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5.1 Update equations for Parameter and State Estimation

Due to the model assumption in Gorbach et al. [2017], the true conditional distributions p(θ |
X,Y,φ,γ,σ) and p(xu | θ,X−u,Y,φ,γ,σ) are Gaussian distributed, where X−u denotes all
states excluding state xu (i.e. X−u := {x ∈ X | x 6= xu}). For didactical reasons, we write the true
conditional distributions in canonical form:

p(θ | X,Y,φ) = h(θ)× exp
(
ηθ(X,Y,φ,γ,σ)T t(θ)− aθ(ηθ(X,Y,φ,γ,σ)

)

p(xu | θ,X−u,Y,φ) = h(xu)× exp
(
ηu(θ,X−u,Y,φ)T t(xu)− au(ηu(X−u,Y,φ)

)

The particular form of q(θ | λ) and q(xu | ψu) of the mean-field approximations 14, are designed to
be in the same exponential family as the true conditional distributions:

q(θ | λ) := h(θ) exp
(
λT t(θ)− aθ(λ)

)

q(xu | ψu) := h(xu) exp
(
ψTu t(ψu)− au(ψu)

)
,

whose optimal variational parameters are given by:

λ̂ :=

(
EQΩ−1θ rθ
− 1

2EQΩ−1θ

)
, (16)

ψ̂u :=

(
EQΩ−1u ru
− 1

2EQΩ−1u

)
(17)

Next we analytically derive the parameters rθ and Ωθ in equation 16 which we obtain from the true
conditional distribution over ODE parameters:

p(θ | X,Y,φ,γ)
(a)
= p(θ | X,φ,γ)

(b)
= Z−1θ (X)

∫
p(Ẋ | X,θ,φ,γ)p(Ẋ | X,φ)dẊ

(c)
= Z−1θ (X)

∏

k

N
(
fk(X,θ) |mk,Λ

−1
k

)

(d)
= Z−1θ (X)

∏

k

N
(
Bθkθ + bθk |mk,Λ

−1
k

)

(e)
= Z

′−1
θ (X)

∏

k

N
(
θ |
(
BT
θkΛkBθk

)−1
BT
θkΛk(mk − fθk),

(
BT
θkΛkBθk

)−1)

(f)
= N (θ | rθ,Ωθ) ,

where Zθ(X) and Z ′θ(X) normalize the distributions and mk and Λk are defined as above. In
(a) we notice that θ does not directly depend on the observations Y but instead indirectly through
the states X. In (b) we substitute the product of experts and in (c) we analytically integrate out
the state derivatives. We rewrite the ODE fk as a linear combination of the ODE parameters (i.e.
Bθkθ + bθk

!
= fk(X,θ)) in (d) and in (e) we normalize each factor w.r.t. θ. In (g) we normalize the

product of Gaussians where mean and covariance are given by:

rθ := Ωθ
∑

k

BT
θkΛk(mk − bθk), Ω−1θ :=

∑

k

BT
θkΛkBθk.
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Similarly, we analytically derive the parameters ru and Ωu in equation 17 which we obtain from the
true conditional distribution over an individual state:

p(xu | θ,X/{xu},Y,φ,γ) = Z−1u (θ)
∏

k

N
(
fk(X,θ) |mk,Λ

−1
k

)
N (xu | µu(Y),Σu)

(g)
= Z−1u (θ)

∏

k

N
(
Bukxu + buk |mk,Λ

−1
k

)
N (xu | µu(Y),Σu)

= Z
′−1
u (θ)

∏

k

N
(
xu |

(
BT
ukΛkBuk

)−1
BT
ukΛk(mk − buk),

(
BT
ukΛkBuk

)−1)

N (xu | µu(Y),Σu)

= N (xu | ru,Ωu) ,

where Zu(θ) and Z ′u(θ) normalize the distributions. For a partially observed system, the mean
µu(Y) and covariance Σu are given by µu(Y) := σ−2

(
σ−2ATA + Cφ

)−1
ATY and Σ−1u :=

σ−2ATA + C−1φ , with matrix A accommodating for unobserved states by encoding the linear
relationship between latent states and observations (i.e. Y = AX + E, E ∼ N

(
0, σ2I

)
). Once

more, in (e) we define Buk and buk such that the ODE fk is expressed as a linear combination of the
state xk (i.e. Bukxu + buk

!
= fk(X,θ)). The mean and covariance are given by:

ru := Ω

(∑

k

BT
ukΛk(mk − buk) + Σ−1u µu(Y)

)
, Ω−1u :=

∑

k

BT
ukΛkBuk + Σ−1u .
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5.2 Lorenz Attractor

Parameter and state estimation has previously been shown in the experiments section 4 where we
show the phase plots in figure 4. In figure 8 we show the same estimation in the time domain using
mean-field gradient matching by Gorbach et al. [2017] for one sample path.
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Figure 8: Mean-field gradient matching [Gorbach et al., 2017] is used for parameter and state
estimation for the partially observed Lorenz attractor SDE with the y dimension (bottom left)
remaining unobserved. Red trajectories respectively denote the sample paths (some of which are
observed) and purple denotes their estimation. Both the drift parameters as well as the states and
most notably the unobserved state y are estimated well. The experimental setup is the same as the one
used by Vrettas et al. [2011]. We included another sample path (green) to illustrate the stochasticity
of the system.

14



5.3 Lorenz 96

Parameter and state estimation for the Lorenz 96 SDE has also been shown previously in the
experiments section 4. In figure 9 we additionally show the parameter and state trajectory estimation
using mean-field gradient matching by Gorbach et al. [2017] for one sample path.
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Figure 9: Mean-field gradient matching is used for parameter and state estimation for the partially
observed Lorenz 96 SDE. The first 8 of 40 dimensions are shown. Red trajectories respectively
denote the sample paths (some of which are observed) and purple denotes their estimation. Both the
drift parameters as well as the unobserved state trajectories are estimated well. The experimental
setup is the same as the one used by Vrettas et al. [2011]. We included another sample path (green)
to illustrate the stochasticity of the system.
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