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In this Supplement, we expand on the definitions and implementations of Gaussian Processes (GPs)
and Bayesian optimization in BADS (Section A); we give a full description of the BADS algorithm,
including details omitted in the main text (Section B); we report further details of the benchmark
procedure, such as the full list of tested algorithms and additional results (Section C); and, finally, we
briefly discuss the numerical implementation (Section D).

A Gaussian processes for Bayesian optimization in BADS

In this section, we describe definitions and additional specifications of the Gaussian process (GP)
model used for Bayesian optimization (BO) in BADS. Specifically, this part expands on Sections 2.2
and 3.2 in the main text.

GP posterior moments We consider a GP based on a training set X with n points, a vector of
observed function values y, and GP mean function m(x) and GP covariance or kernel function
k(x,x′), with i.i.d. Gaussian observation noise σ2 > 0. The GP posterior latent marginal conditional
mean µ and variance s2 are available in closed form at a chosen point as

µ (x) ≡ µ (x; {X,y} ,θ) =k(x)>
(
K + σ2In

)−1
(y −m(x))

s2 (x) ≡ s2 (x; {X,y} ,θ) = k(x,x)− k(x)>
(
K + σ2In

)−1
k(x)

(S1)

where Kij = k(x(i),x(j)), for 1 ≤ i, j ≤ n, is the kernel matrix, k(x) ≡
(k(x,x(1)), . . . , k(x,x(n)))> is the n-dimensional column vector of cross-covariances, and θ is the
vector of GP hyperparameters.

A.1 Covariance functions

Besides the automatic relevance determination (ARD) rational quadratic (RQ) kernel described in
the main text (and BADS default), we also considered the common squared exponential (SE) kernel

kSE (x,x′) = σ2
f exp

{
−1

2
r2(x,x′)

}
, with r2(x,x′) =

D∑
d=1

1

`2d
(xd − x′d)

2
, (S2)

and the ARD Matérn 5/2 kernel [1],

kM52 (x,x′) =σ2
f

[
1 +

√
5r2(x,x′) +

5

3
r2(x,x′)

]
exp

{
−
√

5r2(x,x′)
}
, (S3)

where σ2
f is the signal variance, and `1, . . . , `D are the kernel length scales along each coordinate.

Note that the RQ kernel tends to the SE kernel for α→∞.

The Matérn 5/2 kernel has become a more common choice for Bayesian global optimization because
it is only twice-differentiable [1], whereas the SE and RQ kernels are infinitely differentiable – a
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stronger assumption of smoothness which may cause extrapolation issues. However, this is less of a
problem for a local interpolating approximation (as in BADS) than it is for a global approach, and in
fact we find the RQ kernel to work well empirically (see main text).

Composite periodic kernels We allow the user to specify one or more periodic (equivalently,
circular) coordinate dimensions P ⊆ {1, . . . , D}, which is a feature of some models in computational
neuroscience (e.g., the preferred orientation of a neuron, as in the ‘neuronal selectivity’ problem
set [2] of the CCN17 benchmark; see Section 4.3 in the main text). For a chosen base stationary
covariance function k0 (e.g., RQ, SE, M5/2), we define the composite ARD periodic kernel as

kPER(x,x′; k0, P ) = k0 (t(x), t(x′)) , with


[t(x)]d = xd if d /∈ P
[t(x)]d = sin

(
πxd

Ld

)
if d ∈ P

[t(x)]d+|P | = cos
(
πxd

Ld

)
if d ∈ P

(S4)

for 1 ≤ d ≤ D, where Ld is the period in the d-th coordinate dimension, and the length scale `d of k0
is shared between (d, d+ |P |) pairs when d ∈ P . In BADS, the period is determined by the provided
hard bounds as Ld = UBd − LBd (where the hard bounds are required to be finite).

A.2 Construction of the training set

We construct the training set X according to a simple subset-of-data [3] local GP approximation.
Points are added to the training set sorted by their `-scaled distance r2 from the incumbent xk. The
training set contains a minimum of nmin = 50 points (if available in the cache of all points evaluated
so far), and then up to 10×D additional points with r ≤ 3ρ(α), where ρ(α) is a radius function that
depends on the decay of the kernel. For a given stationary kernel of the form k(x,x′) = k(r2(x,x′)),
we define ρ as the distance such that k(2ρ2) ≡ 1/(σ2

fe). We have then

ρSE = 1, ρM52 ≈ 0.92, and ρRQ(α) =
√
α(e1/α − 1), (S5)

where for example ρRQ(1) ≈ 1.31, and limα→∞ ρRQ(α) = 1.

A.3 Treatment of hyperparameters

We fit the GP hyperparameters by maximizing their posterior probability (MAP), p(θ|X,y) ∝
p(θ,X,y), which, thanks to the Gaussian likelihood, is available in closed form as [4]

ln p(y,X,θ) = −1

2
ln |K + σ2In| −

1

2
y>
(
K + σ2In

)−1
y + ln phyp(θ) + const, (S6)

where In is the identity matrix in dimension n (the number of points in the training set), and phyp(θ)
is the prior over hyperparameters, described in the following.

Hyperparameter prior We adopt an approximate empirical Bayes approach by defining the prior
based on the data in the training set, that is phyp = phyp(θ; X,y). Empirical Bayes can be intended
as a quick, heuristic approximation to a proper but more expensive hierarchical Bayesian approach.
We assume independent priors for each hyperparameter, with bounded (truncated) distributions.
Hyperparameter priors and hard bounds are reported in Table S1. In BADS, we include an observation
noise parameter σ > 0 also for deterministic objectives f , merely for the purpose of fitting the GP,
since it has been shown to yield several advantages [5]. In particular, we assume a prior such that
σ decreases as a function of the poll size ∆poll

k , as the optimization ‘zooms in’ to smaller scales.
Another distinctive choice for BADS is that we set the mean for the GP mean equal to the 90-th
percentile of the observed values in the current training set y, which encourages the exploration to
remain local.

Hyperparameter optimization We optimize Eq. S6 with a gradient-based optimizer (see Section
D), providing the analytical gradient to the algorithm. We start the optimization from the previous
hyparameter values θprev. If the optimization seems to be stuck in a high-noise mode, or we find an
unusually low value for the GP mean m, we attempt a second fit starting from a draw from the prior
averaged with θprev. If the optimization fails due to numerical issues, we keep the previous value of
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Hyperparameter Prior Bounds

GP kernel
Length scales `d ln `d ∼ NT

(
1
2 (ln rmax + ln rmin), 14 (ln rmax − ln rmin)2

)
[∆poll

min, Ld]
Signal variability σf lnσf ∼ NT

(
ln SD(y), 22

)
[10−3, 109]

RQ kernel shape α lnα ∼ NT (1, 1) [−5, 5]

GP observation noise σ lnσ ∼ NT (lnσest, 1) [4 · 10−4, 150]

deterministic f σest =
√

10−3∆poll
k

noisy f σest = 1 (or user-provided estimate)

GP mean m m ∼ N
(
Q0.9(y), 1

52 (Q0.9(y)− Q0.5(y))2
)

(−∞,∞)

Table S1: GP hyperparameter priors. Empirical Bayes priors and bounds for GP hyperparameters.
N
(
µ, σ2

)
denotes the normal pdf with mean µ and variance σ2, and NT (·, ·) the truncated normal,

defined within the bounds specified in the last column. rmax and rmin are the maximum (resp.,
minimum) distance between any two points in the training set; ∆poll

min is the minimum poll size (default
10−6); Ld is the parameter range (UBd − LBd), for 1 ≤ d ≤ D; SD(·) denotes the standard deviation
of a set of elements; ∆poll

k is the poll size parameter at the current iteration k; Qq(·) denotes the q-th
quantile of a set of elements (Q0.5 is the median).

the hyperparameters. We refit the hyperparameters every 2D to 5D function evaluations; more often
earlier in the optimization, and whenever the current GP is particularly inaccurate at predicting new
points. We test accuracy on newly evaluated points via a Shapiro-Wilk normality test on the residuals
[6], z(i) =

(
y(i) − µ(x(i))

)
/
√
s2(x(i)) + σ2 (assumed independent, in first approximation), and

flag the approximation as inaccurate if p < 10−6.

A.4 Acquisition functions

Besides the GP lower confidence bound (LCB) metric [7] described in the main text (and default
in BADS), we consider two other choices that are available in closed form using Eq. S1 for the GP
predictive mean and variance.

Probability of improvement (PI) This strategy maximizes the probability of improving over the
current best minimum ybest [8]. For consistency with the main text, we define here the negative PI,

aPI (x; {Xn,yn} ,θ) = −Φ (γ(x)) , γ(x) =
ybest − ξ − µ (x)

s (x)
(S7)

where ξ ≥ 0 is an optional trade-off parameter to promote exploration, and Φ (·) is the cumulative
distribution function of the standard normal. aPI is known to excessively favor exploitation over
exploration, and it is difficult to find a correct setting for ξ to offset this tendency [9].

Expected improvement (EI) We then consider the popular predicted improvement criterion [1, 10,
11]. The expected improvement over the current best minimum ybest (with an offset ξ ≥ 0) is defined
as E [max {ybest − y, 0}]. For consistency with the main text we consider the negative EI, which can
be computed in closed form as

aEI (x; {X,y} ,θ) = −s (x) [γ(x)Φ (γ(x)) +N (γ(x))] (S8)

where N (·) is the standard normal pdf.

B The BADS algorithm

We report here extended details of the BADS algorithm, and how the various steps of the MADS
framework are implemented (expanding on Sections 3.1 and 3.3 of the main text). Main features of
the algorithm are summarized in Table S2. Refer also to Algorithm 1 in the main text.
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Feature Description (defaults)

Surrogate model GP
Hyperparameter treatment optimization
GP training set size nmax 70 (D = 2), 250 (D = 20) (min 200 for noisy problems)
POLL directions generation LTMADS with GP rescaling
SEARCH set generation Two-step ES algorithm with search matrix Σ
SEARCH evals. (nsearch) max{D, 3 + bD/2c}
Aquisition function LCB
Supported constraints None, bound, and non-bound via a barrier function c
Initial mesh size ∆mesh

0 = 2−10,∆poll
k = 1

Implementation bads (MATLAB)
Table S2: Summary of features of BADS.

B.1 Problem definition and initialization

BADS solves the optimization problem

fmin = min
x∈X

f(x) with X ⊆ RD

(optional) c(x) ≤ 0
(S9)

where X is defined by pairs of hard bound constraints for each coordinate, LBd ≤ xd ≤ UBd for
1 ≤ d ≤ D, and we allow LBd ∈ R ∪ {−∞} and similarly UBd ∈ R ∪ {∞}. We also consider
optional non-bound constraints specified via a barrier function c : X → R that returns constraint
violations. We only consider solutions such that c is zero or less.

Algorithm input The algorithm takes as input a starting point x0 ∈ X ; vectors of hard lower/upper
bounds LB, UB; optional vectors of plausible lower/upper bounds PLB, PUB; and an optional barrier
function c. We require that, if specified, c(x0) ≤ 0; and for each dimension 1 ≤ d ≤ D, LBd ≤
(x0)d ≤ UBd and LBd ≤ PLBd < PUBd ≤ UBd. Plausible bounds identify a region in parameter space
where most solutions are expected to lie, which in practice we usually think of as the region where
starting points for the algorithm would be drawn from. Hard upper/lower bounds can be infinite, but
plausible bounds need to be finite. As an exception to the above bound ordering, the user can specify
that a variable is fixed by setting (x0)d = LBd = UBd = PLBd = PUBd. Fixed variables become
constants, and BADS runs on an optimization problem with reduced dimensionality. The user can
also specify circular or periodic dimensions (such as angles), which change the definition of the GP
kernel as per Section A.1. The user can specify whether the objective f is deterministic or noisy
(stochastic), and in the latter case provide a coarse estimate of the noise (see Section B.5).

Transformation of variables and constraints Problem variables whose hard bounds are strictly
positive and UBd ≥ 10 · LBd are automatically converted to log space for all internal calculations
of the algorithm. All variables are also linearly rescaled to the standardized box [−1, 1]D such that
the box bounds correspond to [PLB, PUB] in the original space. BADS converts points back to the
original coordinate space when calling the target function f or the barrier function c, and at the end
of the optimization. BADS never violates constraints, by removing from the POLL and SEARCH sets
points that violate either bound or non-bound constraints (c(x) > 0). During the SEARCH stage, we
project candidate points that violate a bound constraint to the closest mesh point within the bounds.
We assume that c(·), if provided, is known and inexpensive to evaluate.

Objective scaling We assume that the scale of interest for differences in the objective (and the scale
of other features, such as noise in the proximity of the solution) is of order ∼ 1, and that differences
in the objective less than 10−3 are negligible. For this reason, BADS is not invariant to arbitrary
rescalings of the objective f . This assumption does not limit the actual values taken by the objective
across the optimization. If the objective f is the log likelihood of a dataset and model (e.g., summed
over trials), these assumptions are generally satisfied. They would not be if, for example, one were to
feed to BADS the average log likelihood per trial, instead of the total (summed) log likelihood. In
cases in which f has an unusual scale, we recommend to rescale the objective such that the magnitude
of differences of interest becomes of order ∼ 1.
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Initialization We initialize ∆poll
0 = 1 and ∆mesh

0 = 2−10 (in standardized space). The initial
design comprises of the provided starting point x0 and ninit = D additional points chosen via a
low-discrepancy Sobol quasirandom sequence [12] in the standardized box, and forced to be on the
mesh grid. If the user does not specify whether f is deterministic or stochastic, the algorithm assesses
it by performing two consecutive evaluations at x0. For all practical purposes, a function is deemed
noisy if the two evaluations at x0 differ more than 1.5 · 10−11.1

B.2 SEARCH stage

In BADS we perform an aggressive SEARCH stage in which, in practice, we keep evaluating candidate
points until we fail for nsearch consecutive steps to find a sufficient improvement in function value,
with nsearch = max{D, b3 +D/2c}; and only then we switch to the POLL stage. At any iteration k,
we define an improvement sufficient if fprev − fnew ≥ (∆poll

k )3/2, where ∆poll
k is the poll size.

In each SEARCH step we choose the final candidate point to evaluate, xsearch, by performing a fast,
approximate optimization of the chosen acquisition function in the neighborhood of the incumbent
xk, using a two-step evolutionary heuristic inspired by CMA-ES [13]. This local search is governed
by a search covariance matrix Σ, and works as follows.

Local search via two-step evolutionary strategy We draw a first generation of candidates s(i)I ∼
N (xk, (∆

poll
k )2Σ) for 1 ≤ i ≤ nsearch, where we project each point onto the closest mesh point (see

Section 2.1 in the main text); Σ is a search covariance matrix with unit trace,2 and nsearch = 211 by
default. For each candidate point, we assign a number of offsprings inversely proportionally to the
square root of its ranking according to a(s

(i)
I ), for a total of nsearch offsprings [13]. We then draw a

second generation s(i)II ∼ N (s
(πi)
I , λ2(∆poll

k )2Σ) and project it onto the mesh grid, where πi is the
index of the parent of the i-th candidate in the 2nd generation, and 0 < λ ≤ 1 is a zooming factor (we
choose λ = 1/4). Finally, we pick xsearch = arg mini a(s

(i)
II ). At each step, we remove candidate

points that violate non-bound constraints (c(x) > 0), and we project candidate points that fall outside
hard bounds to the closest mesh point inside the bounds.

Hedge search The search covariance matrix can be constructed in several ways. Across SEARCH
steps we use both a diagonal matrix Σ` with diagonal

(
`21/|`|2, . . . , `2D/|`|2

)
, and a matrix ΣWCM

proportional to the weighted covariance matrix of points in X (each point weighted according to
a function of its ranking in terms of objective values yi, see [13]). At each step, we compute the
probability of choosing Σs, with s ∈ {`,WCM}, according to a hedging strategy taken from the
Exp3 HEDGE algorithm [14],

ps =
eβHgs∑
s′ e

βHgs′
(1− γHnΣ) + γH (S10)

where βH = 1, γH = 0.125, nΣ = 2 is the number of considered search matrices, and gs is a running
estimate of the reward for option s. The running estimate is updated each SEARCH step as

gnew
s = αHg

old
s +

∆fs

ps∆
poll
k

(S11)

where αH = 0.11/(2D) is a decay factor, and ∆fs is the improvement in objective of the s-th strategy
(0 if s was not chosen in the current SEARCH step). This method allows us to switch between
searching along coordinate axes (Σ`), and following an approximation of the local curvature around
the incumbent (ΣWCM), according to their track record of cumulative improvement.

B.3 POLL stage

We perform the POLL stage only after a SEARCH stage that did not produce a sufficient improvement
after nsearch steps. We incorporate the GP approximation in the POLL in two ways: when constructing
the set of polling directions Dk, and when choosing the polling order.

1Since this simple test might fail, users are encouraged to actively specify whether the function is noisy.
2Unit trace (sum of diagonal entries) for Σ implies that a draw ∼ N (0,Σ) has unit expected squared length.
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Set of polling directions At the beginning of the POLL stage, we generate a preliminary set of
directions D′k according to the random LTMADS algorithm [15]. We then transform it to a rescaled
set Dk based on the current GP kernel length scales: for v′ ∈ D′k, we define a rescaled vector v
with vd ≡ v′d · ωd, for 1 ≤ d ≤ D, and ωd ≡ min{max{10−6,∆mesh

k , `d/GM(`)}, UBd − LBd},
where GM(·) denotes the geometric mean, and we use PLBd (resp. PUBd) whenever UBd (resp. LBd)
is unbounded. This construction of Dk deviates from the standard MADS framework. However,
since the applied rescaling is bounded, we could redefine the mesh parameters and the set of polling
directions to accomodate our procedure (as long as we appropriately discretize Dk). We remove from
the poll set points that violate constraints, if present.

Polling order Since the POLL is opportunistic, we evaluate points in the poll set starting from most
promising, according to the ranking given by the chosen acquisition function [16].

B.4 Update and termination

If the SEARCH stage was successful in finding a sufficient improvement, we skip the POLL, move the
incumbent and start a new iteration, without changing the mesh size (note that mesh expansion under
a success is not required in the MADS framework [15]). If the POLL stage was executed, we verify
if overall the iteration was successful or not, update the incumbent in case of success, and double
(halven, in case of failure) the mesh size (τ = 2). If the optimization has been stalling (no sufficient
improvement) for more than three iterations, we accelerate the mesh contraction by temporarily
switching to τ = 4.

The optimization stops when one of these conditions is met:

• the poll size ∆poll
k goes below a threshold ∆poll

min (default 10−6);
• the maximum number of objective evaluations is reached (default 500×D);
• the algorithm is stalling, that is there has no sufficient improvement of the objective f , for

more than 4 + bD/2c iterations.

The algorithm returns the optimum xend (transformed back to original coordinates) that has the lowest
objective value yend. For a noisy objective, we return instead the stored point with the lowest quantile
qβ across iterations, with β = 0.999; see Section 3.4 in the main text. We also return the function
value at the optimum, yend, or, for a noisy objective, our estimate thereof (see below, Section B.5).
See the online documentation for more information about the returned outputs.

B.5 Noisy objective

For noisy objectives, we change the behavior and default parameters of the algorithm to offset
measurement uncertainty and allow for an accurate local approximation of f . First, we:

• double the minimum number of points added to the GP training set, nmin = 100;
• increase the total number of points (within radius ρ) to at least 200, regardless of D;
• increase the initial design set size to ninit = 20 points;
• double the number of allowed stalled iterations before stopping.

Uncertainty handling The main difference with a deterministic objective is that, due to observation
noise, we cannot simply use the output values yi as ground truth in the SEARCH and POLL stages.
Instead, we adopt a plugin approach [17] and replace yi with the GP latent quantile function qβ [18]
(see Eq. 3 in the main text). Moreover, we modify the MADS procedure by keeping an incumbent set
{xi}ki=1, where xi is the incumbent at the end of the i-th iteration. At the end of each POLL stage,
we re-evaluate qβ for all elements of the incumbent set, in light of the new points added to the cache
which might change the GP prediction. We select as current (active) incumbent the point with lowest
qβ(xi). During optimization, we set β = 0.5 (mean prediction only), which promotes exploration.
For the last iteration, we instead use a conservative βend = 0.999 to select the optimum xend returned
by the algorithm in a robust manner. For a noisy objective, instead of the noisy measurement yend,
we return either our best GP prediction µ(xend) and its uncertainty s(xend), or, more conservatively,
an estimate of E[f(xend)] and its standard error, obtained by averaging Nfinal function evaluations
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at xend (default Nfinal = 10). The latter approach is a safer option to obtain an unbiased value of
E[f(xend)], since the GP approximation may occasionally fail or have substantial bias.

Noise estimate The user can optionally provide a noise estimate σest which is used to set the
mean of the hyperprior over the observation noise σ (see Table S1). We recommend to set σest to
the standard deviation of the noisy objective in the proximity of a good solution. If the problem
has tunable precision (e.g., number of samples for log likelihoods evaluated via Monte Carlo), we
recommend to set it, compatibly with computational cost, such that the standard deviation of noisy
evaluations in the neighborhood of a good solution is of order 1.

C Benchmark

We tested the performance of BADS on a large set of artificial and real problems and compared it with
that of many optimization methods with implementation available in MATLAB (R2015b, R2017a).3
We include here details that expand on Section 4.1 of the main text.

C.1 Algorithms

Package Algorithm Source Ref. Noise Global

bads Bayesian Adaptive Direct Search GitHub page 4 This X ≈
fminsearchbnd Nelder-Mead (fminsearch) w/ bounded domain File Exchange5 [19] 7 7
cmaes Covariance Matrix Adaptation Evolution Strategy Author’s website6 [13] 7 ≈
— (active) CMA-ES with active covariance adaptation — [20] 7 ≈
— (noise) CMA-ES with uncertainty handling — [21] X ≈
mcs Multilevel Coordinate Search Author’s website7 [22] 7 X
snobfit Stable Noisy Optimization by Branch and FIT Author’s website8 [23] X X
global GLOBAL Author’s website9 [24] 7 X
randsearch Random search GitHub page10 [25] 7 X

fmincon Interior point (interior-point, default) Opt. Toolbox [26] 7 7
— (sqp) Sequential quadratic programming — [27] 7 7
— (active-set) Active-set — [28] 7 7
patternsearch Pattern search Global Opt. Toolbox [29] 7 7
ga Genetic algorithms Global Opt. Toolbox [30] 7 ≈
particleswarm Particle swarm Global Opt. Toolbox [31] 7 ≈
simulannealbnd Simulated annealing w/ bounded domain Global Opt. Toolbox [32] 7 ≈
bayesopt Vanilla Bayesian optimization Stats. & ML Toolbox [1] X X

Table S3: Tested algorithms. Top: Freely available algorithms. Bottom: Algorithms in MATLAB’s
Optimization, Global Optimization, and Statistics and Machine Learning toolboxes. For all algorithms
we note whether they explicitly deal with noisy objectives (noise column), and whether they are local
or global algorithms (global column). Global methods (X) potentially search the full space, whereas
local algorithms (7) can only find a local optimum, and need a multi-start strategy. We denote with
(≈) semi-local algorithms with intermediate behavior – semi-local algorithms might be able to escape
local minima, but still need a multi-start strategy.

The list of tested algorithms is reported in Table S3. For all methods, we used their default options
unless stated otherwise. For BADS, CMA-ES, and bayesopt, we activated their uncertainty handling
option when dealing with noisy problems (for CMA-ES, see [21]). For noisy problems of the CCN17
set, within the fmincon family, we only tested the best representative method (active-set), since
we found that these methods perform comparably to random search on noisy problems (see Fig S1

3MATLAB’s bayesopt optimizer was tested on version R2017a, since it is not available for R2015b.
4https://github.com/lacerbi/bads
5https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd--fminsearchcon.
6https://www.lri.fr/~hansen/cmaes_inmatlab.html
7https://www.mat.univie.ac.at/~neum/software/mcs/
8http://www.mat.univie.ac.at/~neum/software/snobfit/
9http://www.inf.u-szeged.hu/~csendes/index_en.html

10https://github.com/lacerbi/neurobench/tree/master/matlab/algorithms
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right, and Fig 1, right panel, in the main text). For the combinatorial game-playing problem subset in
the CCN17 test set, we used the settings of MCS provided by the authors as per the original study
[33]. We note that we developed algorithmic details and internal settings of BADS by testing it
on the CEC14 test set for expensive optimization [34] and on other model-fitting problems which
differ from the test problems presented in this benchmark. For bayesopt, we allowed up to 300
training points for the GP, restarting the BO algorithm from scratch with a different initial design
every 300 BO iterations (until the total budget of function evaluations was exhausted). The choice of
300 iterations already produced a large average algorithmic overhead of∼ 8 s per function evaluation.
As acquisition function, we used the default EI-per-second [1], except for problems for which the
computational cost is constant across all parameter space, for which we used the simple EI. All
algorithms in Table S3 accept hard bound constraints lb, ub, which were provided with the BBOB09
set and with the original studies in the CCN17 set. For all studies in the CCN17 set we also asked
the original authors to provide plausible lower/upper bounds plb, pub for each parameter, which
we would use for all problems in the set (if not available, we used the hard bounds instead). For all
algorithms, plausible bounds were used to generate starting points. We also used plausible bounds (or
their range) as inputs for algorithms that allow the user to provide additional information to guide the
search, e.g. the length scale of the covariance matrix in CMA-ES, the initialization box for MCS, and
plausible bounds in BADS.

C.2 Procedure

For all problems and algorithms, for the purpose of our benchmark, we first transformed the problem
variables according to the mapping described in ‘Transformation of variables and constraints’ (Section
B.1). In particular, this transformation maps the plausible region to the [−1, 1]D hypercube, and
transforms to log space positive variables that span more than one order of magnitude. This way, all
methods dealt with the same standardized domains. Starting points during each optimization run
were drawn uniformly randomly from inside the box of provided plausible bounds.

For deterministic problems, during each optimization run we kept track of the best (lowest) function
value ytbest found so far after t function evaluations. We define the immediate regret (or error) at time
t as ytbest − ymin, where ymin is the true minimum or our best estimate thereof, and we use the error to
judge whether the run is a success at step t (error less than a given tolerance ε). For problems in the
BBOB09 set (both noiseless and noisy variants), we know the ground truth ymin. For problems in the
CCN17 set, we do not know ymin, and we define it as the minimum function value found across all
optimization runs of all algorithms (≈ 3.75 · 105 ×D function evaluations per noiseless problem),
with the rationale that it would be hard to beat this computational effort. We report the effective
performance of an algorithm with non-negligible fractional overhead o > 0 by plotting at step t× o
its performance at step t, which corresponds to a shift of the performance curve when t is plotted in
log scale (Fig 2 in the main text).11

For noisy problems, we care about the true function value(s) at the point(s) returned by the algorithm,
since, due to noise, it is possible for an algorithm to visit a neighborhood of the solution during
the course of the optimization but then return another point. For each noisy optimization run, we
allowed each algorithm to return up to three solutions, obtained either from multiple sub-runs, or
from additional outputs available from the algorithm, such as with MCS, or with population-based
methods (CMA-ES, ga, and particleswarm). If more than three candidate solutions were available,
we gave precedence to the main output of the algorithm, and then we took the two additional solutions
with lowest observed function value. We limited the number of candidates per optimization run
to allow for a fair comparison between methods, since some methods only return one point and
others potentially hundreds (e.g., ga) – under the assumption that evaluating the true value of the log
likelihood for a given candidate would be costly. For the combinatorial game-playing problem subset
in the CCN17 set, we increased the number of allowed solutions per run to 10 to match the strategy
used in the original study [33]. For noisy problems in the CCN17 set, we estimated the log likelihood
at each provided candidate solution via 200 function evaluations, and took the final estimate with
lowest average.

11We did not apply this correction when plotting the results of vanilla BO (bayesopt), since the algorithm’s
performance is already abysmal even without accounting for the substantial overhead.
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For plotting, we determined ranking of the algorithms in the legend proportionally to the overall per-
formance (area under the curve), across iterations (deterministic problems) or across error tolerances
(noisy problems.)

C.3 Alternative benchmark parameters

In our benchmark, we made some relatively arbitrary choices to assess algorithmic performance, such
as the range of tolerances ε or the number of function evaluations. We show here that our findings
are robust to variations in these parameters, by plotting results from the BBOB09 set with a few key
changes (see Fig 1 in the main text for comparison). First, we restrict the error tolerance range for
deterministic functions to ε ∈ [0.1, 1] instead of the wider range ε ∈ [0.01, 10] used in the main
text (Fig S1 left and middle). This narrower range covers realistic practical requirements for model
selection. Second, we reran the BBOB09 noisy benchmark, allowing 500×D functions evaluation,
as opposed to 200×D in the main text (Fig S1 right). Our main conclusions do not change, in that
BADS performs on par with or better than other algorithms.
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Figure S1: Artificial test functions (BBOB09). Same as Fig 1 in the main text, but with with
alternative benchmark parameters (in bold). Left & middle: Noiseless functions. Fraction of
successful runs (ε ∈ [0.1,1]) vs. # function evaluations per # dimensions, for D ∈ {3, 6, 10, 15}
(96 test functions); for different BADS configurations (left) and all algorithms (middle). Right:
Heteroskedastic noise. Fraction of successful runs at 500×D objective evaluations vs. tolerance ε.

D Numerical implementation

BADS is currently freely available as a MATLAB toolbox, bads (a Python version is planned).

The basic design of bads is simplicity and accessibility for the non-expert end user. First, we
adopted an interface that resembles that of other common MATLAB optimizers, such as fminsearch
or fmincon. Second, bads is plug-and-play, with no requirements for installation of additional
toolboxes or compiling C/C++ code via mex files, which usually requires specific expertise. Third,
bads hides most of its complexity under the hood, providing the standard user with thoroughly tested
default options that need no tweaking.

For the expert user or developer, bads has a modular design, such that POLL set generation, the
SEARCH oracle, acquisition functions (separately for SEARCH and POLL), and initial design can be
freely selected from a large list (under development), and new options are easy to add.

GP implementation We based our GP implementation in MATLAB on the GPML Toolbox [35]
(v3.6), modified for increased efficiency of some algorithmic steps, such as computation of gradi-
ents,12, and we added specific functionalities. We optimize the GP hyperparameters with fmincon
in MATLAB (if the Optimization Toolbox is available), or otherwise via a the minimize function
provided with the GPML package, modified to support bound constraints.

12We note that version 4.0 of the GPML toolbox was released while BADS was in development. GPML v4.0
solved efficiency issues of previous versions, and might be supported in future versions of BADS.
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