
Online Convex Optimization with Stochastic
Constraints

Hao Yu, Michael J. Neely, Xiaohan Wei
Department of Electrical Engineering, University of Southern California⇤

{yuhao,mjneely,xiaohanw}@usc.edu

Abstract

This paper considers online convex optimization (OCO) with stochastic constraints,
which generalizes Zinkevich’s OCO over a known simple fixed set by introducing
multiple stochastic functional constraints that are i.i.d. generated at each round
and are disclosed to the decision maker only after the decision is made. This
formulation arises naturally when decisions are restricted by stochastic environ-
ments or deterministic environments with noisy observations. It also includes
many important problems as special case, such as OCO with long term constraints,
stochastic constrained convex optimization, and deterministic constrained con-
vex optimization. To solve this problem, this paper proposes a new algorithm
that achieves O(

p
T) expected regret and constraint violations and O(

p
T log(T))

high probability regret and constraint violations. Experiments on a real-world data
center scheduling problem further verify the performance of the new algorithm.

1 Introduction

Online convex optimization (OCO) is a multi-round learning process with arbitrarily-varying convex
loss functions where the decision maker has to choose decision x(t) 2 X before observing the
corresponding loss function f

t(·). For a fixed time horizon T , define the regret of a learning algorithm
with respect to the best fixed decision in hindsight (with full knowledge of all loss functions) as

regret(T) =
TX

t=1

f
t(x(t))�min

x2X

TX

t=1

f
t(x).

The goal of OCO is to develop dynamic learning algorithms such that regret grows sub-linearly with
respect to T . The setting of OCO is introduced in a series of work [3, 14, 9, 29] and is formalized in
[29]. OCO has gained considerable amount of research interest recently with various applications
such as online regression, prediction with expert advice, online ranking, online shortest paths, and
portfolio selection. See [23, 11] for more applications and background.

In [29], Zinkevich shows O(
p
T) regret can be achieved by using an online gradient descent (OGD)

update given by

x(t+ 1) = PX
⇥
x(t)� �rf

t(x(t))
⇤

(1)

where rf
t(·) is a subgradient of f t(·) and PX [·] is the projection onto set X . Hazan et al. in [12]

show that better regret is possible under the assumption that each loss function is strongly convex but
O(

p
T) is the best possible if no additional assumption is imposed.

It is obvious that Zinkevich’s OGD in (1) requires the full knowledge of set X and low complexity
of the projection PX [·]. However, in practice, the constraint set X , which is often described by

⇤This work is supported in part by grant NSF CCF-1718477.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

many functional inequality constraints, can be time varying and may not be fully disclosed to the
decision maker. In [18], Mannor et al. extend OCO by considering time-varying constraint functions
g
t(x) which can arbitrarily vary and are only disclosed to us after each x(t) is chosen. In this

setting, Mannor et al. in [18] explore the possibility of designing learning algorithms such that
regret grows sub-linearly and lim supT!1

1
T

PT
t=1 g

t(x(t))  0, i.e., the (cumulative) constraint
violation

PT
t=1 g

t(x(t)) also grows sub-linearly. Unfortunately, Mannor et al. in [18] prove that this
is impossible even when both f

t(·) and g
t(·) are simple linear functions.

Given the impossibility results shown by Mannor et al. in [18], this paper considers OCO where
constraint functions gt(x) are not arbitrarily varying but independently and identically distributed
(i.i.d.) generated from an unknown probability model (and functions f t(x) are still arbitrarily varying
and possibly non-i.i.d.). Specifically, this paper considers online convex optimization (OCO) with

stochastic constraint X = {x 2 X0 : E![gk(x;!)]  0, k 2 {1, 2, . . . ,m}} where X0 is a known
fixed set; the expressions of stochastic constraints E![gk(x;!)] (involving expectations with respect
to ! from an unknown distribution) are unknown; and subscripts k 2 {1, 2, . . . ,m} indicate the
possibility of multiple functional constraints. In OCO with stochastic constraints, the decision maker
receives loss function f

t(x) and i.i.d. constraint function realizations gtk(x)
�
= gk(x;!(t)) at each

round t. However, the expressions of gtk(·) and f
t(·) are disclosed to the decision maker only after

decision x(t) 2 X0 is chosen. This setting arises naturally when decisions are restricted by stochastic
environments or deterministic environments with noisy observations. For example, if we consider
online routing (with link capacity constraints) in wireless networks [18], each link capacity is not
a fixed constant (as in wireline networks) but an i.i.d. random variable since wireless channels are
stochastically time-varying by nature [25]. OCO with stochastic constraints also covers important
special cases such as OCO with long term constraints [16, 5, 13], stochastic constrained convex
optimization [17] and deterministic constrained convex optimization [21].

Let x⇤ = argmin{x2X0:E[gk(x;!)]0,8k2{1,2,...,m}}
PT

t=1 f
t(x) be the best fixed decision in hind-

sight (knowing all loss functions f
t(x) and the distribution of stochastic constraint functions

gk(x;!)). Thus, x⇤ minimizes the T -round cumulative loss and satisfies all stochastic constraints in
expectation, which also implies lim supT!1

1
T

PT
t=1 g

t
k(x

⇤)  0 almost surely by the strong law
of large numbers. Our goal is to develop dynamic learning algorithms that guarantee both regretPT

t=1 f
t(x(t))�

PT
t=1 f

t(x⇤) and constraint violations
PT

t=1 g
t
k(x(t)) grow sub-linearly.

Note that Zinkevich’s algorithm in (1) is not applicable to OCO with stochastic constraints since X
is unknown and it can happen that X (t) = {x 2 X0 : gk(x;!(t))  0, 8k 2 {1, 2, . . . ,m}} = ;
for certain realizations !(t), such that projections PX [·] or PX (t)[·] required in (1) are not even
well-defined.

Our Contributions: This paper solves online convex optimization with stochastic constraints. In
particular, we propose a new learning algorithm that is proven to achieve O(

p
T) expected regret

and constraint violations and O(
p
T log(T)) high probability regret and constraint violations. The

proposed new algorithm also improves upon state-of-the-art results in the following special cases:
• OCO with long term constraints: This is a special case where each g

t
k(x) ⌘ gk(x) is known

and does not depend on time. Note that X = {x 2 X0 : gk(x)  0, 8k 2 {1, 2, . . . ,m}} can
be complicated while X0 might be a simple hypercube. To avoid high complexity involved in
the projection onto X as in Zinkevich’s algorithm, work in [16, 5, 13] develops low complexity
algorithms that use projections onto a simpler set X0 by allowing gk(x(t)) > 0 for certain
rounds but ensuring lim supT!1

1
T

PT
t=1 gk(x(t))  0. The best existing performance is

O(Tmax{�,1��}) regret and O(T 1��/2) constraint violations where � 2 (0, 1) is an algorithm
parameter [13]. This gives O(

p
T) regret with worse O(T 3/4) constraint violations or O(

p
T)

constraint violations with worse O(T) regret. In contrast, our algorithm, which only uses
projections onto X0 as shown in Lemma 1, can achieve O(

p
T) regret and O(

p
T) constraint

violations simultaneously. Note that by adapting the methodology presented in this paper, our
other work [27] developed a different algorithm that can only solve the special case problem
“OCO with long term constraints” but can achieve O(

p
T) regret and O(1) constraint violations.

• Stochastic constrained convex optimization: This is a special case where each f
t(x) is i.i.d.

generated from an unknown distribution. This problem has many applications in operations
research and machine learning such as Neyman-Pearson classification and risk-mean portfolio.

2

The work [17] develops a (batch) offline algorithm that produces a solution with high probability
performance guarantees only after sampling the problems for sufficiently many times. That is,
during the process of sampling, there is no performance guarantee. The work [15] proposes
a stochastic approximation based (batch) offline algorithm for stochastic convex optimization
with one single stochastic functional inequality constraint. In contrast, our algorithm is an
online algorithm with online performance guarantees and can deal with an arbitrary number of
stochastic constraints.

• Deterministic constrained convex optimization: This is a special case where each f
t(x) ⌘ f(x)

and g
t
k(x) ⌘ gk(x) are known and do not depend on time. In this case, the goal is to develop

a fast algorithm that converges to a good solution (with a small error) with a few number of
iterations; and our algorithm with O(

p
T) regret and constraint violations is equivalent to an

iterative numerical algorithm with O(1/
p
T) convergence rate. Our algorithm is subgradient

based and does not require the smoothness or differentiability of the convex program. The
primal-dual subgradient method considered in [19] has the same O(1/

p
T) convergence rate but

requires an upper bound of optimal Lagrange multipliers, which is usually unknown in practice.

2 Formulation and New Algorithm

Let X0 be a known fixed compact convex set. Let f t(x) be a sequence of arbitrarily-varying convex
functions. Let gk(x;!(t)), k 2 {1, 2, . . . ,m} be sequences of functions that are i.i.d. realizations of
stochastic constraint functions g̃k(x)

�
= E![gk(x;!)] with random variable ! 2 ⌦ from an unknown

distribution. That is, !(t) are i.i.d. samples of !. Assume that each f
t(·) is independent of all !(⌧)

with ⌧ � t+ 1 so that we are unable to predict future constraint functions based on the knowledge of
the current loss function. For each ! 2 ⌦, we assume gk(x;!) are convex with respect to x 2 X0. At
the beginning of each round t, neither the loss function f

t(x) nor the constraint function realizations
gk(x;!(t)) are known to the decision maker. However, the decision maker still needs to make a
decision x(t) 2 X0 for round t; and after that f t(x) and gk(x,!(t)) are disclosed to the decision
maker at the end of round t.

For convenience, we often suppress the dependence of each gk(x;!(t)) on !(t) and write
g
t
k(x) = gk(x;!(t)). Recall g̃k(x) = E![gk(x;!)] where the expectation is with respect to !.

Define X = {x 2 X0 : g̃k(x) = E[gk(x;!)]  0, 8k 2 {1, 2, . . . ,m}}. We further define the
stacked vector of multiple functions gt1(x), . . . , gtm(x) as gt(x) = [gt1(x), . . . , g

t
m(x)]T and define

g̃(x) = [E![g1(x;!)], . . . ,E![gm(x;!)]]T. We use k · k to denote the Euclidean norm for a vector.
Throughout this paper, we have the following assumptions:
Assumption 1 (Basic Assumptions).

• Loss functions f
t(x) and constraint functions gk(x;!) have bounded subgradients on X0.

That is, there exists D1 > 0 and D2 > 0 such that krf
t(x)k  D1 for all x 2 X0 and all

t 2 {0, 1, . . .} and krgk(x;!)k  D2 for all x 2 X0, all ! 2 ⌦ and all k 2 {1, 2, . . . ,m}.
2

• There exists constant G > 0 such that kg(x;!)k  G for all x 2 X0 and all ! 2 ⌦.

• There exists constant R > 0 such that kx� yk  R for all x,y 2 X0.

Assumption 2 (The Slater Condition). There exists ✏ > 0 and x̂ 2 X0 such that g̃k(x̂) =
E![gk(x̂;!)]  �✏ for all k 2 {1, 2, . . . ,m}.

2.1 New Algorithm

Now consider the following algorithm described in Algorithm 1. This algorithm chooses x(t+ 1) as
the decision for round t+ 1 based on f

t(·) and gt(·) without requiring f
t+1(·) or gt+1(·).

For each stochastic constraint function gk(x;!), we introduce Qk(t) and call it a virtual queue since
its dynamic is similar to a queue dynamic. The next lemma summarizes that x(t+ 1) update in (2)
can be implemented via a simple projection onto X0.
Lemma 1. The x(t+ 1) update in (2) is given by x(t+ 1) = PX0

⇥
x(t)� 1

2↵d(t)
⇤
, where d(t) =

Vrf
t(x(t)) +

Pm
k=1 Qk(t)rg

t
k(x(t)) and PX0 [·] is the projection onto convex set X0.

2 The notation rh(x) is used to denote a subgradient of a convex function h at the point x.; it is the same as
the gradient whenever the gradient exists.

3

Algorithm 1
Let V > 0 and ↵ > 0 be constant algorithm parameters. Choose x(1) 2 X0 arbitrarily and let
Qk(1) = 0, 8k 2 {1, 2, . . . ,m}. At the end of each round t 2 {1, 2, . . .}, observe f

t(·) and gt(·)
and do the following:
• Choose x(t+ 1) that solves

min
x2X0

�
V [rf

t(x(t))]T[x� x(t)] +
mX

k=1

Qk(t)[rg
t
k(x(t))]

T[x� x(t)] + ↵kx� x(t)k2

(2)

as the decision for the next round t + 1, where rf
t(x(t)) is a subgradient of f t(x) at point

x = x(t) and rg
t
k(x(t)) is a subgradient of gtk(x) at point x = x(t).

• Update each virtual queue Qk(t+ 1), 8k 2 {1, 2, . . . ,m} via

Qk(t+ 1) = max
�
Qk(t) + g

t
k(x(t)) + [rg

t
k(x(t))]

T[x(t+ 1)� x(t)], 0

, (3)

where max{·, ·} takes the larger one between two elements.

Proof. The projection by definition is minx2X0 kx� [x(t)� 1
2↵d(t)]k

2 and is equivalent to (2).

2.2 Intuitions of Algorithm 1

Note that if there are no stochastic constraints gtk(x), i.e., X = X0, then Algorithm 1 has Qk(t) ⌘
0, 8t and becomes Zinkevich’s algorithm with � = V

2↵ in (1) since

x(t+ 1)
(a)
= argmin

x2X0

�
V [rf t(x(t))]T[x� x(t)] + ↵kx� x(t)k2
| {z }

penalty

 (b)
= PX0

⇥
x(t)� V

2↵
rf t(x(t))

⇤
(4)

where (a) follows from (2); and (b) follows from Lemma 1 by noting that d(t) = Vrf
t(x(t)). Call

the term marked by an underbrace in (4) the penalty. Thus, Zinkevich’s algorithm is to minimize the
penalty term and is a special case of Algorithm 1 used to solve OCO over X0.

Let Q(t) =
⇥
Q1(t), . . . , Qm(t)

⇤T be the vector of virtual queue backlogs. Let L(t) = 1
2kQ(t)k2 be

a Lyapunov function and define Lyapunov drift

�(t) = L(t+ 1)� L(t) =
1

2
[kQ(t+ 1)k2 � kQ(t)k2]. (5)

The intuition behind Algorithm 1 is to choose x(t+ 1) to minimize an upper bound of the expression

�(t)|{z}
drift

+V [rf
t(x(t))]T[x� x(t)] + ↵kx� x(t)k2| {z }

penalty

(6)

The intention to minimize penalty is natural since Zinkevich’s algorithm (for OCO without stochastic
constraints) minimizes penalty, while the intention to minimize drift is motivated by observing that
g
t
k(x(t)) is accumulated into queue Qk(t+ 1) introduced in (3) such that we intend to have small

queue backlogs. The drift �(t) can be complicated and is in general non-convex. The next lemma
(proven in Supplement 7.1) provides a simple upper bound on �(t) and follows directly from (3).
Lemma 2. At each round t 2 {1, 2, . . .}, Algorithm 1 guarantees

�(t) 
mX

k=1

Qk(t)
⇥
g
t
k(x(t)) + [rg

t
k(x(t))]

T[x(t+ 1)� x(t)]
⇤
+

1

2
[G+

p
mD2R]2, (7)

where m is the number of constraint functions; and D2, G and R are defined in Assumption 1.

At the end of round t,
Pm

k=1 Qk(t)gtk(x(t)) +
1
2 [G +

p
mD2R]2 is a given constant that is not

affected by decision x(t+1). The algorithm decision in (2) is now transparent: x(t+1) is chosen to
minimize the drift-plus-penalty expression (6), where �(t) is approximated by the bound in (7).

2.3 Preliminary Analysis and More Intuitions of Algorithm 1
The next lemma (proven in Supplement 7.2) relates constraint violations and virtual queue values and
follows directly from (3).

4

Lemma 3. For any T � 1, Algorithm 1 guarantees
PT

t=1 g
t
k(x(t))  kQ(T+1)k+D2

PT
t=1 kx(t+

1)� x(t)k, 8k 2 {1, 2, . . . ,m}, where D2 is defined in Assumption 1.

Recall that function h : X0 ! R is said to be c-strongly convex if h(x) � c
2kxk

2 is convex over
x 2 X0. It is easy to see that if q : X0 ! R is a convex function, then for any constant c > 0
and any vector b, the function q(x) + c

2kx� bk2 is c-strongly convex. Further, it is known that if
h : X ! R is a c-strongly convex function that is minimized at a point xmin 2 X0, then (see, for
example, Corollary 1 in [28]):

h(xmin)  h(x)� c

2
kx� xmink2 8x 2 X0 (8)

Note that the expression involved in minimization (2) in Algorithm 1 is strongly convex with modulus
2↵ and x(t+ 1) is chosen to minimize it. Thus, the next lemma follows.
Lemma 4. Let z 2 X0 be arbitrary. For all t � 1, Algorithm 1 guarantees

V [rf t(x(t))]T[x(t+ 1)� x(t)] +
mX

k=1

Qk(t)[rgtk(x(t))]
T[x(t+ 1)� x(t)] + ↵kx(t+ 1)� x(t)k2

V [rf t(x(t))]T[z� x(t)] +
mX

k=1

Qk(t)[rgtk(x(t))]
T[z� x(t)] + ↵kz� x(t)k2 � ↵kz� x(t+ 1)k2.

The next corollary follows by taking z = x(t) in Lemma 4 and is proven in Supplement 7.3.

Corollary 1. For all t � 1, Algorithm 1 guarantees kx(t+ 1)� x(t)k  V D1
2↵ +

p
mD2

2↵ kQ(t)k.

The next corollary follows directly from Lemma 3 and Corollary 1 and shows that constraint violations
are ultimately bounded by sequence kQ(t)k, t 2 {1, 2, . . . , T + 1}.

Corollary 2. For any T � 1, Algorithm 1 guarantees
PT

t=1 g
t
k(x(t))  kQ(T + 1)k+ V TD1D2

2↵ +
p
mD2

2
2↵

PT
t=1 kQ(t)k, 8k 2 {1, 2, . . . ,m} where D1 and D2 are defined in Assumption 1.

This corollary further justifies why Algorithm 1 intends to minimize drift �(t). As illustrated in
the next section, controlled drift can often lead to boundedness of a stochastic process. Thus, the
intuition of minimizing drift �(t) is to yield small kQ(t)k bounds.

3 Expected Performance Analysis of Algorithm 1
This section shows that if we choose V =

p
T and ↵ = T in Algorithm 1, then both expected regret

and expected constraint violations are O(
p
T).

3.1 A Drift Lemma for Stochastic Processes
Let {Z(t), t � 0} be a discrete time stochastic process adapted3 to a filtration {F(t), t � 0}. For
example, Z(t) can be a random walk, a Markov chain or a martingale. The drift analysis is the
method of deducing properties, e.g., recurrence, ergodicity, or boundedness, about Z(t) from its drift
E[Z(t + 1) � Z(t)|F(t)]. See [6, 10] for more discussions or applications on drift analysis. This
paper proposes a new drift analysis lemma for stochastic processes as follows:
Lemma 5. Let {Z(t), t � 0} be a discrete time stochastic process adapted to a filtration {F(t), t �
0} with Z(0) = 0 and F(0) = {;,⌦}. Suppose there exists an integer t0 > 0, real constants ✓ > 0,

�max > 0 and 0 < ⇣  �max such that

|Z(t+ 1)� Z(t)| �max, (9)

E[Z(t+ t0)� Z(t)|F(t)] 
⇢

t0�max, if Z(t) < ✓

�t0⇣, if Z(t) � ✓
. (10)

hold for all t 2 {1, 2, . . .}. Then, the following holds

1. E[Z(t)]  ✓ + t0�max + t0
4�2max

⇣ log
⇥ 8�2max

⇣2

⇤
, 8t 2 {1, 2, . . .}.

2. For any constant 0 < µ < 1, we have Pr(Z(t) � z)  µ, 8t 2 {1, 2, . . .} where z =

✓ + t0�max + t0
4�2max

⇣ log
⇥ 8�2max

⇣2

⇤
+ t0

4�2max
⇣ log(1µ).

3Random variable Y is said to be adapted to �-algebra F if Y is F -measurable. In this case, we often write
Y 2 F . Similarly, random process {Z(t)} is adapted to filtration {F(t)} if Z(t) 2 F(t), 8t. See e.g. [7].

5

The above lemma is proven in Supplement 7.4 and provides both expected and high probability
bounds for stochastic processes based on a drift condition. It will be used to establish upper bounds of
virtual queues kQ(t)k, which further leads to expected and high probability constraint performance
bounds of our algorithm. For a given stochastic process Z(t), it is possible to show the drift condition
(10) holds for multiple t0 with different ⇣ and ✓. In fact, we will show in Lemma 7 that kQ(t)k
yielded by Algorithm 1 satisfies (10) for any integer t0 > 0 by selecting ⇣ and ✓ according to t0.
One-step drift conditions, corresponding to the special case t0 = 1 of Lemma 5, have been previously
considered in [10, 20]. However, Lemma 5 (with general t0 > 0) allows us to choose the best t0 in
performance analysis such that sublinear regret and constraint violation bounds are possible.

3.2 Expected Constraint Violation Analysis

Define filtration {W(t), t � 0} with W(0) = {;,⌦} and W(t) = �(!(1), . . . ,!(t)) being the
�-algebra generated by random samples {!(1), . . . ,!(t)} up to round t. From the update rule
in Algorithm 1, we observe that x(t + 1) is a deterministic function of f t(·),g(·;!(t)) and Q(t)
where Q(t) is further a deterministic function of Q(t � 1),g(·;!(t � 1)), x(t) and x(t � 1). By
inductions, it is easy to show that �(x(t)) ✓ W(t� 1) and �(Q(t)) ✓ W(t� 1) for all t � 1 where
�(Y) denotes the �-algebra generated by random variable Y . For fixed t � 1, since Q(t) is fully
determined by !(⌧), ⌧ 2 {1, 2, . . . , t� 1} and !(t) are i.i.d., we know gt(x) is independent of Q(t).
This is formally summarized in the next lemma.
Lemma 6. If x⇤ 2 X0 satisfies g̃(x⇤) = E![g(x⇤;!)]  0, then Algorithm 1 guarantees:

E[Qk(t)g
t
k(x

⇤)]  0, 8k 2 {1, 2, . . . ,m}, 8t � 1. (11)

Proof. Fix k 2 {1, 2, . . . ,m} and t � 1. Since g
t
k(x

⇤) = gk(x⇤;!(t)) is independent
of Qk(t), which is determined by {!(1), . . . ,!(t � 1)}, it follows that E[Qk(t)gtk(x

⇤)] =

E[Qk(t)]E[gtk(x⇤)]
(a)
 0, where (a) follows from the fact that E[gtk(x⇤)]  0 and Qk(t) � 0.

To establish a bound on constraint violations, by Corollary 2, it suffices to derive upper bounds for
kQ(t)k. In this subsection, we derive upper bounds for kQ(t)k by applying the new drift lemma
(Lemma 5) developed at the beginning of this section. The next lemma shows that random process
Z(t) = kQ(t)k satisfies the conditions in Lemma 5.
Lemma 7. Let t0 > 0 be an arbitrary integer. At each round t 2 {1, 2, . . . , } in Algorithm 1, the

following holds

��kQ(t+ 1)k � kQ(t)k
�� G+

p
mD2R, and

E[kQ(t+ t0)k � kQ(t)k
��W(t� 1)] 

⇢
t0(G+

p
mD2R), if kQ(t)k < ✓

�t0
✏
2 , if kQ(t)k � ✓

,

where ✓ = ✏
2 t0 + (G+

p
mD2R)t0 +

2↵R2

t0✏
+ 2V D1R+[G+

p
mD2R]2

✏ , m is the number of constraint

functions; D1, D2, G and R are defined in Assumption 1; and ✏ is defined in Assumption 2. (Note

that ✏ < G by the definition of G.)

Lemma 7 (proven in Supplement 7.5) allows us to apply Lemma 5 to random process Z(t) = kQ(t)k
and obtain E[kQ(t)k] = O(

p
T), 8t by taking t0 = d

p
T e, V =

p
T and ↵ = T , where d

p
T e

represents the smallest integer no less than
p
T . By Corollary 2, this further implies the expected

constraint violation bound E[
PT

t=1 gk(x(t))]  O(
p
T) as summarized in the next theorem.

Theorem 1 (Expected Constraint Violation Bound). If V =
p
T and ↵ = T in Algorithm 1, then for

all T � 1, we have

E[
TX

t=1

g
t
k(x(t))]  O(

p
T), 8k 2 {1, 2, . . . ,m}. (12)

where the expectation is taken with respect to all !(t).

Proof. Define random process Z(t) with Z(0) = 0 and Z(t) = kQ(t)k, t � 1 and filtration
F(t) with F(0) = {;,⌦} and F(t) = W(t � 1), t � 1. Note that Z(t) is adapted to F(t). By

6

Lemma 7, Z(t) satisfies the conditions in Lemma 5 with �max = G +
p
mD2R, ⇣ = ✏

2 and
✓ = ✏

2 t0 + (G+
p
mD2R)t0 +

2↵R2

t0✏
+ 2V D1R+[G+

p
mD2R]2

✏ . Thus, by part (1) of Lemma 5, for all

t 2 {1, 2, . . .}, we have E[kQ(t)k]  ✏
2 t0 + 2(G+

p
mD2R)t0 +

2↵R2

t0✏
+ 2V D1R+[G+

p
mD2R]2

✏ +

t0
8[G+

p
mD2R]2

✏ log[32[G+
p
mD2R]2

✏2]. Taking t0 = d
p
T e, V =

p
T and ↵ = T , we have

E[kQ(t)k]  O(
p
T) for all t 2 {1, 2, . . .}.

Fix T � 1. By Corollary 2 (with V =
p
T and ↵ = T) , we have

PT
t=1 g

t
k(x(t))  kQ(T +

1)k+
p
TD1D2

2 +
p
mD2

2
2T

PT
t=1 kQ(t)k, 8k 2 {1, 2, . . . ,m}. Taking expectations on both sides and

substituting E[kQ(t)k] = O(
p
T), 8t into it yields E[

PT
t=1 g

t
k(x(t))]  O(

p
T).

3.3 Expected Regret Analysis
The next lemma (proven in Supplement 7.6) refines Lemma 4 and is useful to analyze the regret.
Lemma 8. Let z 2 X0 be arbitrary. For all T � 1, Algorithm 1 guarantees

TX

t=1

f
t(x(t)) 

TX

t=1

f
t(z) + ↵

V
R2 +

V D2
1

4↵
T +

1

2
[G +

p
mD2R]2

T

V| {z }
(I)

+ 1

V

TX

t=1

⇥ mX

k=1

Qk(t)g
t
k(z)

⇤

| {z }
(II)

(13)

where m is the number of constraint functions; and D1, D2, G and R are defined in Assumption 1.

Note that if we take V =
p
T and ↵ = T , then term (I) in (13) is O(

p
T). Recall that the expectation

of term (II) in (13) with z = x⇤ is non-positive by Lemma 6. The expected regret bound of Algorithm
1 follows by taking expectations on both sides of (13) and is summarized in the next theorem.
Theorem 2 (Expected Regret Bound). Let x⇤ 2 X0 be any fixed solution that satisfies g̃(x⇤)  0,

e.g., x⇤ = argminx2X
PT

t=1 f
t(x). If V =

p
T and ↵ = T in Algorithm 1, then for all T � 1,

E[
TX

t=1

f
t(x(t))]  E[

TX

t=1

f
t(x⇤)] +O(

p
T).

where the expectation is taken with respect to all !(t).

Proof. Fix T � 1. Taking z = x⇤ in Lemma 8 yields
PT

t=1 f
t(x(t)) 

PT
t=1 f

t(x⇤) + ↵
V R

2 +
V D2

1
4↵ T + 1

2 [G+
p
mD2R]2 T

V + 1
V

PT
t=1

⇥Pm
k=1 Qk(t)gtk(x

⇤)
⇤
. Taking expectations on both sides

and using (11) yields
PT

t=1 E[f t(x(t))] 
PT

t=1 E[f t(x⇤)]+R
2 ↵
V + D2

1
4

V
↵ T + 1

2 [G+
p
mD2R]2 T

V .
Taking V =

p
T and ↵ = T yields

PT
t=1 E[f t(x(t))] 

PT
t=1 E[f t(x⇤)] +O(

p
T).

3.4 Special Case Performance Guarantees
Theorems 1 and 2 provide expected performance guarantees of Algorithm 1 for OCO with stochastic
constraints. The results further imply the performance guarantees in the following special cases:

• OCO with long term constraints: In this case, gk(x;!(t)) ⌘ gk(x) and there is no random-
ness. Thus, the expectations in Theorems 1 and 2 disappear. For this problem, Algorithm 1 can
achieve O(

p
T) (deterministic) regret and O(

p
T) (deterministic) constraint violations.

• Stochastic constrained convex optimization: Note that i.i.d. time-varying f(x;!(t)) is a
special case of arbitrarily-varying f

t(x) as considered in our OCO setting. Thus, Theorems 1
and 2 still hold when Algorithm 1 is applied to solve stochastic constrained convex optimization
minx{E[f(x;!)] : E[gk(x;!)]  0, 8k 2 {1, 2, . . . ,m},x 2 X0} in an online fashion with
i.i.d. realizations !(t) ⇠ !. Since Algorithm 1 chooses each x(t) without knowing !(t), it
follows that x(t) is independent of !(t0) for any t

0 � t by the i.i.d. property of each !(t).
Fix T > 0, if we run Algorithm 1 for T slots and use x(T) = 1

T

PT
t=1 x(t) as a fixed solu-

tion for any future slot t0 � T + 1, then E[f(x(T);!(t0)]
(a)
 1

T

PT
t=1 E[f(x(t);!(t0))]

(b)
=

1
T

PT
t=1 E[f(x(t);!(t))]

(c)
 1

T

PT
t=1 E[f(x⇤;!(t))] + O(1p

T
)

(d)
= E[f(x⇤;!(t0))] + O(1p

T
)

and E[gk(x(T);!(t0)]
(a)
 1

T

PT
t=1 E[gk(x(T);!(t0)]

(b)
= 1

T

PT
t=1 E[gk(x(t);!(t))]

(c)


7

O(1p
T
), 8k 2 {1, 2, . . . ,m} where (a) follows from Jensen’s inequality and the fact that x(T)

is independent of !(t0); (b) follows because each x(t) is independent of both !(t) and !(t0)
and !(t),!(t0) are i.i.d. realizations of !; (c) follows from Theorems 1 and 2 by dividing both
sides by T and (d) follows because E[f(x⇤;!(t))] = E[f(x⇤;!(t0))] for all t 2 {1, . . . , T} by
the i.i.d. property of each !(t). Thus, if we use Algorithm 1 as a (batch) offline algorithm to
solve stochastic constrained convex optimization, it has O(1/

p
T) convergence and ties with

the algorithm developed in [15], which is by design a (batch) offline algorithm and can only
solve stochastic optimization with a single constraint function.

• Deterministic constrained convex optimization: Similarly to OCO with long term con-
straints, the expectations in Theorems 1 and 2 disappear in this case since f

t(x) ⌘ f(x)

and gk(x;!(t)) ⌘ gk(x). If we use x(T) = 1
T

PT
t=1 x(t) as the solution, then f(x(T)) 

f(x⇤) + O(1p
T
) and gk(x(T))  O(1p

T
), which follows by dividing inequalities in Theo-

rems 1 and 2 by T on both sides and applying Jensen’s inequality. Thus, Algorithm 1 solves
deterministic constrained convex optimization with O(1p

T
) convergence.

4 High Probability Performance Analysis

This section shows that if we choose V =
p
T and ↵ = T in Algorithm 1, then for any 0 < � < 1,

with probability at least 1 � �, regret is O(
p
T log(T) log1.5(1�)) and constraint violations are

O
�p

T log(T) log(1�)
�
.

4.1 High Probability Constraint Violation Analysis

Similarly to the expected constraint violation analysis, we can use part (2) of the new drift lemma
(Lemma 5) to obtain a high probability bound of kQ(t)k, which together with Corollary 2 leads to a
high probability constraint violation bound summarized in Theorem 3 (proven in Supplement 7.7).

Theorem 3 (High Probability Constraint Violation Bound). Let 0 < � < 1 be arbitrary. If V =
p
T

and ↵ = T in Algorithm 1, then for all T � 1 and all k 2 {1, 2, . . . ,m}, we have

Pr

⇣ TX

t=1

gk(x(t))  O
�p

T log(T) log(
1

�
)
�⌘

� 1� �.

4.2 High Probability Regret Analysis

To obtain a high probability regret bound from Lemma 8, it remains to derive a high probability
bound of term (II) in (13) with z = x⇤. The main challenge is that term (II) is a supermartingale with
unbounded differences (due to the possibly unbounded virtual queues Qk(t)). Most concentration
inequalities, e.g., the Hoeffding-Azuma inequality, used in high probability performance analysis of
online algorithms are restricted to martingales/supermartingales with bounded differences. See for
example [4, 2, 16]. The following lemma considers supermartingales with unbounded differences.
Its proof (provided in Supplement 7.8) uses the truncation method to construct an auxiliary well-
behaved supermartingale. Similar proof techniques are previously used in [26, 24] to prove different
concentration inequalities for supermartingales/martingales with unbounded differences.
Lemma 9. Let {Z(t), t � 0} be a supermartingale adapted to a filtration {F(t), t � 0} with

Z(0) = 0 and F(0) = {;,⌦}, i.e., E[Z(t+1)|F(t)]  Z(t), 8t � 0. Suppose there exits a constant

c > 0 such that {|Z(t + 1) � Z(t)| > c} ✓ {Y (t) > 0}, 8t � 0, where Y (t) is process with Y (t)
adapted to F(t) for all t � 0. Then, for all z > 0, we have

Pr(Z(t) � z)  e
�z2/(2tc2) +

t�1X

⌧=0

Pr(Y (⌧) > 0), 8t � 1.

Note that if Pr(Y (t) > 0) = 0, 8t � 0, then Pr({|Z(t+ 1)� Z(t)| > c}) = 0, 8t � 0 and Z(t) is a
supermartingale with differences bounded by c. In this case, Lemma 9 reduces to the conventional
Hoeffding-Azuma inequality.

The next theorem (proven in Supplement 7.9) summarizes the high probability regret performance of
Algorithm 1 and follows from Lemmas 5-9 .

8

Theorem 4 (High Probability Regret Bound). Let x⇤ 2 X0 be any fixed solution that satisfies

g̃(x⇤)  0, e.g., x⇤ = argminx2X
PT

t=1 f
t(x). Let 0 < � < 1 be arbitrary. If V =

p
T and

↵ = T in Algorithm 1, then for all T � 1, we have

Pr

⇣ TX

t=1

f
t(x(t)) 

TX

t=1

f
t(x⇤) +O(

p
T log(T) log1.5(

1

�
))
⌘
� 1� �.

5 Experiment: Online Job Scheduling in Distributed Data Centers
Consider a geo-distributed data center infrastructure consisting of one front-end job router and 100
geographically distributed servers, which are located at 10 different zones to form 10 clusters (10
servers in each cluster). See Fig. 1(a) for an illustration. The front-end job router receives job
tasks and schedules them to different servers to fulfill the service. To serve the assigned jobs, each
server purchases power (within its capacity) from its zone market. Electricity market prices can vary
significantly across time and zones. For example, see Fig. 1(b) for a 5-minute average electricity
price trace (between 05/01/2017 and 05/10/2017) at New York zone CENTRL [1]. This problem
is to schedule jobs and control power levels at each server in real time such that all incoming jobs
are served and electricity cost is minimized. In our experiment, each server power is adjusted every
5 minutes, which is called a slot. (In practice, server power can not be adjusted too frequently due
to hardware restrictions and configuration delay.) Let x(t) = [x1(t), . . . , x100(t)] be the power
vector at slot t, where each xi(t) must be chosen from an interval [xmin

i , x
max
i] restricted by the

hardware, and the service rate at each server i satisfies µi(t) = hi(xi(t)), where hi(·) is an increasing
concave function. At each slot t, the job router schedules µi(t) amount of jobs to server i. The
electricity cost at slot t is f t(x(t)) =

P100
i=1 ci(t)xi(t) where ci(t) is the electricity price at server

i’s zone. We use ci(t) from real-world 5-minute average electricity price data at 10 different zones
in New York city between 05/01/2017 and 05/10/2017 obtained from NYISO [1]. At each slot
t, the incoming job is given by !(t) and satisfies a Poisson distribution. Note that the amount of
incoming jobs and electricity price ci(t) are unknown to us at the beginning of each slot t but can
be observed at the end of each slot. This is an example of OCO with stochastic constraints, where
we aim to minimize the electricity cost subject to the constraint that incoming jobs must be served
in time. In particular, at each round t, we receive loss function f

t(x(t)) and constraint function
g
t(x(t)) = !(t)�

P100
i=1 hi(xi(t)).

We compare our proposed algorithm with 3 baselines: (1) best fixed decision in hindsight; (2) react
[8] and (3) low-power [22]. Both “react" and “low-power" are popular power control strategies
used in distributed data centers. See Supplement 7.10 for more details of these 2 baselines and our
experiment. Fig. 1(c)(d) plot the performance of 4 algorithms, where the running average is the
time average up to the current slot. Fig. 1(c) compares electricity cost while Fig. 1(d) compares
unserved jobs. (Unserved jobs accumulate if the service rate provided by an algorithm is less than
the job arrival rate, i.e., the stochastic constraint is violated.) Fig. 1(c)(d) show that our proposed
algorithm performs closely to the best fixed decision in hindsight over time, both in electricity cost
and constraint violations. ‘React" performs well in serving job arrivals but yields larger electricity
cost, while “low-power" has low electricity cost but fails to serve job arrivals.

(a)

0 500 1000 1500 2000 2500

Number of slots (each 5 min)

0

50

100

150

200

250

300

350

400

450

P
ri
ce

 (
d
o
lla

r/
M

W
h
)

Electricity market price

(b)

0 500 1000 1500 2000 2500

Number of slots (each 5 min)

0

5000

10000

15000

C
o

st
 (

d
o

lla
r)

Running average electricity cost

Our algorithm

Best fixed strategy in hindsight

React (Gandhi et al. 2012)

Low-power (Qureshi et al. 2009)

(c)

0 500 1000 1500 2000 2500

Number of slots (each 5 min)

-200

0

200

400

600

800

1000

1200

U
n
se

rv
e
d
 jo

b
s

(p
e
r

sl
o
t)

Running average unserved jobs

Our algorithm
Best fixed decision in hindsight
React (Gandhi et al. 2012)
Low-power (Qureshi et al. 2009)

(d)
Figure 1: (a) Geo-distributed data center infrastructure; (b) Electricity market prices at zone CEN-
TRAL New York; (c) Running average electricity cost; (d) Running average unserved jobs.

6 Conclusion
This paper studies OCO with stochastic constraints, where the objective function varies arbitrarily but
the constraint functions are i.i.d. over time. A novel learning algorithm is developed that guarantees
O(

p
T) expected regret and constraint violations and O(

p
T log(T)) high probability regret and

constraint violations.

9

References
[1] New York ISO open access pricing data. http://www.nyiso.com/.
[2] Peter L Bartlett, Varsha Dani, Thomas Hayes, Sham Kakade, Alexander Rakhlin, and Ambuj

Tewari. High-probability regret bounds for bandit online linear optimization. In Proceedings of

Conference on Learning Theory (COLT), 2008.
[3] Nicolò Cesa-Bianchi, Philip M Long, and Manfred K Warmuth. Worst-case quadratic loss

bounds for prediction using linear functions and gradient descent. IEEE Transactions on Neural

Networks, 7(3):604–619, 1996.
[4] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge

University Press, 2006.
[5] Andrew Cotter, Maya Gupta, and Jan Pfeifer. A light touch for heavily constrained sgd. In

Proceedings of Conference on Learning Theory (COLT), 2015.
[6] Joseph L Doob. Stochastic processes. Wiley New York, 1953.
[7] Rick Durrett. Probability: Theory and Examples. Cambridge University Press, 2010.
[8] Anshul Gandhi, Mor Harchol-Balter, and Michael A Kozuch. Are sleep states effective in data

centers? In International Green Computing Conference (IGCC), 2012.
[9] Geoffrey J Gordon. Regret bounds for prediction problems. In Proceeding of Conference on

Learning Theory (COLT), 1999.
[10] Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with applica-

tions. Advances in Applied Probability, 14(3):502–525, 1982.
[11] Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimiza-

tion, 2(3–4):157–325, 2016.
[12] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex

optimization. Machine Learning, 69:169–192, 2007.
[13] Rodolphe Jenatton, Jim Huang, and Cédric Archambeau. Adaptive algorithms for online

convex optimization with long-term constraints. In Proceedings of International Conference on

Machine Learning (ICML), 2016.
[14] Jyrki Kivinen and Manfred K Warmuth. Exponentiated gradient versus gradient descent for

linear predictors. Information and Computation, 132(1):1–63, 1997.
[15] Guanghui Lan and Zhiqiang Zhou. Algorithms for stochastic optimization with expectation

constraints. arXiv:1604.03887, 2016.
[16] Mehrdad Mahdavi, Rong Jin, and Tianbao Yang. Trading regret for efficiency: online convex

optimization with long term constraints. Journal of Machine Learning Research, 13(1):2503–
2528, 2012.

[17] Mehrdad Mahdavi, Tianbao Yang, and Rong Jin. Stochastic convex optimization with multiple
objectives. In Advances in Neural Information Processing Systems (NIPS), 2013.

[18] Shie Mannor, John N Tsitsiklis, and Jia Yuan Yu. Online learning with sample path constraints.
Journal of Machine Learning Research, 10:569–590, March 2009.

[19] Angelia Nedić and Asuman Ozdaglar. Subgradient methods for saddle-point problems. Journal

of Optimization Theory and Applications, 142(1):205–228, 2009.
[20] Michael J. Neely. Energy-aware wireless scheduling with near optimal backlog and convergence

time tradeoffs. IEEE/ACM Transactions on Networking, 24(4):2223–2236, 2016.
[21] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer

Science & Business Media, 2004.
[22] Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John Guttag, and Bruce Maggs. Cutting

the electric bill for internet-scale systems. In ACM SIGCOMM, 2009.
[23] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends

in Machine Learning, 4(2):107–194, 2011.
[24] Terence Tao and Van Vu. Random matrices: universality of local spectral statistics of non-

hermitian matrices. The Annals of Probability, 43(2):782–874, 2015.
[25] David Tse and Pramod Viswanath. Fundamentals of Wireless Communication. Cambridge

University Press, 2005.
[26] Van Vu. Concentration of non-lipschitz functions and applications. Random Structures &

Algorithms, 20(3):262–316, 2002.

10

[27] Hao Yu and Michael J. Neely. A low complexity algorithm with O(
p
T) regret and finite con-

straint violations for online convex optimization with long term constraints. arXiv:1604.02218,
2016.

[28] Hao Yu and Michael J. Neely. A simple parallel algorithm with an O(1/t) convergence rate for
general convex programs. SIAM Journal on Optimization, 27(2):759–783, 2017.

[29] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of International Conference on Machine Learning (ICML), 2003.

11

