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Abstract

Influence maximization is the problem of selecting k nodes in a social network to
maximize their influence spread. The problem has been extensively studied but
most works focus on the submodular influence diffusion models. In this paper,
motivated by empirical evidences, we explore influence maximization in the non-
submodular regime. In particular, we study the general threshold model in which
a fraction of nodes have non-submodular threshold functions, but their threshold
functions are closely upper- and lower-bounded by some submodular functions
(we call them ε-almost submodular). We first show a strong hardness result: there
is no 1/nγ/c approximation for influence maximization (unless P = NP) for all
networks with up to nγ ε-almost submodular nodes, where γ is in (0,1) and c is a
parameter depending on ε. This indicates that influence maximization is still hard
to approximate even though threshold functions are close to submodular. We then
provide (1− ε)`(1− 1/e) approximation algorithms when the number of ε-almost
submodular nodes is `. Finally, we conduct experiments on a number of real-world
datasets, and the results demonstrate that our approximation algorithms outperform
other baseline algorithms.

1 Introduction

Influence maximization, proposed by Kempe, Kleinberg, and Tardos [1], considers the problem
of selecting k seed nodes in a social network that maximizes the spread of influence under pre-
defined diffusion model. This problem has many applications including viral marketing [2, 3], media
advertising [4] and rumors spreading [5] etc., and many aspects of the problem has been extensively
studied.

Most existing algorithms for influence maximization, typically under the independent cascade (IC)
model and the linear threshold (LT) model [1], utilize the submodularity of the influence spread as a
set function on the set of seed nodes, because it permits a (1− 1/e)-approximation solution by the
greedy scheme [1, 6, 7], following the foundational work on submodular function maximization [8].
One important result concerning submodularity in the influence model is by Mossel and Roch [9],
who prove that in the general threshold model, the global influence spread function is submodular
when all local threshold functions at all nodes are submodular. This result implies that “local"
submodularity ensures the submodularity of “global" influence spread.

Although influence maximization under submodular diffusion models is dominant in the research
literature, in real networks, non-submodularity of influence spread function has been observed.
Backstrom et al. [10] study the communities of two networks LiveJournal and DBLP and draw
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pictures of the impulse that a person joins a community against the number of his friends already
in this community. The curve is concave overall, except that a drop is observed in first two nodes.
Yang et al. [11] track emotion contagion under Flickr and find that the probability that an individual
becomes happy is superlinear to the number of his happy friends with higher PageRank scores. These
are all instances of non-submodular influence spread functions.

Influence maximization under many non-submodular diffusion models are proved to be hard to
approximate. For example, in the diffusions of rumors, innovations, or riot behaviors, the individual
in a social network is activated only when the number of her neighbors already adopting the behavior
exceeds her threshold. It has been shown that the influence maximization problem based on this fixed
threshold model cannot be approximated within a ratio of n1−ε for any ε > 0 [1]. Meanwhile Chen
[12] proves that the seed minimization problem, to activate the whole network with minimum size of
seed set, is also inapproximable, in particular, within a ratio of O(2log

1−ε n).

In this paper we give the first attempt on the influence maximization under the non-submodular
diffusion models. We study the general threshold model in which a fraction of nodes have non-
submodular threshold functions, but their threshold functions are closely upper- and lower-bounded
by some submodular functions (we call them ε-almost submodular). Such a model bears conceptual
similarity to the empirical finding in [10, 11]: both studies show that the influence curve is only
slightly non-concave, and Yang et al. [11] further shows that different roles have different curves
— some are submodular while others are not, and ordinary users usually have behaviors close to
submodular while opinion leaders may not. We first show a strong hardness result: there is no 1/n

γ
c

approximation for influence maximization (unless P = NP) for all networks with up to nγ ε-almost
submodular nodes, where γ is in (0, 1) and c is a parameter depending on ε. On the other hand, we
propose constant approximation algorithms for networks where the number of ε-almost submodular
nodes is a small constant. The positive results imply that non-submodular problem can be partly
solved as long as there are only a few non-submodular nodes and the threshold function is not far
away from submodularity. Finally, we conduct experiments on real datasets to empirically verify our
algorithms. Empirical results on real datasets show that our approximation algorithms outperform
other baseline algorithms.

Related Work. Influence maximization has been well studied over the past years [13, 6, 7, 14, 15].
In particular, Leskovec et al. [6] propose a lazy-forward optimization that avoids unnecessary
computation of expected size. Chen et al. [7, 14] propose scalable heuristic algorithms that handle
network of million edges. Based on the technique of Reverse Reachable Set, Borgs et al. [16]
reduce the running time of greedy algorithms to near-linear under the IC model [1]. Tang et al. [17]
implement the near-linear algorithm and process Twitter network with million edges. Subsequently,
Tang et al. [18] and Nguyen et al. [19] further improve the efficiency of algorithms. These works all
utilize the submodularity to accelerate approximation algorithms.

Seed minimization, as the dual problem of influence maximization, is to find a small seed set such
that expected influence coverage exceeds a desired threshold. Chen [12] provide some strong negative
results on seed minimization problem under fixed threshold model, which is a special case of general
threshold model where its threshold function has breaking points. Goyal et al. [20] propose a greedy
algorithm with a bicriteria approximation. Recently, Zhang et al. [21] study the probabilistic variant
of seed minimization problem.

Due to the limitation of independent cascade and linear threshold model, general threshold model has
been proposed [1, 9]. Not much is known about the general threshold model, other than it is NP-hard
to approximate [1]. One special case which receives many attention is k-complex contagion where a
node becomes active if at least k of its neighbours have been activated [22, 23, 24]. Gao et al. [25]
make one step further of k-complex contagion model by considering the threshold comes from a
probability distribution.

Optimization of non-submodular function is another interesting direction. Du et al. [26] introduce two
techniques — restricted submodularity and shifted submodularity — to analyze greedy approximation
of non-submodular functions. Recently, Horel et al.[27] study the problem of maximizing a set
function that is very close to submodular. They assume that function values can be obtained from an
oracle and focused on its query complexity. In our study, the local threshold functions are close to
submodular and our target is to study its effect on the global influence spread function, which is the
result of complex cascading behavior derived from the local threshold functions.
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2 Preliminaries

For a set function f : 2V → R, we say that it is monotone if f(S) ≤ f(T ) for all S ⊆ T ⊆ V ;
we say that it is submodular if f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T ), for all S ⊆ T ⊆ V and
v ∈ V \ T . For a directed graph G = (V,E), we use N in(v) to denote the in-neighbors of v in G.
We now formally define the general threshold model used in the paper.

Definition 1 (General Threshold Model [1]). In the general threshold model, for a social graph
G = (V,E), every node v ∈ V has a threshold function fv : 2N

in(v) → [0, 1]. The function fv(·)
should be monotone and fv(∅) = 0. Initially at time 0, each node v ∈ V is in the inactive state and
chooses θv uniformly at random from the interval [0, 1]. A seed set S0 is also selected, and their
states are set to be active. Afterwards, the influence propagates in discrete time steps. At time step
t ≥ 1, node v becomes active if fv(St−1 ∩N in(v)) ≥ θv, where St−1 is the set of active nodes by
time step t− 1. The process ends when no new node becomes active in a step.

General threshold model is one of the most important models in the influence maximization problem.
Usually we focus on two properties of threshold function – submodularity and supermodularity.
Submodularity can be understood as diminishing marginal returns when adding more nodes to the
seed set. In contrast, supermodularity means increasing marginal returns. Given a seed set S, let σ(S)
denote the expected number of activated nodes after the process of influence propagation terminates,
and we call σ(S) the influence spread of S.

Submodularity is the key property that guarantees the performance of greedy algorithms [9]. In this
paper, we would like to study the influence maximization with nearly submodular threshold function
— ε-almost submodular function, or in short ε-AS.

Definition 2 (ε-Almost Submodular (ε-AS)). A set function f : 2V → R is ε-almost submodular
if there exists a submodular function fsub defined on 2V and for any subset S ⊆ V , fsub(S) ≥
f(S) ≥ (1− ε)fsub(S). Here ε is a small positive number.

The definition of ε-almost submodular here is equivalent to "Approximate submodularity" defined
in [27]. For an ε-almost submodular threshold function fv, define its upper and lower submodular
bound as fv and f

v
. Hence by definition, we have f

v
= (1− ε)fv . Given the definition of ε-almost

submodular function, we then model the almost submodular graph. In this paper, we consider the
influence maximization problem based on this kind of graphs.

Definition 3 ((γ, ε)-Almost Submodular Graph). Given fixed parameters γ, ε ∈ [0, 1], we say that a
graph with n (n = |V |) nodes is a (γ, ε)-Almost Submodular Graph (under the general threshold
model), if there are at most nγ nodes in the graph with ε-almost submodular threshold functions
while other nodes have submodular threshold functions.

Definition 4 (ε-ASIM). Given a graph containing ε-almost submodular nodes and an input k,
Influence Maximization problem on graph with ε-Almost Submodular nodes (ε-ASIM) is the problem
to find k seed nodes such that the influence spread invoked by the k nodes is maximized.

3 Inapproximability of ε-ASIM

In this section we show that it is in general hard to approximate the influence maximization problem
even if there are only sublinear number of nodes with ε-almost submodular threshold functions. The
main reason is that even a small number of nodes with ε-almost submodular threshold functions fv(·)
would cause the global influence spread function far from submodularity, making the maximization
problem very difficult. The theorem below shows our hardness result.

Theorem 1. For any small ε > 0 and any γ ∈ (0, 1), there is no 1/n
γ
c -approximation influence

maximization algorithm for all (γ, ε)-almost submodular graphs where c = 3 + 3/ log 2
2−ε , unless

P=NP.

We first construct a probabilistic-AND gate gadget by amplifying the non-submodularity through a
binary tree. Then we prove the lower bound of approximation ratio by the reduction from set cover
problem. Due to page limits, we only sketch the main technique. The full proof can be found in the
supplementary material.
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Here we construct a basic gadget with input s1, s2 and output t (see Figure 1a). We assume that
node t has two in-neighbours s1, s2 and the threshold function g(·) of t is ε-almost submodular:
g(S) = |S|/2, when |S| = 0 or 2; 1−ε

2 , when |S| = 1.

t

s1 s2

(a) Basic gadget

d

s1 s2

t

...
...

...
...

...
...

...
...

(b) Tree gadget Tε

Figure 1: Diagrams of gadegts

Let Pa(v) be the activation probability of node v in this case. This simple gadget is obviously far away
from the AND gate, and our next step is to construct a more complex gadget with input node s1, s2.
We hope that the output node t is active only when both s1, s2 are active, and if only one of s1 and s2
is active, the probability that node t becomes active is close to 0. We call it a probabilistic-AND gate.

The main idea is to amplify the gap between submodularity and non-submodularity by binary tree
(figure 1b). In this gadget Tε with a complete binary tree, node t is the root of a full binary tree and
each node holds a directed edge to its parent. For each leaf node v in the tree, both s1, s2 hold the
directed edges towards it. The threshold function for each node in the tree is g(·) defined above while
ε is the index of gadget Tε. The depth of the tree is parameter d which will be determined later. We
use vi to denote a node of depth i (t is in depth 1). It is obviously that Pa(t) = 1 if both s1, s2 are
activated, and Pa(t) = 0 if neither s1 or s2 is activated. Thus, we would like to prove, in case when
only one of s1, s2 is activated, the activation probability becomes smaller for inner nodes in the tree.

Lemma 2. For gadget Tε with depth d, the probability of activating output node t is less than ( 2−ε2 )d

when only one of s1, s2 is activated.

Proof. In this case, for leaf node vd, we have Pa(vd) = 1−ε
2 . Apparently, the probability of becoming

activated for nodes with depth d are independent with each other. Given a basic gadget, if each of
the two children nodes is activated with an independent probability p, then the parent node will be
activated with probability

p2 × g(2) + 2p(1− p)× g(1) + (1− p)2 × g(0) = p2 + 2p(1− p)1− ε
2

= p(1− ε(1− p)).

So we have Pa(vi) ≤ Pa(vi+1)(1− ε(1− Pa(vi+1))). Since Pa(vd) = 1−ε
2 < 1/2, and Pa(vi) ≤

Pa(vi+1) from above, we have pa(vi) < 1/2 for all i, and thus we can rewrite the recurrence as
Pa(vi) ≤ Pa(vi+1)(1− ε/2). Hence for the gadget with depth d, the probability that node t becomes
activated is Pa(t) = Pa(v1) ≤ 1−ε

2 ( 2−ε2 )d−1 < ( 2−ε2 )d.

Lemma 2 shows that gadget Tε is indeed a probabilistic-AND gate with two input nodes, and the
probability that t is activated when only one of s1 and s2 is activated approaches 0 exponentially fast
with the depth d. We say a gadget Tε works well if output node t stay inactive when only one of the
input nodes is activated.

By the similar method we construct multi-input-AND gates based on 2-input-AND gates. Finally,
we show that if the influence maximization problem can be approximated beyond the ratio shown
above, we can solve the set cover problem in polynomial time. The main idea is as follows. For any
set cover instance, we will put all elements to be the input of our multi-input-probabilistic-AND gate,
and connect the output with a large number of additional nodes. Thus, if k sets can cover all elements,
all of those addition nodes will be activated, on contrast, if at least one of the elements cannot be
covered, almost all of the additional nodes will remain inactive.
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4 Approximation Algorithms

In the previous section, we show that influence maximization is hard to approximate when the number
of ε-almost submodular nodes is sublinear but still a non-constant number. In this section, we discuss
the situation where only small number of nodes hold ε-almost submodular threshold functions. We
firstly provide a greedy algorithm for small number of non-submodular nodes which may not be
ε-almost submodular, then, we restrict to the case of ε-almost submodular nodes.

4.1 Approximation Algorithm with Small Number of Non-submodular Nodes

In the case of ` (` < k) non-submodular nodes, we provide an approximate algorithm as follows. We
first add these non-submodular nodes into the seed set, and then generate the rest of the seed set by
the classical greedy algorithm. The proof of Theorem 3 can be found in the supplementary material.
Theorem 3. Given a graph of n nodes where all nodes have submodular threshold functions except
` < k nodes, for influence maximization of k seeds with greedy scheme we can obtain a (1− e− k−`k )-
approximation ratio.

4.2 Approximation Algorithm of ε-ASIM

In this section, we consider the case when all non-submodular nodes have ε-almost submodular thresh-
old functions, and provide an approximation algorithm that allows more than k ε-almost submodular
nodes, with the approximation ratio close to 1− 1/e when ε is small. The main idea is based on the
mapping between probability spaces.

Given a graph containing nodes with ε-almost submodular threshold functions, we simply set each
node’s threshold function to its submodular lower bound and then run classical greedy algorithm A
on this graph (Algorithm 1). Algorithm 1 takes the lower bounds of ε-almost submodular threshold
functions as input parameters. The following theorem analyzes the performance of Algorithm 1.

Algorithm 1 Galg-L algorithm for Influence Maximization

Input: G = (V, E), A, {fv}, {fv}, k
Output: Seed set S

1: set S = ∅
2: replace each nodes v’s threshold function fv with f

v
3: run algorithm A on G with {f

v
} and obtain S

4: return S

Theorem 4. Given a graph G = (V,E), under the general threshold model, assuming that ` nodes
have ε-almost submodular threshold functions and the other nodes have submodular threshold
functions. Then the greedy algorithm Galg-L has approximation ratio of (1− 1

e )(1− ε)
`.

Proof. Let Ve be the set of nodes with ε-almost submodular threshold functions. Without loss of
generality, we assume Ve = {v1, v2, . . . , v`}. Now consider two general threshold models M,M
with different threshold functions. Both models hold threshold functions {fv} for v ∈ V − Ve. For
node v in Ve, M,M hold {fv} and {f

v
} respectively.

In any threshold model, after we sample each node’s threshold θv, the diffusion process be-
comes deterministic. A graph with threshold functions {fv} and sampled thresholds {θv} is
called a possible world of the threshold model, which is similar to the live-edge graph in the
independent cascade model. An instance of threshold model’s possible world can be written as
{θv1 , θv2 , . . . , θvn ; fv1 , fv2 , . . . , fvn}. Here we build a one-to-one mapping from all M ’s possible
worlds with θv ≤ 1− ε (v ∈ Ve) to all M ’s possible worlds:

{θv1 , . . . , θvn ; fv1 , . . . , fvn} ↔ {
θv1
1− ε , . . . ,

θv`
1− ε , θv`+1 . . . , θvn ;

fv1
1− ε , . . . ,

fv`
1− ε , fv`+1 , . . . , fvn}.

The above corresponding relation shows this one-to-one mapping between M and M . For any
instance of M ’s possible world with θv ≤ 1 − ε (v ∈ Ve), we amplify the threshold of node v in
Ve to θv

1−ε . At the same time, we amplify the corresponding threshold function by a factor of 1
1−ε .
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Obviously, this amplification process will not effect the influence process under this possible world,
because for each v ∈ Ve, both its threshold value and the its threshold function are amplified by the
same factor 1/(1− ε). Furthermore, the amplified possible world is an instance of M .

Expected influence can be computed by σ(S) =
∫
~θ∈[0,1]n D(~θ; ~f, S)d~θ, where D(~θ; ~f, S) is the

deterministic influence size of seed set S under possible world {~θ; ~f}. We refer M,M ’s expected
influence size functions as σ, σ. We define ~θ ∈ [0, 1]n as the vector of n nodes threshold, and
~θe ∈ [0, 1]`, ~θ′ ∈ [0, 1]n−` are the threshold vectors of Ve and V − Ve. Besides, the threshold
functions of Ve and V − Ve will be represented as ~fe, ~f

′. A possible world is symbolized as
{~θe, ~θ′; ~fe, ~f ′}. For any seed set S, we have

σ(S) =
∫
~θ∈[0,1]n D(~θ; ~f, S)d~θ

≥
∫
~θe∈[0,1−ε]`

∫
~θ′∈[0,1]n−` D((~θe, ~θ

′); ~f, S)d~θed~θ′
= (1− ε)`

∫
~θe

1−ε∈[0,1]
`

∫
~θ′∈[0,1]n−` D((~θe, ~θ

′); ~f, S)d ~θe
1−ε

d~θ′

= (1− ε)`
∫
~θe

1−ε∈[0,1]
`

∫
~θ′∈[0,1]n−` D((

~θe
1−ε ,

~θ′); (
~fe

1−ε ,
~f ′), S)d ~θe

1−ε
d~θ′

= (1− ε)`
∫
~θ∈[0,1]n D(~θ; (

~fe
1−ε ,

~f ′), S)d~θ
= (1− ε)`σ(S).

The third equality utilizes our one-to-one mapping, in particular D((~θe, ~θ′); ~f, S) =

D(( ~θe
1−ε ,

~θ′); (
~fe

1−ε ,
~f ′), S) for ~θe

1−ε ∈ [0, 1]`, because they follow the same deterministic propa-
gation process. Hence given a seed set S, the respective influence sizes in model M,M satisfy the
relation σ(S) ≥ (1− ε)`σ(S).
Let σ be the expected influence size function of the original model, and assume that the optimal
solution for σ, σ, σ are S

∗
, S∗, S∗ respectly. Apparently, σ(S

∗
) ≥ σ(S∗) since for every node v,

fv ≥ fv . According to the previous analysis, we have σ(S∗) ≥ σ(S∗) ≥ (1− ε)`σ(S∗). Hence for
output SA of the greedy algorithm for optimizing σ, we have approximation ratio

σ(SA) ≥ σ(SA) ≥ (1− 1

e
)σ(S∗) ≥ (1− 1

e
)(1− ε)`σ(S∗) ≥ (1− 1

e
)(1− ε)`σ(S∗).

The theorem holds.

If we replace threshold functions by their upper bound and run the greedy algorithm, we obtain
Galg-U. With similar analysis, Galg-U also holds approximation ratio of (1− 1

e )(1− ε)
` on graphs

with ` ε-almost submodular nodes. The novel technique used to prove approximation ratio is similar
to the sandwich approximation in [28]. But their approximation ratio relies on instance-dependent
influence sizes, while we utilize mapping of probabilistic space to provide instance-independent
approximation ratio.

5 Experiments

In addition to the theoretical analysis, we are curious about the performance of greedy algorithms
Galg-U, Galg-L on real networks with non-submodular nodes. Our experiments run on a machine
with two 2.4GHz Intel(R) Xeon(R) E5-2620 CPUs, 4 processors (24 cores), 128GB memory and
64bit Ubuntu 14.04.1. All algorithms tested in this paper are written in C++ and compiled with g++
4.8.4. Some algorithms are implemented with multi-thread to decrease the running time.

5.1 Experiment setup

Datasets. We conduct experiments on three real networks. The first network is NetHEPT, an
academic collaboration network extracted from "High Energy Physics - Theory" section of arXiv
(http://www.arXiv.org) used by many works [7, 14, 15, 19, 20]. NetHEPT is an undirected network
with 15233 nodes and 31376 edges, each node represents an author and each edge represents that
two authors collaborated on a paper. The second one is Flixster, an American movie rating social site.
Each node represents a user, and directed edge (u, v) means v rated the same movie shortly after u
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did. We select topic 3 with 29357 nodes and 174939 directed edges here. The last one is the DBLP
dataset, which is a larger collaboration network mined from the computer science bibliography site
DBLP with 654628 nodes and 1990259 undirected edges [14]. We process its edges in the same way
as the NetHEPT dataset.

Propagation Models. We adapt general threshold model in this paper. Our Galg-U,Galg-L are
designed on submodular upper and lower bounds, respectively. Since directly applying greedy scheme
on graphs with submodular threshold function is time-consuming, we assign the submodular threshold
function and submodular upper bound of ε-AS function as linear function here: fv(S) = |S|/d(v),
where d(v) is the in-degree of v. This makes the corresponding model an instance of the linear-
threshold model, and thus the greedy algorithm can be accelerated with Reverse Reachable Set
(RRset) technique [17].

We construct two different ε-almost submodular threshold functions in this paper: (1) a power function
|S|
d(v)

β
with β satisfying 1

d(v)

β
= 1

d(v) (1 − ε); (2) fv(S) = |S|
d(v) (1 − ε) for |S| ≤ 2 and |S|/d(v)

otherwise. The former ε-almost submodular function is a supermodular function. The supermodular
phenomenon has been observed in Flickr [11]. The second ε-almost submodular function is just
dropping down the original threshold function for the first several nodes, which is consistent with the
phenomenon observed in LiveJournal [10]. We call them ε-AS-1 and ε-AS-2 functions respectively.

Algorithms. We test our approximation Algorithm 1 and other baseline algorithms on the graphs
with ε-almost submodular nodes.

• TIM-U, TIM-L: Tang et al. [17] proposed a greedy algorithm TIM+ accelerated with Reverse
Reachable Set (RRset). The running time of TIM+ is O(k(m+ n) log n) on graphs with n nodes
and m edges. RRset can be sampled in live-edge graph of IC model, and with some extension
we can sample RRset under Triggering model [1]. LT model also belongs to Triggering model,
but General Threshold model with non-submodular threshold functions does not fall into the
category of Triggering model. Thus TIM+ can not be directly applied on original graphs with
non-submodular nodes. In our experiments, we choose ε-AS-1 and ε-AS-2 thresholds to ensure
that TIM+ can run with their upper or lower bound. We then run Algorithm 1 with TIM+ as input.
Algorithm Galg-L based on TIM+ can be written in short as TIM-L. By using the upper bound we
obtain TIM-U.

• Greedy: We can still apply the naive greedy scheme on graph with ε-almost submodular nodes
and generate results without theoretical guarantee. The naive greedy algorithm is time consuming,
with running time is O(k(m+ n)n).

• High-degree: High-degree outputs seed set according to the decreasing order of the out-degree.

• PageRank: PageRank is widely used to discover nodes with high influence. The insight of
PageRank is that important nodes point to important nodes. In this paper, The transition probability
on edge e = (u, v) is 1/d(u). We set restart probability as 0.15 and use the power method to
compute the PageRank values. Finally PageRank outputs nodes with top PageRank values.

• Random: Random simply selects seeds randomly from node set.

Experiment methods. The datasets provide the structure of network, and we first assume each node
holds linear threshold function as described above. In each experiment, we randomly sample some
nodes with in-degree greater than 2, and assign those nodes with our ε-almost submodular functions,
ε-AS-1 or ε-AS-2. Since the naive greedy algorithm is quite time-consuming, we just run it on
NetHEPT.

5.2 Experiment results

Results on NetHEPT. Our first set of experiments focuses on the NetHEPT dataset with the aim
of comparing TIM-U, TIM-L and Greedy. TIM-U, TIM-L have theoretical guarantee, but the
approximation ratio is low when the graph contains a considerable number of ε-AS nodes. Figure 2
shows the influence size of each method, varying from 1 to 100 seeds. Figure 2a and 2b are results
conducted on constructed graph with ε-AS-1 nodes. Observe that TIM-U, TIM-L slightly outperform
Greedy in all cases. Compared with results of 3000 ε-AS nodes, influence of output seeds drops
obviously in graph with 10000 ε-AS nodes. But the ratio that TIM-U, TIM-L exceed PageRank
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(a) 3000 ε-AS-1 nodes (b) 10000 ε-AS-1 nodes (c) 3000 ε-AS-2 nodes (d) 10000 ε-AS-2 nodes

Figure 2: Results of IM on NetHEPT with ε = 0.2

increases with rising fraction of ε-AS nodes. In particular, ε-AS-1 is indeed supermodular, TIM-U,
TIM-L beats Greedy even when many nodes have supermodular threshold functions.

We remark that TIM-U, TIM-L and Greedy outperform other baseline algorithms significantly. When
k = 100, TIM-U is 6.1% better compared with PageRank and 27.2% better compared with High-
degree. When conducted with ε-AS-2 function, Figure 2c and 2d report that TIM-U, TIM-L and
Greedy still perform extremely well. Influence size conducted on graphs with ε-AS-2 function is
better than those with ε-AS-1 function. This is what we expect: supermodular function is harder to
handle among the class of ε-almost submodular functions.

Another thing to notice is that TIM-U, TIM-L can output seeds on NetHEPT within seconds, while it
takes weeks to run the naive greedy algorithm. With RRsets technique, TIM+ dramatically reduces
the running time. The ε-almost submodular functions selected here ensure that TIM+ can be invoked.
Since TIM-U, TIM-L match the performance of Greedy while TIM-U, TIM-L are scalable, we do not
run Greedy in the following larger datasets.

Results on Flixster. Figure 3 shows the results of experiments conducted on Flixster with

(a) 3000 ε-AS-1 nodes (b) 10000 ε-AS-1 nodes (c) 3000 ε-AS-2 nodes (d) 10000 ε-AS-2 nodes

Figure 3: Results of IM on Flixster with ε = 0.2

ε = 0.2. We further evaluate algorithms by Flixster with ε = 0.4 (see Figure 4). Observe that
TIM-U, TIM-L outperform other heuristic algorithms in all cases. Compared with PageRank,
30%, 46.3%, 26%, 29.7% improvement are observed in the four experiments in Figure 3. TIM-U
performs closely to TIM-L consistently. The improvement is larger than that in NetHEPT. The extra
improvement might due to more complex network structure. The average degree is 5.95 in Flixster,
compared to 2.05 in NetHEPT. In dense network, nodes may be activated by multiple influence
chains, which makes influence propagates further from seeds. Baseline algorithms only pay attention
to the structure of the network, hence they are defeated by TIM-U, TIM-L that focus on influence
spread. The more ε-AS nodes in network, the more improvement is obtained.

When we set ε as 0.4, Figure 4 shows that TIM-U is 37.6%, 74.2%, 28%, 35.6% better than PageR-
ank respectively. Notice that the gap between the performances of TIM-U and PageRank increases
as ε increases. In Flixster dataset, we observe that TIM-U,TIM-L hold greater advantage in case of
larger number of ε-AS nodes and larger ε.

Results on DBLP. For DBLP dataset, the results are shown in Figure 5. TIM-U and TIM-L are still
the best algorithms according to performance. But PageRank and High-degree also performs
well, just about 2.6% behind TIM-U and TIM-L. DBLP network has many nodes with large degree,
which correspond to those active scientists. Once such active authors are activated, the influence will
increase significantly. This may partly explain why TIM-U,TIM-L perform similarly to PageRank.
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(a) 3000 ε-AS-1 nodes (b) 10000 ε-AS-1 nodes (c) 3000 ε-AS-2 nodes (d) 10000 ε-AS-2 nodes

Figure 4: Results of IM on Flixster with ε = 0.4

(a) 10000 ε-AS-1 nodes (b) 100000 ε-AS-1 nodes (c) 10000 ε-AS-2 nodes (d) 100000 ε-AS-2 nodes

Figure 5: Results of IM on DBLP with ε = 0.2

6 Conclusion and Future Work

In this paper, we study the influence maximization problem on propagation models with non-
submodular threshold functions, which are different from most of existing studies where the threshold
functions and the influence spread function are both submodular. We investigate the problem
by studying a special case — the ε-almost submodular threshold function. We first show that
influence maximization problem is still hard to approximate even when the number of ε-almost
submodular nodes is sub-linear. Next we provide a greedy algorithm based on submodular lower
bounds of threshold function to handle the graph with small number of ε-almost submodular nodes
and show its theoretical guarantee. We further conduct experiments on real networks and compare
our algorithms with other baselines to evaluate our algorithms in practice. Experimental results
show that our algorithms not only have good theoretical guarantees on graph with small number of
ε-almost submodular nodes, they also perform well on graph with a fairly large fraction of ε-almost
submodular nodes.

Our study mainly focuses on handling ε-almost submodular threshold functions. One future direction
is to investigate models with arbitrary non-submodular threshold functions. Another issue is that the
greedy algorithms we propose are slow when the submodular upper bound or lower bound of threshold
function do not correspond to the Triggering model. It remains open whether we could utilize RRset
or other techniques to accelerate our algorithms under this circumstance. How to accelerate the naive
greedy process with arbitrary submodular threshold functions is another interesting direction.
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Supplementary Material

A Missing Proof of Theorem 1

Proof. We have described the construction of gadget Tε, we can further construct n-input trees Tnε
with gadget Tε — a multi input AND gate. Given n input nodes s1, s2, . . . , sn, we can use s0 and
s1 as input nodes of Tε and set output node as s12. And then combine s12 and s3 with gadget Tε to
obtain output s123. Finally we obtain ultimate output node s12...n. With high probability s12...n will
not be activated if not all input nodes s1, s2, . . . , sn are activated. We calculate the probability that
Tnε works well. Since each Tε is a binary tree with depth d, according to Lemma 2 each Tε breaks
the AND gate rule with probability at most ( 2−ε2 )d. With Union Bound, we can say that Tnε is an
AND gate with probability at least 1− n( 2−ε2 )d. Besides, a Tnε have n× (2d − 1) = n2d − n nodes.

We consider a variant of set cover problems and show that if influence maximization problem can
be approximated beyond the ratio shown above, then we can solve the set cover problem. Let
e1, e2, . . . , en denote the nodes corresponding to the n elements. Let s1, s2, . . . , sm denote the nodes
corresponding to the m sets. We can assume that m < n. When m ≥ n we could add m dummy
nodes that contained by all m sets, the solution of the newly created graph is the same with original
graph. Note that in this reduction, n is the number of elements in the Set Cover instance. We use N
to denote the size of the graph constructed from the Set Cover instance.

Figure 6 shows the graph structure for the reduction. Each set node si holds a directed edge towards
the element nodes it covers and each element node ej has threshold function with fej (1) = 1, which
means that ej becomes activated when at least one of the nodes corresponding to sets covering it is
activated. We add nα copies of Tnε trees, each of which has e1, e2, . . . , en as the input nodes, and
xi as the output node. Moreover, for a large positive constant β, we add nβ children c1, c2, . . . , cnβ
for each node xk. Each child node cl also has threshold function with fcl(1) = 1. That is, these cl
nodes have submodular threshold functions. For the constructed graph, only nodes in Tnε (nodes
painted red) holds ε-almost submodular threshold function. We can adjust the ratio of ε-almost
submodular nodes with the assignment of α, β. Intuitively, to make the approximation ratio to be
proved in the hardness result at a low value of 1/Na for some a > 0, we want to increase α to create
a larger gap between the existence and non-existence of a set cover. In particular, the fraction of nodes
that could be activated by k seeds in the case of no set cover should be less than the approximation
ratio 1/Na. However, increasing α would generate more ε-almost submodular nodes. To keep the
fraction of ε-almost submodular nodes small, we need to increase β. But increasing β would increase
the total size of the graph N , decreasing the approximation ratio 1/Na. Therefore, we need to find
the right balance between α and β to achieve what we claim in Theorem 1. The following is the
detailed analysis of setting parameters α and β and the depth of trees Tnε .

Figure 6: Reduction structure from a Set Cover instance to an ε-ASIM instance
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Here we calculate the depth of Tε in order to make sure that the nα Tnε are all AND gate with high
probability. Again we apply Union Bound to calculate the probability upper bound of at least one Tnε
fails — n1+α( 2−ε2 )d. We set d = (1+ α+ λ) log n/ log 2

2−ε , so all the Tnε observe the rule of AND
gate with probability at least 1− n−λ.

If we can find k sets that cover all the n elements, then we just select the k nodes corresponding to
the k sets as seed nodes. Then the seed nodes will activate nodes e1, e2, . . . , en and then all nodes in
gadgets Tnε will become activated. Finally, all the child nodes of x1, x2, . . . , xnα become activated,
and totally k + n+ nα+1(2d − 1) + nαβ ≥ nαβ nodes become activated in total, while the graph
consists of N = m+ n+ nα+1(2d − 1) + nαβ nodes, nearly all nodes are activated. On the other
hand, if there is no solution of size k for this set cover problem, we can not activate all element nodes
ej . During the influence spread of a given target nodes, with probability al least 1 − n−λ none of
x1, x2, . . . , xnα will become activated. Under this circumstance, we can select nodes labeled with x
as seeds or just try to activate more nodes ej . Totally we can just activate at most k + n+ knβ nodes
if we choose xk as seeds. Otherwise we can assume that at most n− 1 elements are covered and all
gadget nodes are activated. In this case k + n− 1 + nα+1(2d − 1) nodes will become active if all
probabilistic AND gate work well. On the other hand if these Tnε fails with probability at most n−λ,
we just assume that all the nodes will become activated eventually. We can set nβ = nα−1 · 2d · nδ
for δ > 0 to ensure that the fraction of gadget nodes and dummy nodes is slightly less than n

1
α−1 .

When n is large enough the influence size we obtain that influence size is less then knβ ≤ nβ+1

or nα+12d w.h.p. when Set Cover is not solved. For any influence maximization algorithm, there
exists a graph of N nodes where at most nα+1(2d − 1) nodes have ε-almost submodular threshold
function, for any result obtained, with probability at least 1 − n−λ, the influence size is less than
1/nα−1 of σ(S∗), unless we can solve Set Cover problems within polynomial time. Here N ≥ nα+β ,
d = (1 + α + λ) log n/ log 2

2−ε , β = (α + 1) + (1 + α + λ)/ log 2
2−ε + δ. We can substitute the

parameters into the conclusion, and obtain that ∀α > 1, λ > 0, δ > 0, there exist b = 1/ log 2
2−ε ,

ϕ = min{α−1,λ}
2α+δ−1+b(1+α+λ) , and γ = α+1+b(1+α+λ)

2α+δ−1+b(1+α+λ) , for any influence maximization algorithm
based on (γ, ε)-almost submodular graphs, there exists a graph instance such that the approximation
ratio cannot be higher than N−ϕ, unless P=NP. Notice that ϕ ≥ γ

3+3b when we set α = λ+ 1 and
λ ≥ 1, and γ ranges in (0, 1), hence the theorem follows.

B Missing Proof of Theorem 3

The result follows the general framework on submodular functions laid out in the original work [8].
For convenience, we reproduce the proof specific to our Theorem 3 below.

Proof. Assuming that S∗ is the optimal set that maximizes the expectation of influenced nodes, Ve
are the set of ` nodes with non-submodular threshold function. let S∗Ve = S∗ ∪ Ve. Apparently,
σ(S∗Ve) ≥ σ(S

∗) since σ(·) is monotone. Since nodes in Ve have non-submodular threshold functions,
so we can not directly apply greedy scheme to find the seed set. But we can first add Ve to the seed
set and therefore the influence function σ(S ∪ Ve) is submodular when S ⊆ V − Ve. In this case, we
obtain a greedy solution SgVe,k with adding extra k nodes to original seed set Ve with greedy scheme.

We assume that S∗Ve = Ve ∪ {s1, s2, . . . , sk′}, k′ ≤ k, Si = {s1, s2, . . . , si}, where si 6∈ Ve. Indeed,
according to the proof of approximation ratio of 1− 1/e, for i ≤ k, we have

σ(S∗Ve)
≤ σ(S∗Ve ∪ S

g
Ve,i

)

= σ(SgVe,i) +
∑k′

j=1

(
σ(SgVe,i ∪ Sj)− σ(S

g
Ve,i
∪ Sj−1)

)
≤ σ(SgVe,i) +

∑k′

j=1

(
σ(SgVe,i ∪ {sj})− σ(S

g
Ve,i

)
)

≤ σ(SgVe,i) + k ·
(
σ(SgVe,i+1)− σ(S

g
Ve,i

)
)

The first line follows from monotonicity of σ, third line follows from the submodularity of σ, forth
line holds because SgVe,i+1 is built greedily from SgVe,i in order to maximize marginal benefit. Hence

σ(S∗Ve)− σ(S
g
Ve,i

) ≤ k ·
(
σ(SgVe,i+1)− σ(S

g
Ve,i

)
)

σ(S∗Ve)− σ(S
g
Ve,i+1) ≤ (1− 1

k )
(
σ(S∗Ve)− σ(S

g
Ve,i

)
)
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When we apply greedy scheme for k − ` steps,

σ(S∗Ve)− σ(S
g
Ve,k−`) ≤ (1− 1

k )
k−`(σ(S∗Ve)− σ(Ve)) ≤ (1− 1

k )
k−`σ(S∗Ve)

σ(SgVe,k−`) ≥ (1− (1− 1

k
)k−`)σ(S∗Ve) ≥ (1− e−

k−`
k )σ(S∗)

Up till now we obtain that σ(SgVe,k−`) ≥ (1 − e− k−`k )σ(S∗). Hence we can first add all nodes
without submodular threshold function to initial seed set and then apply greedy scheme to obtain a
solution with theoretical approximation ratio. The theorem follows.
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