
Appendix
A Mathematical details of CCA and SVCCA

Canonical Correlation of X,Y Finding maximal correlations between X,Y can be expressed as
finding a, b to maximise:

aTΣXY b√
aTΣXXa

√
bTΣY Y b

where ΣXX ,ΣXY ,ΣY X ,ΣY Y are the covariance and cross-covariance terms. By performing the
change of basis x̃̃x̃x1 = Σ

1/2
xx a and ỹ̃ỹy1 = Σ

1/2
Y Y b and using Cauchy-Schwarz we recover an eigenvalue

problem:

x̃̃x̃x1 = argmax

[
xTΣ

−1/2
XX ΣXY Σ−1Y Y ΣY XΣ

−1/2
XX x

||x||

]
(*)

SVCCA Given two subspaces X = {xxx1, ...,xxxm1
}, Y = {yyy1, ..., yyym2

}, SVCCA first performs a
singular value decomposition on X,Y . This results in singular vectors {x′x′x′1, ...,x′x′x′m1

} with associ-
ated singular values {λ1, ..., λm1

} (for X , and similarly for Y). Of these m1 singular vectors, we
keep the top m′1 where m′1 is the smallest value that

∑m′1
i=1 |λi|(≥ 0.99

∑m1

i=1 |λi|). That is, 99% of
the variation of X is explainable by the top m′1 vectors. This helps remove directions/neurons that
are constant zero, or noise with small magnitude.

Then, we apply Canonical Correlation Analysis (CCA) to the sets {x′x′x′1, ...,x′x′x′m′1}, {y
′y′y′1, ..., y

′y′y′m′2} of
top singular vectors.

CCA is a well established statistical method for understanding the similarity of two different sets
of random variables – given our two sets of vectors {x′x′x′1, ...,x′x′x′m′1}, {y

′y′y′1, ..., y
′y′y′m′2}, we wish to find

linear transformations, WX ,WY that maximally correlate the subspaces. This can be reduced to
an eigenvalue problem. Solving this results in linearly transformed subspaces X̃, Ỹ with directions
x̃xxi, ỹyyi that are maximally correlated with each other, and orthogonal to x̃xxj , ỹyyj , j < i. We let ρi =
corr(x̃xxi, ỹyyi). In summary, we have:

SVCCA Summary

1. Input: X,Y
2. Perform: SVD(X), SVD(Y). Output: X ′ = UX, Y ′ = V Y

3. Perform CCA(X ′, Y ′). Output: X̃ = WXX
′, Ỹ = WY Y

′ and corrs =
{ρ1, . . . ρmin(m1,m2)}

B Additional Proofs and Figures from Section 2.1

Proof of Orthonormal and Scaling Invariance of CCA:

We can see this using equation (*) as follows: suppose U, V are orthonormal transforms applied to
the sets X,Y . Then it follows that ΣaXX becomes UΣaXXU

T , for a = {1,−1, 1/2,−1/2}, and
similarly for Y and V . Also note ΣXY becomes UΣXY V

T . Equation (*) then becomes

x̃1 = argmax

[
xTUΣ

−1/2
XX ΣXY Σ−1Y Y ΣY XΣ

−1/2
XX UTx

||x||

]
So if ũ is a solution to equation (*), then Uũ is a solution to the equation above, which results in the
same correlation coefficients.

B.0.1 The importance of SVD: how many directions matter?

While CCA is excellent at identifying useful learned directions that correlate, independent of certain
common transforms, it doesn’t capture the full picture entirely. Consider the following setting:

11

5

0

5

10

15

20

80

60

40

20

0

20

40

0 2000 4000 6000 8000 10000
40

20

0

20

40

60

80

CIFAR10 Signal and Distorted Version

5

0

5

10

15

20

0 2000 4000 6000 8000 10000
5

0

5

10

15

20

Output after Canonical Correlation

Figure App.1: This figure shows the ability of CCA to deal with orthogonal and scaling transforms.
In the first pane, the maroon plot shows one of the highest activation neurons in the penultimate
layer of a network trained on CIFAR-10, with the x-axis being (ordered) image ids and the y-axis
being activation on that image. The green plots show two resulting distorted directions after this and
two of the other top activation neurons are permuted, rotated and scaled. Pane two shows the result
of applying CCA to the distorted directions and the original signal, which succeeds in recovering
the original signal.

suppose we have subspaces A,B,C, with A being 50 dimensions, B being 200 dimensions, 50 of
which are perfectly aligned with A and the other 150 being noise, and C being 200 dimensions, 50
of which are aligned with A (and B) and the other 150 being useful, but different directions.

Then looking at the canonical correlation coefficients of (A,B) and (A,C) will give the same result,
both being 1 for 50 values and 0 for everything else. But these are two very different cases – the
subspaceB is indeed well represented by the 50 directions that are aligned withA. But the subspace
C has 150 more useful directions.

This distinction becomes particularly important when aggregating canonical correlation coefficients
as a measure of similarity, as used in analysing network learning dynamics. However, by first ap-
plying SVD to determine the number of directions needed to explain 99% of the observed variance,
we can distinguish between pathological cases like the one above.

C Proof of Theorem 1

Here we provide the proofs for Lemma 1, Lemma 2, Theorem 2 and finally Theorem 1.

A preliminary note before we begin:

When we consider a (wlog) n by n channel c of a convolutional layer, we assume it has shape

zzz0,0 zzz1,2 . . . zzz0,n−1
zzz1,0 zzz2,2 . . . zzz1,n−1

...
...

. . .
...

zzzn−1,0 zzzn−1,1 . . . zzzn−1,n−1

12

(a) (b) (c) (d)

Figure App.2: This figure visualizes the covariance matrix of one of the channels of a resnet
trained on Imagenet. Black correspond to large values and white to small values. (a) we compute the
covariance without a translation invariant dataset and without first preprocessing the images by DFT.
We see that the covariance matrix is dense. (b) We compute the covariance after applying DFT, but
without augmenting the dataset with translations. Even without enforcing translation invariance, we
see that the covariance in the DFT basis is approximately diagonal. (c) Same as (a), but the dataset
is augmented to be fully translation invariant. The covariance in the pixel basis is still dense. (d)
Same as (c), but with dataset augmented to be translation invariant. The covariance matrix is exactly
diagonal for a translation invariant dataset in a DFT basis.

When computing the covariance matrix however, we vectorize c by stacking the columns under each
other, and call the result vec(c):

vec(c) =

zzz0,0
zzz1,0

...
zzzn−1,0
zzz0,1

...
zzzn−1,n−1

:=

zzz0
zzz1
...

zzzn−1
zzzn
...

zzzn2−1

One useful identity when switching between these two notations (see e.g. [7]) is

vec(AcB) = (BT ⊗A)vec(c)

where A,B are matrices and ⊗ is the Kronecker product. A useful observation arising from this is:

Lemma 3. The CCA vectors of DFT (ci), DFT (cj) are the same (up to a rotation by F) as the
CCA of ci, cj .

Proof: From Section B we know that unitary transforms only rotate the CCA directions. But while
DFT pre and postmultiplies by F, FT – unitary matrices, we cannot directly apply this as the result
is for unitary transforms on vec(ci). But, using the identity above, we see that vec(DFT (ci)) =
vec(FciF

T) = (F ⊗ F)vec(ci), which is unitary as F is unitary. Applying the same identity to cj ,
we can thus conclude that the DFT preserves CCA (up to rotations).

As Theorem 1 preprocesses the neurons with DFT, it is important to note that by the Lemma above,
we do not change the CCA vectors (except by a rotation).

C.1 Proof of Lemma 1

Proof. Translation invariance is preserved We show inductively that any translation invariant input
to a convolutional channel results in a translation invariant output: Suppose the input to channel c,
(n by n) is translation invariant. It is sufficient to show that for inputs Xi, Xj and 0 ≤ a, b,≤ n− 1,
c(Xi) + (a, b) mod n = c(Xj). But an (a, b) shift in neuron coordinates in c corresponds to a
(height stride · a,width stride · b) shift in the input. And as X is translation invariant, there is some
Xj = Xi + (height stride · a,width stride · b).

cov(c) is circulant:

13

LetX be (by proof above) a translation invariant input to a channel c in some convolution or pooling
layer. The empirical covariance, cov(c) is the n2 by n2 matrix computed by (assuming c is centered)

1

|X|
∑
Xi∈X

vec(c(Xi)) · vec(c(Xi))
T

So, cov(c)ij = 1
|X|zzz

T
i zzzj = 1

|X|
∑
Xl∈X zzz

T
i (Xl)zzzj(Xl), i.e. the inner products of the neurons i and

j.

The indexes i and j refer to the neurons in their vectorized order in vec(c). But in the matrix ordering
of neurons in c, i and j correspond to some (a1, b1) and (a2, b2). If we applied a translation (a, b),
to both, we would get new neuron coordinates (a1 + a, b1 + b), (a2 + a, b2 + b) (all coordinates
mod n) which would correspond to i+ an+ b mod n2 and j + an+ b mod n2, by our stacking
of columns and reindexing.

Let τa,b be the translation in inputs corresponding to an (a, b) translation in c, i.e. τa,b =
(height stride·a,width stride·b). Then clearly zzz(a1,b1)(Xi) = zzz(a1+a,b1+b)(τ(a,b)(Xi), and similarly
for zzz(a2,b2)

It follows that 1
|X|zzz

T
(a1,b1)

zzz(a2,b2) = 1
|X|zzz

T
(a1+b,b1+b)

zzz(a2+a,b2+b), or, with vec(c) indexing

1

|X|
zzzTi zzzj =

1

|X|
zzzT(i+an+b mod n2)zzz(j+an+b mod n2)

This gives us the circulant structure of cov(c).

cov(c) is block circulant: Let zzz(i) be the ith column of c, and zzz(j) the jth. In vec(c), these correspond
to zzz(i−1)n, . . . zzzin−1 and zzz(j−1)n, . . . zzzjn−1, and the n by n submatrix at those row and column in-
dexes of cov(vec(c)) corresponds to the covariance of column i, j. But then we see that the covari-
ance of columns i+k, j+k, corresponding to the covariance of neurons zzz(i−1)n+k·n, . . . zzzin−1+k·n,
and zzz(j−1)n+k·n, . . . zzzjn−1+k·n, which corresponds to the 2-d shift (1, 0), applied to every neuron.
So by an identical argument to above, we see that for all 0 ≤ k ≤ n− 1

cov(zzz(i), zzz(j)) = cov(zzz(i+k), zzz(j+k))

In particular, cov(vec(c)) is block circulant.

An example cov(vec(c)) with c being 3 by 3 look like below:

[
A0 A1 A2

A2 A0 A1

A1 A2 A0

]
where each Ai is itself a circulant matrix.

C.2 Proof of Lemma 2

Proof. This is a standard result, following from expressing a circulant matrix A in terms of its
diagonal form , i.e. A = V ΣV T with the columns of V being its eigenvectors. Noting that V = F ,
the DFT matrix, and that vectors of powers of ωk = exp(2πik

n), ωj = exp(2πik
n) are orthogonal

gives the result.

C.3 Proof of Theorem 2

Proof. Starting with (a), we need to show that cov(vec(DFT (ci)), vec(DFT (ci)) is diagonal. But
by the identity above, this becomes:

cov(vec(DFT (ci)), vec(DFT (ci)) = (F ⊗ F)vec(ci)vec(ci)
T (F ⊗ F)∗

14

By Lemma 1, we see that

cov(vec(ci)) = vec(ci)vec(ci)
T =

A0 A1 . . . An−1
An−1 A0 . . . An−2

...
...

. . .
...

A1 A2 . . . A0

with each Ai circulant.

And so cov(vec(DFT (ci)), vec(DFT (ci)) becomes
f00F f01F . . . f0,n−1F
f10F f11F . . . f1,n−1F

...
...

. . .
...

fn−1,0F fn−1,1F . . . fn−1,n−1F

A0 A1 . . . An−1
An−1 A0 . . . An−2

...
...

. . .
...

A1 A2 . . . A0

f∗00F
∗ f∗10F

∗ . . . f∗n−1,0F
∗

f∗01F
∗ f∗11F

∗ . . . f∗n−1,1F
∗

...
...

. . .
...

f∗0,n−1F
∗ f∗1,n−1F

∗ . . . f∗n−1,n−1F
∗

From this, we see that the sjth entry has the form

n−1∑
l=0

(
n−1∑
k=0

fskFAl−k

)
f∗ljF

∗ =
∑
k,l

fskf
∗
ljFAl−kF

∗

Letting [FArF
∗] denote the coefficient of the term FArF

∗, we see that (addition being mod n)

[FArF
∗] =

n−1∑
k=0

fskf
∗
(k+r)j =

∑
k

e
2πisk
n · e

−2πij(k+r)
n = e

−2πijr
n

n−1∑
k=0

e
2πik(s−j)

n = e
−2πijr
n · δsj

with the last step following by the fact that the sum of powers of non trivial roots of unity are 0.

In particular, we see that only the diagonal entries (of the n by n matrix of matrices) are non zero.
The diagonal elements are linear combinations of terms of form FArF

∗, and by Lemma 2 these are
diagonal. So the covariance of the DFT is diagonal as desired.

Part (b) follows almost identically to part (a), but by first noting that exactly by the proof of Lemma
1, cov(ci, cj) is also a circulant and block circulant matrix.

C.4 Proof of Theorem 1

Proof. This Theorem now follows easily from the previous. Suppose we have a layer l, with chan-
nels c1, ..., ck. And let vec(DFT (ci)) have directions z̃zz(i)0 , · · · z̃zz(i)n2−1. By the previous theorem, we

know that the covariance of all of these neurons only has non-zero terms cov(z̃zz
(i)
k , z̃zz

(j)
k .

So arranging the full covariance matrix to have row and column indexes being
z̃zz
(1)
0 , z̃zz

(1)
0 , . . . z̃zz

(k)
0 , z̃zz

(1)
1 . . . z̃zz

(k)
n2 the nonzero terms all live in the n2 k by k blocks down the

diagonal of the matrix, proving the theorem.

C.5 Computational Gains

As the covariance matrix is block diagonal, our more efficient algorithm for computation is as fol-
lows: take the DFT of every channel (n log n due to FFT) and then compute covariances according
to blocks: partition the kn directions into the n2 k by k matrices that are non-zero, and compute the
covariance, inverses and square roots along these.

A rough computational budget for the covariance is therefore kn log n + n2k2.5, while the naive
computation would be of order (kn2)2.5, a polynomial difference. Furthermore, the DFT method
also makes for easy parallelization as each of the n2 blocks does not interact with any of the others.

15

0 20000 40000 60000 80000 100000 120000 140000 160000

Train step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
V

C
C

A
 o

f
la

y
e
r

w
it

h
 f

in
a
l
st

e
p

Layer dynamics with SVCCA

in

c1

c2

bn1

p1

c3

c4

c5

bn2

p2

fc1

bn3

fc2

bn4

logits

0 20000 40000 60000 80000 100000 120000 140000 160000

Train step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
V

C
C

A
 o

f
la

y
e
r

w
it

h
 f

in
a
l
st

e
p

Layer dynamics with SVCCA

in

res

bn_cv

bn_cv

res

bn_cv

bn_cv

res

bn_cv

bn_cv

out

Figure App.3: Learning dynamics per layer plots for conv (left pane) and res (right pane) nets trained on
CIFAR-10. Each line plots the SVCCA similarity of each layer with its final representation, as a function of
training step, for both the conv (left pane) and res (right pane) nets. Note the bottom up convergence of different
layers

D Per Layer Learning Dynamics Plots from Section 4.1

E Additional Figure from Section 4.4

Figure App.4 compares the converged representations of two different initializations of the same
convolutional network on CIFAR-10.

in c1 c2

b
n
1

p
1 c3 c4 c5

b
n
2

p
2

fc
1

b
n
3

fc
2

b
n
4

lo
g
it
s

ou
t

Initialization 2

out

logits

bn4

fc2

bn3

fc1

p2

bn2

c5

c4

c3

p1

bn1

c2

c1

in

In
it

ia
liz

a
ti

o
n
 1

SVCCA similarity of CIFAR10 conv nets over
different random initializations

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure App.4: Comparing the converged representations of two different initializations of the same
convolutional architecture. The results support findings in [11], where initial and final layers are
found to be similar, with middle layers differing in representation similarity.

F Experiment from Section 4.4

G Learning Dynamics for an LSTM

16

p2 fc1 bn3 fc2 bn4

Number of top layers consecutively compressed

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

A
cc

u
ra

cy

CIFAR10: Accuracy after compression by projecting
 layers onto top SVCCA directions

baseline

45% (SVCCA two nets)

63% (SVCCA two nets)

22% (SVCCA against logits)

35% (SVCCA against logits)

Figure App.5: Using SVCCA to perform model compression on the fully connected layers in a CIFAR-
10 convnet. The two gray lines indicate the original train (top) and test (bottom) accuracy. The two sets of
representations for SVCCA are obtained through 1) two different initialization and training of convnets on
CIFAR-10 2) the layer activations and the activations of the logits. The latter provides better results, with the
final five layers: pool1, fc1, bn3, fc2 and bn4 all being compressed to 0.35 of their original size.

Figure App.6: Learning dynamics of the different layers of a stacked LSTM trained on the Penn Tree
Bank language modeling task. We observe a similar pattern to that of convolutional architectures
trained on image data: lower layer converge faster than upper layers.

17

	Mathematical details of CCA and SVCCA
	Additional Proofs and Figures from Section 2.1
	The importance of SVD: how many directions matter?

	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Theorem 1
	Computational Gains

	Per Layer Learning Dynamics Plots from Section 4.1
	Additional Figure from Section 4.4
	Experiment from Section 4.4
	Learning Dynamics for an LSTM

