
Subspace Clustering via Tangent Cones

Amin Jalali
Wisconsin Institute for Discovery

University of Wisconsin
Madison, WI 53715

amin.jalali@wisc.edu

Rebecca Willett
Department of Electrical and Computer Engineering

University of Wisconsin
Madison, WI 53706

willett@discovery.wisc.edu

Abstract

Given samples lying on any of a number of subspaces, subspace clustering is the
task of grouping the samples based on the their corresponding subspaces. Many
subspace clustering methods operate by assigning a measure of affinity to each
pair of points and feeding these affinities into a graph clustering algorithm. This
paper proposes a new paradigm for subspace clustering that computes affinities
based on the corresponding conic geometry. The proposed conic subspace clus-
tering (CSC) approach considers the convex hull of a collection of normalized
data points and the corresponding tangent cones. The union of subspaces underly-
ing the data imposes a strong association between the tangent cone at a sample x
and the original subspace containing x. In addition to describing this novel ge-
ometric perspective, this paper provides a practical algorithm for subspace clus-
tering that leverages this perspective, where a tangent cone membership test is
used to estimate the affinities. This algorithm is accompanied with deterministic
and stochastic guarantees on the properties of the learned affinity matrix, on the
true and false positive rates and spread, which directly translate into the overall
clustering accuracy.

1 Introduction

Finding a low-dimensional representation of high-dimensional data is central to many tasks in sci-
ence and engineering. Union-of-subspaces have been a popular data representation tool for the past
decade. These models, while still parsimonious, offer more flexibility and better approximations
to non-linear data manifolds than single-subspace models. To fully leverage union-of-subspaces
models, we must be able to determine which data point lies in which subspace. This subproblem is
referred to as subspace clustering [16].

Formally, given a set of points x1, . . . , xN ∈ Rn lying on k linear subspaces S1, . . . , Sk ⊂ Rn,
subspace clustering is the pursuit of partitioning those points into k clusters so that all points in each
cluster lie within the same subspace among S1, . . . , Sk. Once the points have been clustered into
subspaces, standard dimensionality reduction methods such as principal component analysis can be
used to identify the underlying subspaces. A generic approach in the literature is to construct a
graph with each vertex corresponding to one of the given samples and each edge indicating whether
(or the degree to which) a pair of points could have come from the same subspace. We refer to the
(weighted) adjacency matrix of this graph as the affinity matrix. An ideal affinity matrix A would
have A(i, j) = 1 if and only if xi and xj are in the same subspace, and otherwise A(i, j) = 0. Given
an estimated affinity matrix, a variety of graph clustering methods, such as spectral clustering [17],
can be used to cluster the samples, so forming the affinity matrix is a critical step.

Many existing methods for subspace clustering with provable guarantees leverage the self-expressive
property of the data. Such approaches pursue a representation of each data point in terms of the
other data points, and then the representation coefficients are used to construct an affinity matrix.
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For example, the celebrated sparse subspace clustering (SSC) approach of [3] seeks a representation
of each sample as a weighted combination of the other points, with minimal ℓ1 norm. However, such
sparse self-expression can lead to graph connectivity issues, e.g., see [10, 8, 20, 5, 19, 18], where
clusters can be arbitrarily broken into separate components. This paper proposes a new paradigm
for devising subspace clustering algorithms:

Conic Subspace Clustering (CSC): exploiting the association of the tangent cones
to the convex hull of normalized samples with the original subspaces for comput-
ing affinities and subsequent clustering.

CSC leverages new insights into the geometry of subspace clustering. One of the key effects of
this approach is that the learned affinity matrix is generally denser among samples from the same
subspace, which in turn can mitigate graph connectivity issues.

In Proposition 1 below, we hint on what we mean by the strong association of the tangent cones
with the underlying subspaces for an ideal dataset. In Section 2, we show how a similar idea
can be implemented with finite number of samples. Given a set of nonzero samples from a
union of linear subspaces, we normalize them to fall on the unit sphere and henceforth assume
X = {x1, . . . , xN} ⊂ Sn−1 is the set of samples. We further overload the notation to define
X = [x1, x2, . . . , xN ] ∈ Rn×N . Data hull refers to the convex hull of samples. The tangent cone
at x ∈ conv(X) with respect to conv(X) is defined as

T (x) := cl conv cone(X + {−x}) = cl
{∑

x′∈X λx′(x′ − x) : λx′ ≥ 0, x′ ∈ X
}

where the Minkowski sum of two sets A and B is denoted by A + B, while A + {x} may be
simplified to A + x. The linear space of a cone C is defined as linC := C ∩ (−C). We term the
intersection of a subspace S with the unit sphere as a ring R = S ∩ Sn−1.
Proposition 1. For a union of rings, namely X = (S1 ∪ . . . ∪ Sk) ∩ Sn−1, and for every x ∈ X ,

S(x) = span{x}+ linT (x),

where S(x) is the convex hull of the union of all subspaces Si , i = 1, . . . , k, to which x belongs.

1.1 Our contributions

We introduce a new paradigm for subspace clustering, conic subspace clustering (CSC), inspired by
ideas from convex geometry. More specifically, we propose to consider the convex hull of normal-
ized samples, and exploit the structure of the tangent cone to this convex body at each sample to
estimate the relationships for pairs of samples (to construct an affinity matrix for clustering).

We provide an algorithm which implements CSC (Section 2) along with deterministic guarantees on
how to choose the single parameter in this algorithm, β, guaranteeing no false positives (Section 5)
and any desired true positive rate (Section 4), in the range allowed by the provided samples. We
specialize our results to random models, to showcase our guarantees in terms of the few parameters
defining said random generative models and to compare with existing methods. Aside from statis-
tical guarantees, we also provide different optimization programs for implementing our algorithm
that can be used for faster computation and increased robustness (Section 7).

In Section 6, we elaborate on the true positive rate and spread for CSC and compare it to what
is known about a sparsity-based subspace clustering approach, namely sparse subspace clustering,
SSC [3]. This comparison provides us with insight on situations where methods such as SSC would
face the so called graph connectivity issue, demonstrating the advantage of CSC in such situations.

2 Conic Subspace Clustering (CSC) via Rays: Intuition and Algorithm

In this section, we discuss an intuitive algorithm for subspace clustering under the proposed conic
subspace clustering paradigm. We present the underlying idea without worrying about the computa-
tional aspects, and relegate such discussions to Section 7. All proofs are presented in the Appendix.
Henceforth, lower case letters represent vectors, while specific letters such as x and x′ are reserved
to represent columns of X , and x is commonly used as the reference point.

Start by considering Figure 1(a) and the point x ∈ R := (S1 ∪ · · · ∪ Sk) ∩ Sn−1 from which
all the rays are emanating. Moreover, define Rt := St ∩ Sn−1 for t = 1, . . . , k, which gives
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(a) x+ cl cone(R− x) (b) x′ ∈ S(x) (c) x′ /∈ S(x)

Figure 1: Illustration of the idea behind our implementation of Conic Subspace Clustering (CSC)
via rays. The union of the red and blue rings is R, and x is the point from which all the rays are
emanating. The orange wedge represents x + W(x). 1(a) The union of the red and blue surfaces
is x + cl cone(R − x). 1(b) When x′ and x are from the same subspace, the points dβ(x, x′) for
different values of β ≥ 0 lie within cl cone(R−x) – specifically, in the blue shaded cone associated
with the blue ring. 1(c) When x′ and x are from different subspaces, the points dβ(x, x′) lie outside
cl cone(R− x) for large enough values of β.

R = R1 ∪ . . .∪Rk. Only two subspaces are shown and the reference point x is in R1. The thin red
and blue rays correspond to elements of x+ cone(R− x) = x+ cone({x′ − x : x′ ∈ R}), where
cone(A) := {λy : y ∈ A,λ ≥ 0}.1 We leverage the geometry of this cone to determine subspace
membership. Specifically, Figure 1(b) considers a point x′ ∈ R1 different from x. The dashed line
segment represents points −sign(⟨x, x′⟩)βx′ for different values of β ≥ 0; where sign(0) can be
arbitrarily chosen as ±1. The vectors emanating from x and reaching these points represent

dβ(x, x
′) := −sign(⟨x, x′⟩)βx′ − x. (1)

For x, x′ ∈ R1, this illustration shows that dβ(x, x′) ∈ cl cone(R − x) for any β ≥ 0. In contrast,
Figure 1(c) considers x′ ∈ R2, while x ∈ R1. In this case, there exist β > 0 such that dβ(x, x′) /∈
cl cone(R− x), indicating that x′ ̸∈ S(x). Formally,
Proposition 2. For any x, x′ ∈ R and any scalar value β ≥ 0,

x′ ∈ S(x) ⇐⇒
{
dβ(x, x

′) : β ≥ 0
}
⊂ cl cone(R− x) (2)

Equivalently, x′ ∈ S(x) if and only if
{
β ∈ R : βx′ − x ∈ cl cone(R− x)

}
is unbounded.

In other words, we can test whether or not x′ ∈ S(x) by testing the cone membership for dβ(x, x′).
Of course, such a test would not be practical: we cannot compute dβ(x, x′) for an infinite set of
β values, the set cl cone(R − x) is generally non-convex (in Figure 1(a), the cone is the union of
the red and blue surfaces), and cl cone(R − x) is not known exactly because we only observe a
finite collection of points from R instead of all of R. We now develop an alternative test to (2) that
addresses these challenges and can be computed within a convex optimization framework. We first
address the convexity issue:
Proposition 3. For the closed convex cone W(x) := conv cl cone(R− x), and for any x, x′ ∈ R,

x′ ∈ S(x) =⇒
{
dβ(x, x

′) : β ≥ 0
}
⊂W(x). (3)

In other words, x′ ∈ S(x) implies that
{
β ∈ R : dβ(x, x′) ∈ cl cone(R− x)

}
is unbounded.

Next, we formulate the test as a convex optimization program, when a finite number of samples are
given. Specifically, using the samples in X ⊂ R instead of all the points in R, we can define an
approximation of W(x) as

WN (x) :=
{
(X − x1T

N )λ : λ ∈ RN
+

}
(4)

which is the tangent cone (also known as the descent cone) at x with respect to the data hull
conv(X). The implementation of CSC via rays, as sketched above and detailed below, is based

1Note that this is not the same as a conic hull.
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on testing the membership of dβ(x, x′) in the tangent cone WN (x) for all pairs of samples x, x′ to
determine their affinity. More specifically, the cone membership test can be stated as a feasibility
program, tagged as the Cone Representability (CR) program:

minλ∈RN 0 subject to dβ(x, x′) = (X − x1T
N )λ , λ ≥ 0N . (CR)

If there exists a β ≥ 0 for which (CR) is infeasible, then we conclude x′ ̸∈ S(x). Later, in our
theoretical results in Sections 4 and 5 we characterize a range (dependent on a target error rate) of
possible values of β such that for any single β from this range, checking the feasibility of (CR) for
all x, x′ reveals the true relationships within a target error rate. In Section 7, we discuss a number
of variations for the above optimization program. While our upcoming guarantees are all concerned
with the cone membership test itself and not the specific implementation, these variations provide
better algorithmic options and are more robust to noise. Specifically, we choose to use a variation
(in the box below) that is a bounded feasible linear program for our implementation of the cone
membership test.

We refer to solving any of the variations of the cone membership test for an ordered pair of samples
(x, x′) and a fixed value of β as CSC1(β, x, x′):

Compute γ̂(x, x′) = min {γ : (1− γ)(βx′ − x) = (X − x1T
N )λ , γ ≥ 0 , λ ≥ 0}.

Set A(x, x′) ∈ {0, 1} by rounding 1− γ̂(x, x′) to either 0 or 1, whichever is closest.

We refer to the optimization program used in the above as the Robust Cone Membership (RCM)
program. Similarly, solving a collection of these tests for all samples x′ and for a fixed x, or for all
pairs x, x′, are referred to as CSC1(β, x) and CSC1(β), respectively. When CSC1(β) is followed
by spectral clustering for the constructed affinity matrix, we refer to the whole process as CSC(β).
It is worth mentioning that the linear program used in CSC1(β, x, x′) is equivalent to (CR) in a
sense made clear in Section 7, and provides the same affinity matrix with a variety of algorithmic
advantages, as discussed in Section 7.

3 Theoretical Guarantees

In this section, we discuss our approach to providing theoretical guarantees for the aforementioned
implementation of CSC via rays. Let us first set some conventions. We refer to a declaration
x′ ∈ S(x) (or x′ ̸∈ S(x)) as positive (or negative), regardless of the ground truth. Hence, a true
positive is an affinity of 1 when the samples are from the same subspace, and a false positive is an
affinity of 1 when the samples are from different subspaces. We provide guarantees for CSC1(β)
to give no false positives. This makes the affinity matrix a permuted block diagonal matrix. In this
case, if there are enough well-spread ones in each row of the affinity matrix, spectral clustering or
any other reasonable clustering algorithm will be able to perfectly recover the underlying grouping;
see graph connectivity in spectral clustering literature [17]. These two phenomena, no false positives
and enough well-spread true positives per sample, are the focus of our theoretical results in Sections
4 and 5. In a nutshell, the guarantees boil down to characterizing a range of β’s for which CSC
has controlled degrees of errors: no false positives and a certain true positive rate per row. We also
examine the distribution of true positives recovered by our method and illustrate a favorable spread.

Through the intuition behind the cone membership test, namely (CR), it is easy to observe that the
number of true positives and the number of false positives are monotonically non-increasing in β
(which can be observed in Figure 2 as well). Hence, to have a high number of true positives we
need to use an upper bounded β, and to have a few number of false positives we need to use a lower
bounded value of β.

To assess the strength of our deterministic results, we assume probabilistic models on the subspaces
and/or samples and study the ranges of β for which CSC1(β) has controlled errors of both types,
with high probability. For the random models, we take the number of subspaces to be fixed, namely k.
However, CSC1(β) need not know the number of subspaces and spectral clustering can use the gap
in the eigenvalues of the Laplacian matrix to determine the number of clusters; e.g., see [15]. In
the random-sample model, we assume k subspaces are given and samples from each subspace are
drawn uniformly at random from the unit sphere on that subspace. In the random-subspace model,
each subspace is chosen independently and uniformly at random with respect to the Haar measure.

4



3.1 Examples

In this section, we illustrate the performance of the CSC method on some small examples. First, we
examine the role of the parameter β in CSC1(β, x, x′) and its effect on the false positive and true
positive rates in practice. In the first experiment, we have k = 5 subspaces, each with dimension
d = 5, in an n = 10 dimensional space, and we draw 30 samples from each of the k 5-dimensional
subspaces. We then run CSC1(β, x, x′) for a variety of values of β between one and six over 15
random trials; In Figures 2(b), 2(c), and 2(d), we show the results of each trial in thin lines and
the means across trials in thick lines (Figure 2(c) shows the median). Figure 2(a) shows, for each
value of β, the histogram of true positive rates across rows. Superimposed on this histogram plot is
the empirical mean of the histogram (green solid line) and our theoretical bound from Theorem 6
(purple dashed curve corresponding to the purple dashed curve in Figure 2(b)): for each value of β,
the true positive rate will be above this curve, with high probability.

Our theoretical bounds correspond to sufficient but not necessary conditions. While we observe the
tightness of the theory for minimum per-row true positive rate in relation to β, the wide distribution
of per-row true positive rates above the theoretical bound (Figures 2(a) and 2(b)), as well as the
spectral clustering step, provide us with good error rates (Figure 2(c)) outside the range of β’s for
which we have guarantees (Figure 2(d)).
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Figure 2: Illustration of the role of β (horizontal axis) in determining (a) the histogram of true posi-
tive rates across rows, with the empirical mean (solid line) and the theoretical bound (dashed curve,
corresponding to the dashed curve in (b)), (b) maximum, mean, and minimum (across rows of the
affinity matrix) true positive rates along with the theoretical bound (dashed curve), (c) the clustering
mismatch rate after performing spectral clustering, and, (d) the false positive rate. This experiment
is in a 10 dimensional space, with 30 random samples from each of 5 random 5-dimensional sub-
spaces, over 15 random trials. Bold curves correspond to averages across trials in (a), (b), and (d),
but to the median in (c).

Next, we look at learned affinity matrices output by the proposed CSC method and SSC [3], which
is a widely-used benchmark and the foundation of much current subspace clustering research. As
described at length in Section D, the true positive rate of SSC is necessarily bounded because of the
ℓ1 regularization used to learn the affinity matrix. This is not true of CSC – in fact, β can be used
to control the true positive rate (in an admissible range) as long as it exceeds some lower bound
(β ≥ βL). The difference between the true positive rates of SSC and CSC are illustrated in Figure 3.
In this experiment, CSC naturally outputs a 0/1 affinity matrix, while the affinity matrix of SSC has a
broader diversity of values. We show this matrix and a thresholded version for comparison purposes,
where the threshold is set to correspond to a 5% false positive rate.

4 Guarantees on True Positive Rates

We study conditions under which a fraction ρ ∈ (0, 1) of samples x′ ∈ S(x) are declared as such.
As discussed before, the number of true positives is non-increasing in β. Therefore, we are interested
in an upper bound βU,ρ on β so that CSC1(β, x) for β ≤ βU,ρ returns at least ρNt true positives
(Nt is the number of samples from St) for any x ∈ Xt := X ∩ St and t = 1, . . . , k. Consider
{x}⊥ := {y : ⟨x, y⟩ = 0}. For a close convex set A containing the origin, denote by r(A) the radius
of the largest Euclidean sphere in span(A) that is centered at the origin and is a subset of A.
Theorem 4 (Deterministic condition for any true positive rate). The conic subspace clustering algo-
rithm at x with parameter β, namely CSC1(β, x), returns a ratio ρ ∈ (0, 1) of relationships between
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Figure 3: Affinity matrices for two toy models in an ambient dimension n = 12. (a-c) k = 3
subspaces, each of rank d = 4 and each with 3d = 12 samples. (a) Result of CSC1(β). (b) Result
of SSC. (c) Thresholded version of (b). (d-e) k = 3 subspaces, each of rank d = 6 and each with
3d = 18 samples. (d) Result of CSC1(β). (e) Result of SSC. (f) Thresholded version of (e), with
threshold set so that the false positive rate is 5%. As predicted by the theory, CSC achieves higher
true positive rates than SSC can.

x ∈ Xt and other samples as true positives, provided that β ≤ βx
U,ρ where

βx
U,ρ :=

sin2(θxt )

cos(θxt )− cos(θ̃xt )
(5)

in which, for m := ⌈ρ(N − 1)⌉, cos(θ̃xt ) is the (m + 1)-st largest value among |⟨x, x′⟩| for
x′ ∈ Xt, and for r(·) denoting the inner radius, θxt := arctan(r((x + Wt

N (x)) ∩ {x}⊥)).
Then, CSC1(β) is guaranteed to return a fraction ρ of true positives per sample provided that
β ≤ βU,ρ := minx∈X βx

U,ρ.

As it can be seen from the above characterization, θxt and βx
U,ρ can vary from sample to sample even

within the same subspace. When samples are drawn uniformly at random from a given subspace
(the random-sample model), the next theorem provides a uniform lower bound on the inner radius
and θxt for all such samples. Note that βx

U,ρ is non-decreasing in θxt and non-increasing in θ̃xt .

Theorem 5. Under a random-sample model, and for a choice pt ∈ (0, 1), with probability at least
1− pt , a solution θ to

(cos θ)dt−1

6
√
dt sin θ

=
log(Nt/pt)

Nt

is a lower bound on θxt , which is defined in Theorem 4 and is a function of the inradius of a base of
the t-th cone Wt

N (x).

Theorem 5 is proved in the Appendix using ideas from inversive geometry [1]. In a random-sample
model, we can quantify the aforementioned m-th order statistic. Therefore, we can explicitly com-
pute the upper bound βU,ρ (with high probability) in terms of quantities dt and Nt. The final result
is given in Theorem 6. Note that both the inradius and the m-th order statistic are random variables
defined through the samples, hence are dependent. Therefore, a union bound is used.
Theorem 6. Under a random-sample model, CSC1(β, x) for any x ∈ Xt yields a fraction ρ of
true positives with high probability, provided that β ≤ βx

u,ρ , where βx
u,ρ is computed similar to (5),

using the lower bound on θxt from Theorem 5 and θ̃xt = π
2 (

m
N + ∆). The probability is at least

I(mN +∆;m,N −m)− pt, where I(·; ·, ·) denotes the incomplete Beta function.

5 Guarantees for Zero False Positives

In this section, we provide guarantees for CSC1(β, x) to return no false positives, in terms of the
value of β. Specifically, we guarantee this by examining a lower bound βL for β in CSC1(β, x). For
a fixed column x of the data matrix X , we will use x′ as a pointer to any other column of X . Recall
dβ(x, x′) from (1) and consider

βL(x) := inf {β ≥ 0 : dβ(x, x
′) ̸∈WN (x) ∀x′ ̸∈ S(x)} (6)

= sup {β ≥ 0 : dβ(x, x
′) ∈WN (x) for some x′ ̸∈ S(x)} .
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If the above value is finite, then using any value even slightly larger than this would declare any
x′ ̸∈ S(x) correctly as such, hence no false positives. However, the above infimum may not exist for
a general configuration. In other words, there might be a sample x′ ̸∈ S(x) for which dβ(x, x′) ∈
WN (x) for all values of β ≥ 0. The following condition prohibits such a situation.
Theorem 7 (Deterministic condition for zero false positives). For x ∈ X , without loss of generality,
suppose S(x) = S1 ∪ . . . ∪ Sj for some j < k. Provided that all of the columns of X that are
not in S(x) are also not in WN (x), then βL(x) in (6) is finite. This condition is equivalent to
St ∩WN (x) = {0} for all t = j + 1, . . . , k and all x ∈ X \ St . In case this condition holds for all
x ∈ X , we define

βL := max
x∈X

βL(x). (7)

If this condition is met and β ≥ βL is used, then CSC1(β) will return no false positives.

We note that the condition of Theorem 7 becomes harder to satisfy as the number of samples grow
(which makes WN (x) larger). While this is certainly not desired, such an artifact is present in other
subspace clustering algorithms. See the discussion after Theorem 1 in [11] for examples.

Next, we specialize Theorem 7 to a random-subspace model. Under such model, for t = j +
1, . . . , k, St and WN (x) are two random objects and are dependent (all samples, including those
from St, take part in forming WN (x), hence the orientation and the dimension of St affect the
definition of WN (x)), which makes the analysis harder. However, these two can be decoupled
by massaging the condition of Theorem 7 from St ∩WN (x) = {0} into an equivalent condition
St ∩ W−t

N (x) = {0} where W−t
N (x) = convcone{x′ − x : x′ ̸∈ St}; see Lemma 10 in the

Appendix. Next, the event of a random subspace and a cone having trivial intersection can be
studied using the notion of the statistical dimension of the cone and the brilliant Gordon’s Lemma
(escape through a mesh) [6]. The statistical dimension of a closed convex cone C ⊂ Rn is defined
as δ(C) := E supy∈C∩Sn−1⟨y, g⟩2 ≤ n where g ∼ N (0, In). Now, we can state the following
lemma based on Gordon’s Lemma.
Lemma 8. With the notation in Theorem 7, and under the random-subspace model, βL is finite
provided that δ(W−t

N (x)) + dim(St) ≤ n for t = 1, . . . , k.

Furthermore, for the above to hold, it is sufficient to have
∑k

t=1 dim(St) < n (Lemma 11 in the
Appendix). Under the above conditions, we are guaranteed that a finite β exists such that with high
probability, CSC1(β) results in zero false positives. It is easy to compute βL for certain config-
urations of subspaces. For example, when the subspaces are independent (the dimension of their
Minkowski sum is equal to sum of their dimensions) we have βL = 1 (Lemma 13 in the Appendix).
Independent subspaces have been assumed before in the subspace clustering literature for provid-
ing guarantees; e.g., [2, 3]. Also see [21] and references therein. However, it remains as an open
question how one should compute this value for more general configurations. We provide some
theoretical tools for such computation in Appendix B.5.

Finally, if βL does not exceed βU,ρ from above, then CSC1(β) successfully returns a (permuted)
block diagonal matrix with a density of ones (per row) of at least ρ. This allows us to have a good
idea about the performance of the post-processing step (e.g., spectral clustering) and hence CSC(β).

6 True Positives’ Rate and Distribution

Because sparse subspace clustering (SSC) relies upon sparse representations, the number of true
positives is inherently limited. In fact, it can be shown that SSC will find a representation of each
column x as a weighted sum of columns that correspond to the extreme rays of WN (x); as shown
in Lemma 17 in the Appendix. This phenomenon is closely linked to the graph connectivity issues
associated with SSC, mentioned before. In particular, under a random-sample model, the true posi-
tive rate for SSC will go to zero as Nt/dt grows, where Nt is the number of samples from St with
dim(St) = dt. In contrast, the true positive behavior for CSC has several favorable characteristics.
First, if the subspaces are all independent, then the true positive rate ρ can approach one. Second,
in unfavorable settings in which the true positive rate is low, it can be shown that the true positives
are distributed in such a way that precludes graph connectivity issues (see Section D.3 for more
details). Specifically, in the random-sample model, for each subspace St, there is a matrix Asub
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defined below, whose support is contained within the true positive support of the output of CSC(β)
for β ∈ (βL,βU,ρ). Let Xt have i.i.d. standard normal entries, and ϵ be the m-th largest element
of |XT

t Xt|. Then, Asub is defined by (Asub)i,j = |XT
t Xt| when |XT

t Xt| > ϵ, and zero otherwise.
The distribution of Asub when columns of Xt are drawn uniformly at random from the unit sphere
ensures that graph connectivity issues are avoided with high probability as soon as the true positive
rate ρ exceeds O(logNt/Nt). As a result, even if the values of ρ which provide βU,ρ > βL are small,
there is still the potential of perfect clustering. These distributional arguments cannot be made for
sparsity-based methods like SSC. We refer to Appendix D for more details.

7 CSC Optimization and Variations

In Table 1, we provide a number of optimization programs that implement the cone membership test.
These formulations possess different computational and robustness properties. Let us introduce a
notation of equivalence. We say an optimization program P , implementing the cone membership
test, is in CR-class if the possible set of its optimal values can be divided into two disjoint sets Oin
and Oout corresponding to whether dβ(x, x′) ∈ WN (x) or dβ(x, x′) ̸∈ WN (x), respectively. Then
we write [[P : Oin, Oout]]; e.g., [[(CR) : 0, infeasible]]. All of the problems in Table 1 are in CR-class.

Table 1: Different formulations for the cone membership (second column) with their set of outputs
when dβ(x, x′) ∈ WN (x) (third column) and when dβ(x, x′) ̸∈ WN (x). In all of the variations,
A = X − x1T

N , y and b = dβ(x, x′) live in Rn, and λ lives in RN .

Tag Formulation Oin Oout

P1 minλ 0 s.t. b = Aλ , λ ≥ 0 {0} infeasible
P2 miny ⟨y, b⟩ s.t. yTA ≥ 0 {0} unbounded
P3 miny ⟨y, b⟩ s.t. yTA ≥ 0 , ⟨y, b⟩ ≥ −ϵ {0} {−ϵ}
P4 minγ,λ γ s.t. (1− γ)b = Aλ , γ ≥ 0,λ ≥ 0 {0} {1}

The first optimization problem (P1) is merely the statement of the cone membership test as a linear
feasibility program and (P2) is its Lagrangian dual. (P2) looks for a certificate y ∈ W⋆

N (x) (in the
dual cone) that rejects the membership of dβ(x, x′) in WN (x). However, neither (P1) nor (P2) are
robust or computationally appealing. Next, observe that restricting y to any set with the origin in its
relative interior yields a program that is in CR-class. (P3) is defined by augmenting (P2) with a linear
constraint, which not only makes the problem bounded and feasible, but the freedom in choosing
ϵ allows for controlling the bit-length of the optimal solution and hence allows for optimizing the
computational complexity of solving (P3) via interior point methods. Furthermore, this program can
be solved approximately, up to a precision ϵ′ ∈ (0, ϵ), and provides the same desired set of results:
an ϵ′-inexact solution for (P3) has a nonnegative objective value if and only if dβ(x, x′) ∈ WN (x).
If we dualize (P3) and divide the objective by −ϵ we get (P4) which can also be derived by hand-
tweaking (P1). However, the duality relationship with (P3) is helpful in understanding the dual space
and devising efficient optimization algorithms. Notice that (γ,λ) = (1, 0N ) is always feasible, and
the optimal solution is in [0, 1]. The latter property makes (P4) a suitable candidate for noisy setups
without modification. Moreover, [[(P4) : 0, 1]], which makes it a desirable candidate as a proxy for
x′ ̸∈ S(x). We use this program in our experiments reported in Section 3.1.

8 Discussions and Future Directions

This paper describes a new paradigm for understanding subspace clustering in relation to the un-
derlying conic geometry. With this new perspective, we design an algorithm, CSC via rays, with
guarantees on false and true positive rates and spreads, that sidesteps graph connectivity issues that
arise with methods like sparse subspace clustering. This paper should be seen as the first introduc-
tion to the idea of, and tools for, conic subspace clustering, rather than establishing CSC as the new
state-of-the-art, and as a means to ignite future work on several directions in subspace clustering. We
focus on our novel geometric perspective and its potential to lead to new algorithms by providing a
rigorous theoretical understanding (statistical and computational) and hope that this publication will
spur discussions and insights that can inform the suggested future work. A cone membership test is
just one approach to exploit this geometry and implement the conic subspace clustering paradigm.
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Remaining Questions. While more extensive theoretical comparisons with existing methods are
necessary, many comparisons are non-trivial because CSC reveals important properties of subspace
clustering methods (e.g. spread of true positives) that are not understood for other methods. The
limited small-scale experiments were simply intended to illustrate these properties.

Our study of the parameter choice is theoretical in nature and beyond heuristics for implementation.
But some questions are still open. Firstly, while we have a clear deterministic characterization for
βU , tighter characterizations would lead to a larger range for β. In Figure 2(b), such pursuit would
result in a new theoretical curve (instead of the current dashed purple curve) that stays closer to the
minimum true positive rate across rows (the lowest thick solid curve). On the other hand, outside
of the case of independent subspaces, where βL = 1, we only have a deterministic guarantee on
the finiteness of βL and computing it for the random-sample model is a topic of current research.
Therefore, we do not have a guarantee on the non-triviality of the resulting range (βL,βU ). How-
ever, as observed in the small numerical examples in Section 3.1, as well as in our more extensive
experiments that are not reported here, there often exists a big range of β with which we can get
perfect clustering.

Extensions. While the presented algorithm assumes noiseless data points from the underlying sub-
spaces, our intuition and simulations (synthetic and real data) indicate stability towards stochastic
noise. Moreover, the current analysis is suggestive of algorithmic variants that exhibit robust em-
pirical performance in the presence of stochastic noise. This is why, similar to advances in other
subspace clustering methods, we hope that the analysis for the noiseless setup provides essential
insights to provably generalize the method to noisy settings. Furthermore, there remain several
other open avenues for exploration, particularly with respect to theoretical and large-scale empirical
comparisons with other methods, and extensions to measurements corrupted by adversarial pertur-
bations, with outliers among the data points, as well as with missing entries in the data points. By
design, SSC and other similar methods require a full knowledge of data points. CSC imposes the
same requirement and an open question is how to extend the CSC framework when some entries are
missing from the data points.
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