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Abstract

Obtaining enough labeled data to robustly train complex discriminative models is a
major bottleneck in the machine learning pipeline. A popular solution is combining
multiple sources of weak supervision using generative models. The structure of these
models affects the quality of the training labels, but is difficult to learn without any
ground truth labels. We instead rely on weak supervision sources having some struc-
ture by virtue of being encoded programmatically. We present Coral, a paradigm
that infers generative model structure by statically analyzing the code for these
heuristics, thus significantly reducing the amount of data required to learn structure.
We prove that Coral’s sample complexity scales quasilinearly with the number of
heuristics and number of relations identified, improving over the standard sample
complexity, which is exponential in n for learning nth degree relations. Empirically,
Coral matches or outperforms traditional structure learning approaches by up to
3.81 F1 points. Using Coral to model dependencies instead of assuming indepen-
dence results in better performance than a fully supervised model by 3.07 accuracy
points when heuristics are used to label radiology data without ground truth labels.

1 Introduction

Complex discriminative models like deep neural networks rely on a large amount of labeled training
data for their success. For many real-world applications, obtaining this magnitude of labeled
data is one of the most expensive and time consuming aspects of the machine learning pipeline.
Recently, generative models have been used to create training labels from various weak supervision
sources, such as heuristics or knowledge bases, by modeling the true class label as a latent variable
[1, 2, 27, 31, 36, 37]. After the necessary parameters for the generative models are learned using
unlabeled data, the distribution over the true labels can be inferred. Properly specifying the structure
of these generative models is essential in estimating the accuracy of the supervision sources. While
traditional structure learning approaches have focused on the supervised case [23, 28, 41], previous
works related to weak supervision assume that the structure is user-specified [1, 27, 31, 36]. Recently,
Bach et al. [2] showed that it is possible to learn the structure of these models with a sample complexity
that scales sublinearly with the number of possible binary dependencies. However, the sample
complexity scales exponentially for higher degree dependencies, limiting its ability to learn complex
dependency structures. Moreover, the time required to learn the dependencies also grows exponentially
with the degree of dependencies, hindering the development of user-defined heuristics.

This poses a problem in many domains where high degree dependencies are common among heuristics
that operate over a shared set of inputs. These inputs are interpretable characteristics extracted from the
data. For example, various approaches in computer vision use predicted bounding box or segmentation
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attributes [18, 19, 29], like location and size, to weakly supervise more complex image-based learning
tasks [5, 7, 11, 26, 38]. Another example comes from the medical imaging domain, where attributes
include characteristics such as the area, intensity and perimeter of a tumor, as shown in Figure 1. Note
that these attributes are computationally represented, and the heuristics written over them are encoded
programmatically as well. There are typically a relatively small set of interpretable characteristics, so
the heuristics often share these attributes. This results in high order dependency structures among these
sources, which are crucial to model in the generative model that learns accuracies for these sources.

To address the issue of learning higher order dependencies efficiently, we present Coral, a paradigm
that statically analyzes the source code of the weak supervision sources to infer, rather than learn,
the complex relations among heuristics. Coral’s sample complexity scales quasilinearly with the
number of relevant dependencies and does not scale with the degree of the dependency, unlike the
sample complexity for Bach et al. [2], which scales exponentially with the degree of the dependency.
Moreover, the time to identify these relations is constant in the degree of dependencies, since it only
requires looking at the source code for each heuristic to find which heuristics share the same input.
This allows Coral to infer high degree dependencies more efficiently than techniques that rely only
on statistical methods to learn them, and thus generate a more accurate dependency structure for the
heuristics. Coral then uses a generative model to learn the proper weights for this dependency structure
to assign probabilistic labels to training data.

We experimentally validate the performance of Coral across various domains and show it outperforms
traditional structure learning under various conditions while being significantly more computationally
efficient. We show how modeling dependencies leads to an improvement of 3.81 F1 points compared
to standard structure learning approaches. Additionally, we show that Coral can assign labels to data
that have no ground truth labels, and this augmented training set results in improving the discriminative
model performance by 3.07 points. For a complex relation-based image classification task, 6 heuristic
functions written over only bounding box attributes as primitives are able to train a model that
performs within 0.74 points of the F1 score achieved by a fully-supervised model trained on the rich,
hand-labeled attribute and relation information in the Visual Genome database [21].

2 The Coral Paradigm

The Coral paradigm takes as input a set of domain-specific primitives and a set of programmatic
user-defined heuristic functions that operate over the primitives. We formally define these abstractions
in Section 2.1. Coral runs static analysis on the source code that defines the primitives and the heuristic
functions to identify which sets of heuristics are related by virtue of sharing primitives (Section 2.2).
Once Coral identifies these dependencies, it uses a factor graph to model the relationship between
the heuristics, primitives and the true class label. We describe the conditions under which Coral can
learn the structure of the generative model with significantly less data than traditional approaches
in Section 2.3 and demonstrate how this affects generative model accuracy via simulations. Finally,
we discuss how Coral learns the accuracies of the each heuristic and outputs probabilistic labels for
the training data in Section 2.4.
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Figure 1: Running example for the Coral paradigm. Users apply standard algorithms to segment tumors
from the X-ray and extract the domain-specific primitives from the image and segmentation. They
write heuristic functions over the primitives that output a noisy label for each image. The generative
model takes these as inputs and provides probabilistic training labels for the discriminative model.
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2.1 Coral Abstractions

Domain-Specific Primitives Domain-specific primitives (DSPs) in Coral are the simplest elements
that heuristic functions take as input and operate over. DSPs in Coral have semantic meaning, making
them interpretable for users. This is akin to the concept of language primitives in programming
languages, in which they are the smallest unit of processing with meaning. The motivation for making
the DSPs domain-specific instead of a general construct for the various data modalities is to allow users
to take advantage of existing work in their field to extract meaningful characteristics from the raw data.

Figure 1 shows an example of a pipeline for bone tumor classification as aggressive or non-aggressive,
inspired by one of our real experiments. First, an automated segmentation algorithm is used to generate
a binary mask for where the tumor is [20, 25, 34, 39]. Then, we define 3 DSPs based on the segmentation:
area (p1), perimeter (p2) and total intensity (p3) of the segmented area. More complex characteristics
such as those that capture texture, shape and edge features can also be used [4, 14, 22] (see Appendix).

We now define a formal construct for how DSPs are encoded programmatically. Users generate
DSPs in Coral through a primitive specifier function, such as create_primitives in Figure 2(a).
Specifically, this function takes as input a single unlabeled data point (and necessary intermediate
representations such as the segmentation) and returns an instance of PrimitiveSet, which maps
primitive names to primitive values, like integers (we refer to a specific instance of this class as P).
Note that P.ratio is composed of two other primitives, while the rest of the primitives are generated
independently from the image and segmentation.

(a)

def create_primitives(image,segmentation):
P = PrimitiveSet()

P.area = get_area(segmentation)
P.perimeter = get_perimeter(segmentation)
P.intensity = np.sum(segmentation*image)   

P.ratio = P.intensity/P.perimeter
return P

(b) (c)
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Figure 2: (a) The create_primitives function that generates primitives. (b) Part of the AST for the
create_primitives function. (c) The composition structure that results from traversing the AST.

Heuristic Functions In Coral, heuristic functions (HFs) can be viewed as mapping a subset of the
DSPs to a noisy label for the training data, as shown in Figure 1. In our experience with user-defined
HFs, we observe that HFs are usually nested if-then statements in which each statement checks whether
the value of a single primitive or a combination of them are above or below a user-set threshold (see
Appendix). As shown in Figure 3(a), they take fields of the object P as input and return a label (or
abstain) based on the value of the input primitives. While our running example focuses on a single
data point for DSP generation and HF construction, both procedures are applied to the entire training
set to assign a set of noisy labels from each HF to each data point.

2.2 Static Dependency Analysis

Since the number of DSPs in some domains can be relatively small, multiple HFs can operate over
the same DSPs. HFs that share at least one primitive are trivially related to each other. Prior work
[2] learns these dependencies using the labels HFs assign to data points and its probability of success
scales with the amount of data available. However, only pairwise HF dependencies can be learned
efficiently, since the data required grows exponentially with the degree of the HF relation. This in
turn limits the complexity of the dependency structure this method can accurately learn and model.

Heuristic Function Inputs Coral takes advantage of the fact that users write HFs over a known,
finite set of primitives. It infers dependencies that exist among HFs by simply looking at the source
code of how the DSPs and HFs are constructed. This process requires no data to successfully learn
the dependencies, making it more computationally efficient than standard approaches. In order to
determine whether any set of HFs share at least one DSP, Coral looks at the input for each HF. Since
the HFs only take as input the DSP they operate over, simply grouping HFs by the primitives they
share is an efficient approach for recognizing these dependencies.
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As shown in our running example, this would result in Coral not recognizing any dependencies among
the HFs since the input for all 3 HFs are different (Figure 3(a)). This, however, would be incorrect,
since the primitive P.ratio is composed of P.perimeter and P.intensity, which makes λ2
and λ3 related. Therefore, along with looking at the primitives that each HF takes as input, it is also
essential to model how these primitives are composed.

Primitive Compositions We use our running example in Figure 2 to explain how Coral gathers
information about DSP compositions. Coral builds an abstract syntax tree (AST) to represent the
computations the create_primitives function performs. An AST represents operations involving
the primitives as a tree, as shown in Figure 2(b). To find primitive compositions from the AST, Coral
first finds the expressions in the AST that add primitives to P (denoted in the AST as P.name). Then,
for each assignment expression, Coral traverses the subtree rooted at the assignment expression and
adds all other encountered primitives as a dependency for P.name. If no primitives are encountered
in the subtree, the primitive is registered as being independent of the rest. The composition structure
that results from traversing the AST is shown in Figure 2(c), where P.area, P.intensity, and
P.perimeter are independent while P.ratio is a composition.

Heuristic Function Dependency Structure With knowledge of how the DSPs are composed, we
return to our original method of looking at the inputs of the HFs. As before, we identify that λ1 and
λ2 use P.area and P.perimeter, respectively. However, we now know that λ3 uses P.ratio, which
is a composition of P.intensity and P.perimeter. This implies that λ3 will be related to any HF
that takes either P.intensity, P.perimeter, or both as inputs. We proceed to build a relational
structure among the HFs and DSPs. As shown in Figure 3(b), this structure shows which independent
DSPs each HF operates over. The relational structure implicitly encodes dependency information
about the HFs — if an edge points from one primitive to nHFs, those nHFs are in an n-way relation
by virtue of sharing that primitive. This dependency information can more formally be encoded in
a factor graph shown in Figure 3(c), which is discussed in Section 2.3. Note that we chose a particular
programmatic setup for creating DSPs and HFs to explain how static analysis can infer dependencies;
however, this process can be modified to work with other setups that encode DSPs and HFs as well.

def λ_1(P.area):
if P.area >= 2.0:

return 1
else:

return -1

def λ_2(P.perimeter):
if P.perimeter <= 12.0:

return 1
else:

return 0

λ1

λ2

λ3

P.area

P.perimeter

P.intensity
def λ_3(P.ratio):

if P.ratio <= 5.0:
return 1

else:
return -1
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Figure 3: (a) shows the encoded HFs. (b) shows the HF dependency structure where DSP nodes have
an edge going to the HFs that use them as inputs (explicitly or implicitly). (c) shows the factor graph
Coral uses to model the relationship between HFs, DSPs, and latent class label Y.

2.3 Creating the Generative Model

We now describe the generative model used to predict the true class labels. The Coral model uses a
factor graph (Figure 3(c)) to model the relationship between the primitives (p∈R), heuristic functions
(λ∈{−1,0,1}) and latent class label (Y ∈{−1,1}). We show that by incorporating information about
how primitives are shared across HFs from static analysis, this factor graph infers all dependencies
between the heuristics that are guaranteed to be present. We also describe how Coral recovers additional
dependencies among the heuristics by studying empirical relationships between the primitives.

Modeling Heuristic Function Dependencies Now that dependencies have been inferred via static
analysis, the goal is to learn the accuracies for each HF and assign labels to training data accordingly.
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The factor graph thus consists of two types of factors: accuracy factors φAcc and HF factors from static
analysis φHF.

The accuracy factors specify the accuracy of each heuristic function and are defined as
φAcc
i (Y,λi)=Y λi, i=1,...,n

where n is the total number of heuristic functions.

The static analysis factors ensure that the heuristics are correctly evaluated based on the HF
dependencies found via static analysis. They ensure that a probability of zero is given to any
configuration where an HF does not have the correct value given the primitives it depends on. The
static analysis factors are defined as.

φHF
i (λi,p1,...,pm)=

{
0 if λi is valid given p1,...,pm
−∞ otherwise

, i=1,...,n

Since these factors are obtained directly from static analysis, they can be recovered with no data.

However, we note that static analysis is not sufficient to capture all dependencies required in the factor
graph to accurately model the process of generating training labels. Specifically, static analysis can

(i) pick up spurious dependencies among HFs that are not truly dependent on each other, or
(ii) miss key dependencies among HFs that exist due to dependencies among the DSPs in the HFs.

(i) can occur if some λA takes as input DSPs pi,pj and λB takes as input DSPs pi,pk, but pi always has
the same value. Although static analysis would pick up that λA and λB share a primitive and should
have a dependency, this may not be true if pj and pk are independent. (ii) can occur if two HFs depend
on different primitives, but these primitives happen to always have the same value. In this case, it is
impossible for static analysis to infer the dependency between the HFs if the primitives have different
names and are generated independently, as described in Section 2.2. A more realistic scenario comes
from our running example, where we would expect the area and perimeter of the tumor to be related.

To account for both cases, it is necessary to capture the possible dependencies that occur among the
DSPs to ensure that the dependencies from static analysis do not misspecify the factor graph. We
introduce a factor to account for additional dependencies among the primitives, φDSP. There are many
possible choices for this dependency factor, but one simple choice is to model pairwise similarity
between the primitives. For binary and discrete primitives, the dependency factor with pairwise
similarity can be represented as

φDSP(p1,...,pm)=
∑
i<j

φSim
ij (pi,pj), where φSim

ij (pi,pj)=I[pi=pj ].

The dependency factor can be generalized to continuous-valued primitives by binning the primitives
into discrete values before comparing for similarity.

Finally, with three types of factors, the probability distribution specified by the factor graph is

P (y,λ1,...,λn,p1,...,pm)∝exp

 n∑
i=1

θAcc
i φAcc

i +

n∑
i=1

φHF
i +

m∑
i=1

m∑
j=i+1

θSim
ij φ

Sim
ij


where θAcc and θSim

ij are weights that specify the strength of factors φAcc and φSim
ij .

Inferring Dependencies without Data The HF factors capture all dependencies among the
heuristic functions that are not represented by the φDSP factor. The dependencies represented by the
φDSP factor are precisely the dependencies that cannot be inferred via static analysis due to the fact
that this factor depends solely on the content of the primitives. It is therefore impossible to determine
what this factor is without data.

While assuming that we have the trueφDSP seems like a strong condition, we find that in real-world exper-
iments, including the φDSP factor rarely leads to improvements over the case when we only include the
φAcc andφHF factors. In some of our experiments (see Section 3), we use bounding box location, size and
object labels as domain-specific primitives for image and video querying tasks. Since these primitives
are not correlated, modeling the primitive dependency does not lead to any improvement over just model-
ing HF dependencies from static analysis. Moreover, in other experiments where modeling the relation
among primitives helps, we observe relatively small benefits above what modeling HF dependencies
provides (Section 3). Therefore, even without data, it is possible to model the most important depen-
dencies among HFs that lead to significant gains over the case in which no dependencies are modeled.
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2.4 Generating Probabilistic Training Labels

Given the probability distribution of the factor graph, our goal is to learn the proper weights θAcc
i

and θSim
ij . Coral adopts structure learning approaches described in recent work [2], which learns

dependency structures in the weak supervision setting and maximizes the `1-regularized marginal
pseudolikelihood of each primitive to learn the weights of the relevant factors.
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Figure 4: Simulation demonstrating improved generative model accuracy with Coral compared to
structure learning [2] and Coral. Relative improvement of Coral over structure learning is plotted
against number of unlabeled data points (N ) and number of HFs (n).

To learn the weights of the generative model, we use contrastive divergence [15] as a maximum
likelihood estimation routine and maximize the marginal likelihood of the observed primitives. Gibbs
sampling is used to estimate the intractable gradients, which are then used in stochastic gradient descent.
Because the HFs are typically deterministic functions of the primitives (represented as the−∞ value
of the correctness factors for invalid heuristic values), standard Gibbs sampling will not be able to
mix properly. As a result, we modify the Gibbs sampler to simultaneously sample one primitive along
with all heuristics that depend on it. Despite the fact that the true class label is latent, this process still
converges to the correct parameter values [27]. Additionally, the amount of data necessary to learn the
parameters scales quasilinearly with the number of parameters. In our case, the number of parameters
is simply the number of heuristics n and the number of relevant primitive similarity dependencies s.

We now formally state the conditions for this result, which match those of Ratner et al. [27], and give the
sample complexity of our method. First, we assume that there exists some feasible parameter set Θ⊂Rn
that is known to contain the parameter θ∗=(θAcc, θSim) that models the true distribution π∗ of the data:

∃θ∗∈Θ s.t. ∀π∗(p1,...,pm,Y )=µθ(p1,...,pm,Y ). (1)

Next, we must be able to accurately learn θ∗ if we are provided with labeled samples of the true
distribution. Specifically, there must be an asymptotically unbiased estimator θ̂ that takes some set
of labeled data T independently sampled from π∗ such that for some c>0,

Cov
(
θ̂(T )

)
�(2c|T |)−1I. (2)

Finally, we must have enough sufficiently accurate heuristics so that we have a reasonable estimate
of Y. For any two feasible models θ1,θ2∈Θ,

E(p1,...,pm,Y )∼µθ1

[
Var(p′1,...,p′m,Y ′)∼µθ2 (Y ′ |p1 =p′1,...,pm=p′m)

]
≤ c

n+s
(3)

Proposition 1. Suppose that we run stochastic gradient descent to produce estimates of the weights
θ̂=(θ̂Acc, θ̂Sim) in a setup satisfying conditions (1), (2), and (3). Then, for any fixed error ε>0, if the
number of unlabeled data pointsN is at least Ω[(n+s)log(n+s)], then our expected parameter error

is bounded by E
[
‖θ̂−θ∗‖2

]
≤ε2.

The proof follows from the sample complexity of Ratner et al. [27] and appears in the Appendix. With
the weights θ̂Acc

i and θ̂Sim
ij maximizing the marginal likelihood of the observed primitives, we have

a fully specified factor graph and complete generative model, which can be used to predict the latent
class label. For each data point, we compute the label each heuristic function applies to it using the
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values of the domain-specific primitives. Through the accuracy factors, we then estimate a distribution
for the latent class label and use these noisy labels to train a discriminative model.

We present a simulation to empirically compare our sample complexity with that of structure learning
[2]. In our simulation, we have nHFs, each with an accuracy of 75%, and explore settings in which
there exists one binary, 3-ary and 4-ary dependency among the HFs. The dependent HFs share exactly
one primitive, and the primitives themselves are independent (s=0). We show our results in Figure
4. In the case with a binary dependency, structure learning recovers the necessary dependency with
few samples, and has similar performance to Coral. In contrast, in the second and third settings with
high-order dependencies, structure learning struggles to recover the relevant dependency, and performs
worse than Coral even as more training data is provided.

3 Experimental Results

We seek to experimentally validate the following claims about our approach. Our first claim is that HF
dependencies inferred via static analysis perform significantly better than a model that does not take
dependencies into account. Second, we compare to a structure learning approach for weak supervision
[2] and show how we outperform it over a variety of domains. Finally, we show that in case primitive
dependencies exist, Coral can learn and model those as well. We show that modeling the dependencies
between the heuristic functions and primitives can generate training sets that, in some cases, beat
fully supervised models by labeling additional unlabeled data. Our classification tasks range from
specialized medical domains to natural images and video, and we include details of the DSPs and
HFs in the Appendix. Note that while the number of HFs and DSPs is fairly low (Table 1), using static
analysis to automatically infer dependencies rather than ask users to identify them saves significant
effort since the number of possible dependencies grows exponentially with the number of HFs present.

We compare our approach to majority vote (MV), generative models that learn the accuracies of different
heuristics, specifically one that assumes the heuristics are independent (Indep) [27], and Bach et al. [2]
that learns the binary inter-heuristic dependencies (Learn Dep). We also compare to the fully supervised
(FS) case, and measure the performance of the discriminative model trained with labels generated using
the above methods. We split our approach into two parts: inferring HF dependencies using only static
analysis (HF Dep) and additionally learning primitive level dependencies (HF+DSP Dep).

Coral Performance

Figure 5: Discriminative model performance comparing HF Dep (HF dependencies from static
analysis) and HF+DSP Dep (HF and DSP dependencies) to other methods. Numbers in Appendix.

Visual Genome and ActivityNet Classification We explore how to extract complex relations in
images and videos given object labels and their bounding boxes. We used subsets of two datasets,
Visual Genome [21] and ActivityNet [9], and defined our task as finding images of “a person biking
down a road” and finding basketball videos, respectively. For both tasks, a small set of DSPs were
shared heavily among HFs, and modeling the dependencies observed by static analysis led to a
significant improvement over the independent case. Since these dependencies involved groups of
3 or more heuristics, Coral improved significantly over structure learning as well, which was unable to
model these dependencies due to the lack of enough data. Moreover, modeling primitive dependencies
did not help since the primitives were indeed independent (Table 1). We report our results for these
tasks in terms of the F1 score (harmonic mean of the precision and recall) since there was significant
class imbalance which accuracy would not capture well.

Bone Tumor Classification We used a set of 802 labeled bone tumor X-ray images along with their
radiologist-drawn segmentations. Our task was to differentiate between aggressive and non-aggressive
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Table 1: Heuristic Function (HF) and Domain-Specific Primitive (DSP) statistics. Discriminative
model improvement with HF+DSP Dep over other methods. *improvements shown in terms of F1
score, rest in terms of accuracy. ActivityNet model is LR using VGGNet embeddings as features.

Application Number of Model Improvement Over

DSPs HFs Shared DSPs MV Indep Learn Dep FS

Visual Genome 7 5 2 GoogLeNet 7.49* 2.90* 2.90* -0.74*
ActivityNet 5 4 2 VGGNet+LR 6.23* 3.81* 3.81* -1.87*

Bone Tumor 17 7 0 LR 5.17 3.57 3.06 3.07
Mammogram 6 6 0 GoogLeNet 4.62 1.11 0 -0.64

tumors. We generated HFs that were a combination of hand-tuned rules and decision-tree generated
rules (tuned on a small held out subset of the dataset). The discriminative model utilized a set of 400
hand-tuned features (note that there is no overlap between these features and the DSPs) that encoded
various shape, texture, edge and intensity-based characteristics. Although there were no explicitly
shared primitives in this dataset, the generative model was still able to model the training labels more
accurately with knowledge of how heuristics used primitives, which affects the relative false positive
and false negative rates. Thus, the generative model significantly improved over the independent
model. Moreover, a small dataset size hindered structure learning, which gave a minimal boost over
the independent case (Table 1). When we used heuristics in Coral to label an additional 800 images
that had no ground truth labels, we beat the previous FS score by 3.07 points (Figure 5, Table 1).

Mammogram Tumor Classification We used the DDSM-CBIS [32] dataset, which consists of
1800 scanned film mammograms and associated segmentations for the tumors in the form of binary
masks. Our task was to identify whether a tumor is malignant or benign, and each heuristic only
operated over one primitive, resulting in no dependencies that static analysis could identify. In
this case, structure learning performed better than Coral when we only used static analysis to infer
dependencies (Figure 5). However, including primitive dependencies allowed us to match structure
learning, resulting in a 1.11 point improvement over the independent case (Figure 5, Table 1).

4 Related Work

As the need for labeled training data grows, a common alternative is to utilize weak supervision sources
such as distant supervision [10, 24], multi-instance learning [16, 30], and heuristics [8, 35]. Specifically
for images, weak supervision using object detection and segmentation or visual databases is a popular
technique as well (detailed discussion in Appendix). Estimating the accuracies of these sources without
access to ground truth labels is a classic problem [13]. Methods such as crowdsourcing [12, 17, 40],
boosting[3, 33], co-training [6], and learning from noisy labels are some of the popular approaches that
can combine various sources of weak supervision to assign noisy labels to data. However, Coral does
not require any labeled data to model the dependencies among the heuristics, which can be interpreted
as workers, classifiers or views for the above methods, and domain-specific primitives.

Recently, generative models have also been used to combine various sources of weak supervision
[1, 31, 36, 37]. One specific example, data programming [27], proposes using multiple sources of
weak supervision for text data in order to describe a generative model and subsequently learns the
accuracies of these sources. Coral also focuses on multiple programmatically encoded heuristics that
can weakly label data and learns their accuracies to assign labels to training data. However, Coral adds
an additional layer of domain-specific primitives in its generative model, which allows it to generalize
beyond text-based heuristics. It also infers the dependencies among the heuristics and the primitives,
rather than requiring users to specify them.

Other previous work also assume that this structure in generative models is user-specified [1, 31, 36].
However, Bach et al. [2] recently showed that it is possible to learn the dependency structure among
sources of weak supervision with a sample complexity that scales sublinearly with the number
of possible pairwise dependencies. Coral instead identifies the dependencies among the heuristic
functions by inspecting the content of the programmable functions, therefore relying on significantly
less data to learn the generative model structure. Moreover, Coral can also pick up higher-order
dependencies, for which Bach et al. [2] needs large amounts of data to detect.
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5 Conclusion and Future Work

In this paper, we introduced Coral, a paradigm that models the dependency structure of weak
supervision heuristics and systematically combines their outputs to assign probabilistic labels to
training data. We described how Coral takes advantage of the programmatic nature of these heuristics
in order to infer dependencies among them via static analysis. Coral therefore requires a sample
complexity that is quasilinear in the number of heuristics and relations found. We showed how Coral
leads to significant improvements in discriminative model accuracy over traditional structure learning
approaches across various domains. Coral scratches the surface of the possible ways weak supervision
can borrow from the field of programming languages, especially as weak supervision sources are used to
label large magnitudes of data and need to be encoded programmatically. We look at a natural extension
of treating the process of encoding heuristics as writing functions and hope to explore the interactions
between systematic training set creation and concepts from the programming language field.
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