
Convolution 5×5 2×2 128 × Leaky ReLU
Convolution 5×5 2×2 256

√
Leaky ReLU

Convolution 5×5 2×2 512
√

Leaky ReLU
Fully connected 1 × Softplus

Batch size 64
Number of epochs 30
Leaky ReLU slope 0.2

Learning rate 0.0002
Regularization constants α = 0.1, β = 0.1

Optimizer Adam(β1 = 0.5, β2 = 0.999)
Weight, bias initialization N (µ = 0, σ = 0.01), 0

Figure 1: Images generated by D2GAN trained on MNIST-1K dataset.

datasets after 0, 50, 100, 200 and 250 epochs. It can be seen that the image quality is improved
with images becoming sharper and objects more recognizable over time. Finally, Figs. (3, 4, 5)
respectively are the enlarged versions of Figs. (5a, 5b, 5c) in the main manuscript. These images are
generated by our D2GAN when the training completely finishes.

4



Table 5: Network architecture and hyperparameters for CIFAR-10 dataset.

Operation Kernel Strides Feature maps BN? Nonlinearity
G (z) : z ∼ Uniform [−1, 1] 100

Fully connected 4×4×512
√

ReLU
Transposed convolution 5×5 2×2 256

√
ReLU

Transposed convolution 5×5 2×2 128
√

ReLU
Transposed convolution 5×5 2×2 3 × Tanh

D1 (x) , D2 (x) 32×32×3
Convolution 5×5 2×2 128 × Leaky ReLU
Convolution 5×5 2×2 256

√
Leaky ReLU

Convolution 5×5 2×2 512
√

Leaky ReLU
Fully connected 1 × Softplus

Batch size 64
Number of iterations 250

Leaky ReLU slope 0.2
Learning rate 0.0002

Regularization constants α = 0.01, β = 0.01
Optimizer Adam(β1 = 0.5, β2 = 0.999)

Weight, bias initialization N (µ = 0, σ = 0.01), 0

Table 6: Network architecture and hyperparameters for STL-10 dataset.

Operation Kernel Strides Feature maps BN? Nonlinearity
G (z) : z ∼ Uniform [−1, 1] 100

Fully connected 4×4×512
√

ReLU
Transposed convolution 5×5 2×2 256

√
ReLU

Transposed convolution 5×5 2×2 128
√

ReLU
Transposed convolution 5×5 2×2 3 × Tanh

D1 (x) , D2 (x) 32×32×3
Convolution 5×5 2×2 128 × Leaky ReLU
Convolution 5×5 2×2 256

√
Leaky ReLU

Convolution 5×5 2×2 512
√

Leaky ReLU
Fully connected 1 × Softplus

Batch size 64
Number of iterations 250

Leaky ReLU slope 0.2
Learning rate 0.0001

Regularization constants α = 0.1, β = 0.1
Optimizer Adam(β1 = 0.5, β2 = 0.999)

Weight, bias initialization N (µ = 0, σ = 0.01), 0

5



Table 7: Network architecture and hyperparameters for ImageNet dataset.

Operation Kernel Strides Feature maps BN? Nonlinearity
G (z) : z ∼ N (0, I) 100

Fully connected 4×4×512
√

ReLU
Transposed convolution 5×5 2×2 256

√
ReLU

Transposed convolution 5×5 2×2 128
√

ReLU
Transposed convolution 5×5 2×2 3 × Tanh

D1 (x) , D2 (x) 32×32×3
Convolution 5×5 2×2 128 × Leaky ReLU
Convolution 5×5 2×2 256

√
Leaky ReLU

Convolution 5×5 2×2 512
√

Leaky ReLU
Fully connected 1 × Softplus

Batch size 64
Number of iterations 250

Leaky ReLU slope 0.2
Learning rate 0.0002

Regularization constants α = 0.0001, β = 0.01
Optimizer Adam(β1 = 0.5, β2 = 0.999)

Weight, bias initialization N (µ = 0, σ = 0.01), 0

Epoch #0 Epoch #50 Epoch #100 Epoch #200 Epoch #250

C
IF

A
R

-1
0

ST
L

-1
0

Im
ag

eN
et

Figure 2: Evolution of images generated by D2GAN trained on CIFAR-10 (top row), STL-10 (middle
row) and ImageNet (bottom row) datasets.

6



Figure 3: Images generated by D2GAN trained on CIFAR-10 dataset.

7



Figure 4: Images generated by D2GAN trained on STL-10 dataset.

8



Figure 5: Images generated by D2GAN trained on ImageNet dataset.

9


