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Abstract

Many online platforms act as intermediaries between a seller and a set of buyers.
Examples of such settings include online retailers (such as Ebay) selling items
on behalf of sellers to buyers, or advertising exchanges (such as AdX) selling
pageviews on behalf of publishers to advertisers. In such settings, revenue sharing
is a central part of running such a marketplace for the intermediary, and fixed-
percentage revenue sharing schemes are often used to split the revenue among the
platform and the sellers. In particular, such revenue sharing schemes require the
platform to (i) take at most a constant fraction α of the revenue from auctions and
(ii) pay the seller at least the seller declared opportunity cost c for each item sold.
A straightforward way to satisfy the constraints is to set a reserve price at c/(1−α)
for each item, but it is not the optimal solution on maximizing the profit of the
intermediary.
While previous studies (by Mirrokni and Gomes, and by Niazadeh et al) focused on
revenue-sharing schemes in static double auctions, in this paper, we take advantage
of the repeated nature of the auctions. In particular, we introduce dynamic revenue
sharing schemes where we balance the two constraints over different auctions
to achieve higher profit and seller revenue. This is directly motivated by the
practice of advertising exchanges where the fixed-percentage revenue-share should
be met across all auctions and not in each auction. In this paper, we characterize
the optimal revenue sharing scheme that satisfies both constraints in expectation.
Finally, we empirically evaluate our revenue sharing scheme on real data.

1 Introduction

The space of internet advertising can be divided in two large areas: search ads and display ads. While
similar at first glance, they are different both in terms of business constraints in the market as well as
algorithmic challenges. A notable difference is that in search ads the auctioneer and the seller are the
same party, as the same platform owns the search page and operates the auction. Thus search ads are
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a one-sided market: the only agents outside the control of the auctioneer are buyers. In display ads,
on the other hand, the platform operates the auction but, in most cases, it does not own the pages in
which the ads are displayed, making the main problem the design of a two-sided market, referred to
as ad exchanges.

The problem of designing an ad exchange can be decomposed in two parts: the first is to design
an auction, which will specify how an ad impression will be allocated among different prospective
buyers (advertisers) and how they will be charged from it. The second component is a revenue sharing
scheme, which specifies how the revenue collected from buyers will be split between the seller (the
publisher) and the platform. Traditionally the problems of designing an auction and designing a
revenue sharing scheme have been merged in a single one called double auction design. This was the
traditional approach taken by Myerson and Satterthwaite [1983], McAfee and McMillan [1987] and
more recently in the algorithmic work of Gomes and Mirrokni [2014], Niazadeh et al. [2014]. The
goals in those approaches have been to maximize efficiency in the market, maximize profit of the
platform and to characterize when the profit maximizing policy is a simple one.

Those objectives however, do not entirely correspond to actual problem faced by advertising ex-
changes. Take platform-profit-maximization, for example. The ad-exchange business is a highly
competitive environment. A web publisher (seller) can send their ad impressions to a dozen of
different exchanges. If an exchange tries to extract all the surplus in the form of profit, web publishers
will surely migrate to a less greedy platform. In order to retain their inventory, exchanges must align
their incentives with the incentives of those of web publishers.

A good practical solution, which has been adopted by multiple real world platforms, is to declare a
fixed revenue sharing scheme. The exchange promises it will keep at most an α-fraction of profits,
where the constant α is typically the outcome of a business negotiation between the exchange and the
web publisher. After the fraction is agreed, the objective of the seller and the exchange are aligned.
The exchange maximizes profits by maximizing the seller’s revenue.

If revenue sharing was the only constraint, the exchange could simply ignore sellers and run an
optimal auction among buyers. In practice, however, web-publishers have outside options, typically
in the form of reservation contracts, which should be taken into account by the exchange. Reservation
contracts are a very traditional form of selling display ads that predates ad exchanges, where buyers
and sellers make agreements offline specifying a volume of impressions to be transacted, a price per
impression and a penalty for not satisfying the contract. Those agreements are entered in a system (for
example Google’s Doubleclick for Publishers) that manages reservations on behalf of the publisher.
This reservation system determines for each arriving impression the best matching offline contract
that impression could be allocated to as well as the cost of not allocating that impression. The cost of
not allocating an impression takes into account the potential revenue from allocating to a contract and
the probability of paying a penalty for not satisfying the contract.

From our perspective, it is irrelevant how a cost is computed by reservation systems. It is sufficient
to assume that for each impression, the publisher has an opportunity cost and it is only willing to
sell that particular impression in the exchange if its payout for that impression exceeds the cost.
Exchanges therefore, allow the publisher to submit a cost and only sell that impression if they are
able to pay the publisher at least the cost per that impression.

This allows us to design the following simple auction and revenue sharing scheme, which we call the
naïve policy:

• seller sends to the exchange an ad impression with cost c.

• exchange runs a second price auction with reserve r ≥ c/(1− α).

• if the item is sold the exchange keeps an α fraction of the revenue and sends the remaining
1− α fraction to the seller.

This scheme is pretty simple and intuitive for each participant in the market. It guarantees that if the
impression is sold, the revenue will be at least c/(1− α) and therefore the seller’s payout will be at
least c. So both the minimum payout and revenue sharing constraints are satisfied with probability
1. This scheme has also the advantage of decoupling the auction and the revenue sharing problem.
The platform is free to use any auction among the buyers as long as it guarantees that whenever the
impression is matched, the revenue extracted from buyers is at least c/(1− α).
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Despite being simple, practical and allowing the exchange to experiment with the auction without
worrying about revenue sharing, this mechanism is sub-optimal both in terms of platform profit and
publisher payout. The exchange might be willing to accept a revenue share lower than α if this grants
more freedom in optimizing the auction and extracting more revenue.

More generally, the exchange might exploit the repeated nature of the auction to improve revenue
even further by adjusting the revenue share dynamically based on the bids and the cost. In this setting,
we can think of the revenue share constraints to be enforced on average, i.e., over a sequence of
auctions the platform is required to bound by α the ratio of the aggregate profit and the aggregate
revenue collected from buyers. This allows the platform to increase the revenue share on certain
queries and reduce in others.

In the repeated auctions setting, the exchange is also allowed to treat the minimum cost constraint on
aggregate: the payout for the seller needs to be at least as large as the sum of costs of the impressions
matched. The exchange can implement this in practice by always paying the seller at least his cost
even if the revenue collected from buyers is less than the cost. This would cause the exchange to
operate at a loss for some impressions. But this can be advantageous for the exchange on aggregate if
it is able to offset these losses by leveraging other queries with larger profit margins.

In this paper, we attempt to characterize the optimal scheme for repeated auctions and measure on
data the improvement with respect to the simple revenue sharing scheme discussed above.

Finally, while we discuss the main application of our results in the context of advertising exchanges,
our model and results apply to the broad space of platforms that serve as intermediaries between
buyers and sellers, and help run many repeated auctions over time. The issue of dynamic revenue
sharing also arises when Amazon or eBay act as a platform and splits revenues from a sale with
the sellers, or when ride-sharing services such as Uber or Lyft split the fare paid by the passenger
between the driver and the platform. Uber for example mentions in their website3 that: “Drivers
using the partner app are charged an Uber Fee as a percentage of each trip fare. The Uber Fee varies
by city and vehicle type and helps Uber cover costs such as technology, marketing and development
of new features within the app.”

1.1 Our Results and Techniques

We propose different designs of auctions and revenue sharing policies in exchanges and analyze
them both theoretically and empirically on data from a major ad exchange. We compare against the
naïve policy described above. We compare policies in terms of seller payout, exchange profit and
match-rate (number of impressions sold). We note that match-rate is an important metric in practice,
since it represents the volume of inventory transacted in the exchange and it is a proxy for the volume
of the ad market this particular exchange is able to capture.

For the auction, we restrict our attention to second price auctions with reserve prices, since we aim at
using theory as a guide to inform decisions about practical designs that can be implemented in real
ad-exchanges. To be implementable in practice the designs need to follow the industry practice of
running second-price auctions with reserves. This design will be automatically incentive compatible
for buyers. On the seller side, instead of enforcing incentive compatibility, we will assume that
impression costs are reported truthfully. Note that the revenue sharing contract guarantees, at least
partially, when the constraint binds (which always happens in practice), the goals of the seller and the
platform are partially aligned: maximizing profit is the same as maximizing revenue. Thus, sellers
have little incentive to misreport their costs. In fact, this is one of the main reason that so many
real-world platforms such as Uber adopt fixed revenue sharing contracts. In the ads market, moreover,
sellers are also typically viewed as less strategic and reactive agents. Thus, we believe that the latter
assumption is not too restrictive in practice.4

We will also assume Bayesian priors on buyer’s valuations and on seller’s costs. For the sake of
simplicity, we will start with the assumption that seller costs are constant and then extend our results
to the case where costs are sampled from a distribution.

3See https://www.uber.com/info/how-much-do-drivers-with-uber-make/
4While in this paper we focus on the dynamic optimization of revenue sharing schemes when agents report

truthfully, it is still an interesting avenue of research to study the broader market design question of designing
dynamic revenue sharing schemes while taking into account agents’ incentives.
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We will focus on the exchange profit as our main objective function. While this paper will take the
perspective of the exchange, the policies proposed will also improve seller’s payout with respect
to the naïve policy. The reason is simple: the naïve policy keeps exactly α fraction of the revenue
extracted from buyers as profit. Any policy that keeps at most α and improves profit, should improve
revenue extracted from buyers at least at the same rate and hence improve seller’s payout.

Single Period Revenue Sharing. We first study the case where exchange is required to satisfy
the revenue sharing constraint in each period, i.e., for each impression at most an α-fraction of the
revenue can be retained as profit. We characterize the optimal policy. We first show that the optimal
policy always sets the reserve price above the seller’s cost, but not necessarily above c/(1− α). The
exchange might voluntarily want to decrease its revenue share if this grants freedom to set lower
reserve prices and extract more revenue from buyers.

When the opportunity cost of the seller is low, the optimal policy for the exchange ignores the seller’s
cost and prices according to the optimal reserve price. When the opportunity cost is high, pricing
according to c/(1− α) is again not optimal because demand is inelastic at that price. The exchange
internalizes the opportunity cost, prices between c and c/(1− α), and reduces its revenue share if
necessary. For intermediate values of the opportunity cost, the exchange is better off employing the
naïve policy and pricing according to c/(1− α).

Multi Period Revenue Sharing. We then study the case where the revenue share constraint is
imposed over the aggregate buyers’ payments. We provide intuition on the structure of the optimal
policy by first solving a Lagrangian relaxation and then constructing an asymptotically optimal heuris-
tic policy (satisfying the original constraints) based on the optimal relaxation solution. In particular,
we introduce a Lagrange multiplier for the revenue sharing constraint to get the optimal solution
to the Lagrangian relaxation. The optimal revenue sharing policy obtained from the Lagrangian
relaxation pays the publisher a convex combination between his cost c and a fraction (1− α) of the
revenue obtained from buyers. Depending on the value of the multiplier, the reserve price could be
below c, exposing the platform to the possibility of operating at a loss in some auctions.

The policy obtained from the Lagrangian relaxation, while intuitive, only satisfies the revenue sharing
and cost constraints in expectation. Because this is not feasible for the platform, we discuss heuristic
policies that approximate that policy in the limit, but satisfy the constraints surely in aggregate over
the T periods. Then we discuss an even stronger policy that satisfies the aggregate constraints for any
prefix, i.e., at any given time t, the constraints are satisfied in aggregate from time 1 to t.

Comparative Statics. We compare the structure of the single period and multi period policies. The
first insight is that the optimal multi-period policy uses lower reserve prices therefore matching more
queries. The key insight we obtain from the comparison is that multi-period revenue sharing policies
are particularly effective when markets are thick, i.e. when a second highest bid is above a rescaled
version of the cost often and cost are not too high.

Empirical Insights. To complement our theoretical results, we conduct an empirical study simulat-
ing our revenue sharing policies on real world data from a major ad exchange. Our study confirms the
effectiveness of the multi period revenue sharing policies and single period revenue sharing policies
over the naïve policy. The results are consistent for different values of α: the profit lifts of single
period revenue sharing policies are +1.23% ∼ +1.64% and the lifts of multi period revenue sharing
policies are roughly 5.5 to 7 times larger (+8.53% ∼ +9.55%).

It is important to mention that while we derive policies optimizing exchange profit, there are other
business constraints and real world objectives that exchanges need to balance. Most notably, ex-
changes need to offer attractive terms of trade so as to be competitive with respect to other exchanges
by, for example, making sure publishers obtain enough revenue. Exchanges are often concerned
about match rate, which measures the volume of impressions transacted in the exchange. For that
reason, we also measure how those metrics are affected by our policy and show that they improve.

Our final goal is to confirm the insights obtained from theory. We prove that under concavity
conditions on the profit function, the performance of multi period policies over single period ones
depend on the relation between second highest bids and costs. Our empirical study confirms
the existence of a sweet spot for costs: we evaluate the single period and multi period policies
after rescaling costs by different factors. When costs are too low or too high, we observe similar
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performance for the two policies. Interestingly, the unscaled costs are in the sweet spot where
multi-period policies are particularly effective. These empirical observations are consistent with our
prediction for different values of α.

1.2 Related Work

Double Auctions. Revenue sharing schemes have been studied in the context of optimal double
auctions. Following the seminal work of Myerson [1981], Myerson and Satterthwaite [1983]
presented the optimal double auction in two-sided settings. Recently, Deng et al. [2011] studied
multidimensional variants of the Bayesian optimal double auctions and present polynomial-time
approximation algorithms for the problem. For the non-Bayesian (prior-free) setting, Deshmukh et al.
[2002] studied revenue-maximizing double auctions when the auctioneer has no prior knowledge
about bids. More recently, Gomes and Mirrokni [2014] studied revenue-maximizing double auctions
in the context of advertising exchanges, and generalized the results of Myerson and Satterthwaite
[1983] by studying settings in which the platform’s objective function is a convex combination of the
seller’s profit and the platform’s profit, and provided a necessary and sufficient condition under which
constant sharing schemes indirectly implement the optimal mechanism. Furthermore, Niazadeh et al.
[2014] developed an approximately optimal mechanism for constant revenue-sharing double auctions.
To the best of our knowledge, none of the above work consider revenue sharing schemes in repeated
auctions.

Exchange Design. Our work is also related to the broad question of ad exchange design. We refer
to Muthukrishnan [2009] for a survey. Mansour et al. [2012] provides an overview of the auction
employed by Google’s ad exchange. Feldman et al. [2010], Balseiro et al. [2016] study how should
the exchange design auctions when advertisers do not acquire impressions directly from the exchange,
but instead contract with intermediaries to acquire impressions on their behalf. These papers, however,
take a one-sided approach to the display advertising market and do not take into account the presence
of revenue sharing schemes for publishers.

E-commerce Applications. The results of this paper apply to various online and offline retailers
and e-commerce websites like Amazon and Ebay. More specifically, Ebay applies similar revenue-
sharing auctions to the ones studied in this paper when it serves as a broker between a set of buyers
and a seller. Roughly speaking, Ebay takes a 9% cut on each sale, referred to as final value fee,
and also fixed fee for listing an item, referred to as an insertion fee. They also apply a convex cost
function for the fixed fee as the number of listings, and a maximum of $250 for the final value fee. A
recent paper by Jain and Wilkens [2012] studies EBay’s double auction problem, but their setting is
different from this paper as they consider multiple sellers and one buyer, and explore approximately
optimal pricing schemes for this setting.

2 Preliminaries

Setting. We study a discrete-time finite horizon setting in which items arrive sequentially to an
intermediary. We index the sequence of items by t = 1, . . . , T . There are multiple buyers bidding in
the intermediary (the exchange) and the intermediary determines the winning bidder via a second
price auction. We assume that the bids from the buyers are drawn independently and identically
distributed across auctions, but potentially correlated across buyers for a given auction.

We will assume that the profit function of the joint distribution of bids is quasi-concave. The expected
profit function corresponds to the expected revenue of a second price auction with reserve price r and
opportunity cost c:

Π(r, c) = E
[
1{bf ≥ r} (max(r, bs)− c)

]
.

where bft and bst are the highest- and second-highest bid at time t. Our assumption on the bid
distribution will be as follows:
Assumption 2.1. The expected profit function Π(r, c) is quasi-concave in r for each c.

The previous assumption is satisfied, for example, if bids are independent and identically distributed
according to a distribution with increasing hazard rates (see, e.g., Balseiro et al. [2014]).
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Mechanism. The seller submitting the items sets an opportunity cost of c ≥ 0 for the items. The
profit of the intermediary is given by the difference between the revenue collected from the buyers
and the payments made to the seller. The intermediary has agreed to a revenue sharing scheme that
limits the profit of the intermediary to at most α ∈ (0, 1) of the total revenue collected from the
buyers.

The intermediary implements a non-anticipative adaptive policy π that maps the history at time t
to a reserve price rπt ∈ R+ for the second price auction and a payment function pπt : R+ → R+

that determines the amount to be paid to the seller as a function of the buyers’ payments. That is,
the item is sold whenever the highest bid is above the reserve price, or equivalently bft ≥ rπt . The
intermediary’s revenue is equal to the buyers’ payments of max(rπt , b

s
t) and the seller’s revenue

is given by pπt (max(rπt , b
s
t)). The intermediary’s profit is given by the difference of the buyers’

payments and the payments to the seller, i.e., max(rπt , b
s
t)− pπt (max(rπt , b

s
t)). From the perspective

of the buyers, the mechanism implemented by the intermediary is a second price auction with
(potentially dynamic) reserve price rπt . The intermediary’s problem amounts to maximizing profits
subject to the revenue sharing constraint. The revenue sharing constraint can be imposed at every
single period or over multiple periods. We discuss each model at a time.

Naïve revenue sharing scheme. The most straightforward revenue sharing scheme is the one that
sets a reserve above c/(1− α) and pay the sellers a (1− α)-fraction of the revenue:

rπt ≥
c

1− α
, pπt (x) = (1− α)x. (1)

Since the revenue sharing is fixed, the intermediary’s profit is given by αmax(rπt , b
s
t). Thus, the

intermediary optimizes profits by optimizing revenues, and the optimal reserve price is given by:

r∗ = arg max
r≥c/(1−α)

Π(r, 0) .

The naïve revenue sharing scheme sets a reserve above c/(1 − α) and pays the seller (1 − α) of
the buyers’ payments. This guarantees that the payment to the seller is always no less than c, by
construction, because the payment of the buyers is at least the reserve price. Since the intermediary’s
profit is a fraction α of the buyers’ payment, the seller’s cost does not appear in the objective, and the
objective of the seller is αΠ(r, 0). Note, however, that the seller’s cost does appear as a constraint in
the intermediary’s optimization problem: the reserve price should be at least c/(1− α).

This is the baseline that we will use to compare the proposed policies with in the experiment section.
This policy is suboptimal for various reasons. Consider for example the extreme case where the
buyers alway bid more than c and less than c/(1− α). In this case, the profit from the naïve revenue
sharing scheme is zero. However, the intermediary can still obtain a non-zero profit by setting the
reserve somewhere between c and c/(1 − α), which results in a revenue share less than α. If the
revenue sharing constraint is imposed over multiple periods instead of each single period, we are able
to dynamically balance out the deficit and surplus of the revenue sharing constraint over time.

3 Single Period Revenue Sharing Scheme

In this case the revenue sharing scheme imposes that in every single period the profit of the interme-
diary is at most α of the buyers’ payment. We start by formulating the profit maximization problem
faced by the intermediary as a mathematical program with optimal value JS .

JS , max
π

T∑
t=1

E
[
1{bft ≥ rπt } (max(rπt , b

s
t)− pπt (max(rπt , b

s
t)))
]

(2a)

s.t. pπt (x) ≥ (1− α)x , ∀x (2b)
pπt (x) ≥ c , ∀x . (2c)

The objective (2a) gives the profit of the intermediary as the difference between the payments collected
from the buyers and the payments made to the seller. The revenue sharing constraint (2b) imposes that
intermediary’s profit is at most a fraction α of the total revenue, or equivalently (x− pπt (x))/x ≤ α
where x is the payment from the buyers. The floor constraint (2c) imposes that the seller is paid at
least c. These constraints are imposed at every auction.
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We next characterize the optimal decisions of the seller in the single period model. Some definitions
are in order. Let r∗(c) be an optimal reserve price in the second price auction if the seller’s cost is c:

r∗(c) = arg max
r≥0

Π(r, c).

To avoid trivialities we assume that the optimal reserve price is unique. Because the profit function
Π(r, c) has increasing differences in (r, c) then the optimal reserve price is non-decreasing with the
cost, that is, r∗(c) ≥ r∗(c′) for c ≥ c′.
Our main result in this section characterizes the optimal decision of the intermediary in this model.
All the proofs in this paper can be found in the appendix.

Theorem 3.1. The optimal decision of the intermediary is to set pπt (x) = max(c, (1 − α)x) and
rπt = max{min{c̄, r∗(c)}, r∗(0)} where c̄ = c/(1− α).

The reserve price c̄ = c/(1−α) in the statement of the theorem is the naïve reserve price that satisfies
the revenue sharing scheme by inflating the opportunity cost by 1/(1− α). When the opportunity
cost c is very low (c̄ ≤ r∗(0)), pricing according to c̄ is not optimal because demand is elastic at
c̄ and the intermediary can improve profits by increasing the reserve price. Here the intermediary
ignores the opportunity cost, prices optimally according to the optimal reserve price rπt = r∗(0) and
pays the seller according to pπt (x) = (1− α)x, that is, the seller is paid a constant fraction (1− α)
of the buyers’ payments. When the opportunity cost c is very high (c̄ ≥ r∗(c)), pricing according to
c̄ is again not optimal because demand is inelastic at c̄ and the intermediary can improve profits by
decreasing the reserve price. Here the intermediary internalizes the opportunity cost, prices optimally
according to rπt = r∗(c), the optimal reserve price with cost c, and pays the seller according to
pπt (x) = max(c, (1− α)x).

4 Multi Period Revenue Sharing Scheme

In this case the revenue sharing scheme imposes that the aggregate profit of the intermediary is
at most α of the buyers’ aggregate payment. Additionally, in this model the opportunity costs are
satisfied on an aggregate fashion over all actions, that is, the payments to the seller need to be at
least the floor price times the number of items sold. The intermediary decision’s problem can be
characterized by the following mathematical program with optimal value JM .

JM , max
π

T∑
t=1

E
[
1{bft ≥ rπt } (xπt − pπt (xπt ))

]
(3a)

s.t.
T∑
t=1

1{bft ≥ rπt } (pπt (xπt )− (1− α)xπt ) ≥ 0 , (3b)

T∑
t=1

1{bft ≥ rπt } (pπt (xπt )− c) ≥ 0 , (3c)

where xπt = max(rπt , b
s
t) . (3d)

The objective (3a) gives the profit of the intermediary as the difference between the payments
collected from the buyers and the payments made to the seller. The revenue sharing constraint (3b)
imposes that intermediary’s profit is at most a fraction α of the total revenue. The floor constraint (3c)
imposes that the seller is paid at least c. These constraints are imposed over the whole horizon.

The stochastic decision problem (3) can be solved via Dynamic Programming. To provide some
intuition of the structure of the optimal solution we solve a Lagrangian relaxation of the problem
where we introduce a dual variable λ ≥ 0 for the floor constraint (3c) and a dual variable µ ≥ 0 for
the revenue sharing constraint (3b). Lagrangian relaxations provide upper bounds on the optimal
objective value and introduce heuristic policies of provably good performance in many settings
(e.g., see Talluri and van Ryzin [1998]). Moreover, we shall see the optimal policy derived from
the Lagrangian relaxation is optimal for problem (3) if constraints (3c) and (3b) are imposed in
expectation instead of almost surely.
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4.1 Lagrangian Relaxation

The dual function φ(µ, λ) is given by supremum of the Lagrangian over the feasible set:

φ(µ, λ) , sup
π

T∑
t=1

E
[
1{bft ≥ rπt }

(
xπt − pπt (xπt ) + λ

(
pπt (xπt )− c

)
+ µ

(
pπt (xπt )− (1− α)xπt

))]
= sup

π

T∑
t=1

E
[
1{bft ≥ rπt }

((
1− µ(1− α)

)
xπt −

(
1− λ− µ

)
pπt (xπt )− λc

)]
= T sup

r
E
[
1{bf ≥ r}

((
1− µ(1− α)

)
max(r, bst)− λc

)]
+ X{λ+µ=1}

= T
(
1− µ(1− α)

)
sup
r
Π

(
r,

λc

1− µ(1− α)

)
+ X{λ+µ=1}

where the third equality follows because bids are i.i.d. and thus the problem is separable, and from
optimizing over the payment function pπt and noting that the objective is unbounded unless λ+µ = 1
and denoting by XA the characteristic function which is zero if A is true and∞ otherwise.

Because the Lagrangian is unbounded unless λ+ µ = 1, then the optimal dual objective is given by

inf
µ≥0,λ≥0:µ+λ=1

φ(µ, λ) = inf
0≤µ≤1

φ(µ, 1− µ) = inf
0≤µ≤1

φ̂(µ)

where

φ̂(µ) , φ(µ, 1− µ) = T
(
1− µ(1− α)

)
sup
r
Π

(
r,

(1− µ)c

1− µ(1− α)

)
= T

(
1− µ(1− α)

)
Π (r∗(c(µ)), c(µ)) . (4)

and c(µ) = 1−µ
1−µ(1−α) · c ≤ c. Because φ̂(µ) is the pointwise maximum of linear functions, then φ̂(µ)

is convex µ and thus the dual problem is convex. Because the feasible set is compact then the dual
problem admits a solution. Furthermore, from weak duality we have that

JM ≤ inf
0≤µ≤1

φ̂(µ).

This suggests us to choose µ minimizing φ(µ) and use it to infer the optimal policy from the dual
relaxation. The next result proposes a stationary policy for the intermediary that satisfies the floor
and revenue sharing constraints in expectation. The proof is deferred to the appendix.

Theorem 4.1. Let µ∗ ∈ arg min0≤µ≤1 φ̂(µ). The policy pπt (x) = (1 − µ∗)c + µ∗(1 − α)x and
rπt = r∗(c(µ∗)) is optimal for problem (3) when constraints (3c) and (3b) are imposed in expectation
instead of almost surely.
Remark 4.2. Although the multi period policy we just proposed is not a solution to the original
program (3), we emphasize that it naturally induces heuristic policies (e.g., see Algorithm 1) that
are asymptotically optimal solutions to the original multi period problem (3) without relaxation (see
Theorem 6.1).

4.2 Random Opportunity Costs

In this section, we extend our characterization result for the multi stage case (Theorem 4.1) to the
case where the opportunity cost c for the seller is not fixed but drawn from some distribution for each
item t. This setting describes the scenario where the sequentially arriving items are heterogeneous
and randomly drawn from a population. In practice, impressions are sometimes heterogeneous and
the publisher-declared opportunity costs can vary with the attributes of the impressions.

Denote by ct the opportunity cost at time t. The optimization program of the intermediary is as in (3)
with the exception that the floor constraint (3c) is now

T∑
t=1

1{bft ≥ rπt } (pπt (xπt )− ct) ≥ 0 , (5)
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and in the objective the expectations are taken over the buyers’ bids and the opportunity costs ct.

Because the intermediary observes the opportunity cost declared by the publisher, it can adjust the
reserve price for the auction depending on the opportunity cost. Thus, in the Lagrangian relaxation
the intermediary can optimize the reserve price point-wise for each opportunity cost and we obtain
the dual function:

ϕ̂(µ) = T
(
1− µ(1− α)

)
Ec [Π (r∗(c(µ)), c(µ))] ,

where c(µ) = 1−µ
1−µ(1−α) · c as before.

Theorem 4.3. Let µ∗ ∈ arg min0≤µ≤1 ϕ̂(µ). The policy pπt (x) = (1 − µ∗)ct + µ∗(1 − α)x and
rπt = r∗(ct(µ

∗)) with ct(µ) = 1−µ
1−µ(1−α) · ct is optimal for problem (3) when constraints (5) and

(3b) are imposed in expectation instead of surely.

5 Comparative Analysis

We first compare the optimal reserve price of the single period and multi period model (when
opportunity costs are deterministic).
Proposition 5.1. Let rS , max{min{c̄, r∗(c)}, r∗(0)} be the optimal reserve price of the single
period constrained model and rM , r∗(c(µ∗)) be the optimal reserve price of the multi period
constrained model. Then rS ≥ rM .

The previous result shows that the reserve price of the single-period constrained model is larger or
equal than the one of the multi-period constrained model. As a consequence, in the multi-period
constrained model items are allocated more frequently and the social welfare is larger.

We next compare the intermediary’s optimal profit under the single period and multi period model.
This result quantifies the benefits of dynamic revenue sharing and provides insight into when dynamic
revenue sharing is profitable for the intermediary.
Proposition 5.2. Let µS ∈ [0, 1] be such that r∗(c(µS)) = rS . Then

JS ≤ JM ≤ JS + (1− µS)TE [(1− α)bs − c]+ .

The previous result shows that the benefit of dynamic revenue sharing is driven, to a large extent, by
the second-highest bid and the opportunity cost c. If the market is thin and the second-highest bid bs

is low, then the truncated expectation E , E [(1− α)bs − c]+ is low and the benefit from dynamic
revenue sharing is small, that is, JS ∼ JM . If the market is thick and the second-highest bid bs is
high, then the benefit of dynamic revenue sharing depends on the opportunity cost c. If the floor
price c is very low, then rS = r∗(0) and µS = 1, implying that the coefficient in front of E is zero,
and there is no benefit of dynamic revenue sharing JS = JM . If the floor price c is very high, then
rS = r∗(c) and µS = 0, implying that the coefficient in front of E is 1. However, in this case the
truncated expectation E is small and again there is little benefit of dynamic revenue sharing, that is,
JS ∼ JM . Thus the sweet spot for dynamic revenue sharing is when the second-highest bid is high
and the opportunity cost is neither too high nor too low.

6 Heuristic Revenue Sharing Schemes

So far we focused on the theory of revenue sharing schemes. We now switch our focus to applying
insights derived from theory to the practical implementation of revenue sharing schemes. First we
note that while the policies in the statement of Theorem 4.1 and Theorem 4.3 are only guaranteed to
satisfy constraints in expectations, a feasible policy of the stochastic decision problems should satisfy
the constraints in an almost sure sense.

We start then by providing two transformations that convert a given policy satisfying constraints in
expectation to another policy satisfying the constraints in every sample path.

6.1 Multi-period Refund Policy

Our first transformation will keep track of how much each constraint is violated and will issue a
refund to the seller in the last period (see Algorithm 1).
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ALGORITHM 1: Heuristic Refund Policy from Lagrangian Relaxation

1: Determine the optimal dual variable µ∗ ∈ arg min0≤µ≤1 φ̂(µ)
2: for t = 1, . . . , T do
3: Set the reserve price rπt = r∗(c(µ∗))
4: if item is sold, that is, bft ≥ rπt then
5: Collect the buyers’ payment xπt = max(rπt , b

s
t)

6: Pay the seller pπt (xπt ) = (1− µ∗)c+ µ∗(1− α)xπt
7: end if
8: end for
9: Let DF =

∑T
t=1 1{b

f
t ≥ rπt } (pπt (xπt )− c) be the floor deficit.

10: Let DR =
∑T
t=1 1{b

f
t ≥ rπt } (pπt (xπt )− (1− α)xπt ) be the revenue sharing deficit.

11: Pay the seller −min{DF , DR, 0}

The following result analyzes the performance of the heuristic policy. We omit the proof as this is a
standard result in the revenue management literature.
Theorem 6.1 (Theorem 1, Talluri and van Ryzin [1998]). Let JH be the expected performance of
the heuristic policy. Then

JH ≤ JM ≤ JH +O(
√
T ).

The previous result shows that the heuristic policy given by Algorithm 1 is asymptotically optimal
for the multi-period constrained model, that is, it implies that JH/JM → 1 as T →∞. When the
number of auctions is large, by the Law of Large Numbers, stochastic quantities tend to concentrate
around their means. So the floor and revenue sharing deficits incurred by violations of the respective
constraints are small relative to the platform’s profit and the policy becomes asymptotically optimal.

6.2 Prefix Revenue Sharing Policy

Now we look at how to transform a policy to satisfy even more stringent business constraints. A
business constraint that arises in practice is that revenue sharing constraints can be satisfied in
aggregate over all past auctions at every point in time. Formally, it means that for every prefix of the
sequence, we should have:

∀t ≥ 1,

t∑
τ=1

1{bfτ ≥ rπτ } (pπτ (xπτ )− (1− α)xπτ ) ≥ 0. (6)

Another important business constraint in practice is that we should pay the seller at least his cost ct
for each impression matched, i.e.:

∀t ≥ 1,1{bft ≥ rπt } (pπt (xπt )− c) ≥ 0. (7)

For any given revenue sharing scheme π, we can construct another π̂ that satisfies the two constraints
above and only differs with π on the payment rule.

The construction is based on the following ideas: The revenue share constraints (6) are imposed
on each prefix of the sequence of the auctions, hence we need to increase the payment to the seller
whenever we are about to violate the constraint by simply following the given revenue sharing scheme
π. To do this, we use a “bank account” B to keep the track of the left-hand-side of (6), and make sure
that for each period, Bt = Bt−1 + pπ̂t (xπt )− (1− α)xπt ≥ 0.

The opportunity cost constraints (7) are imposed on each single period, hence we need to increase the
payment to the seller if pπt (xπt ) < ct, which could be done by making pπ̂t (xπt ) ≥ max{ct, pπt (xπt )}.
Formally, the policy is given as follows:
Theorem 6.2. For any revenue sharing scheme π, the corresponding revenue sharing scheme π̂
defined by Algorithm 2 satisfies constraints (6) and (7) in every sample path.

6.3 Hybrid Revenue Sharing Policy

In the next section we will evaluate the policies discussed on data from a major ad exchange. One
conclusion will be that while the prefix policy satisfies more stringent business constraints, it had poor
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ALGORITHM 2: Converting any revenue sharing scheme to the one that obeys constraints (6) and (7).
1: For any give revenue sharing scheme 〈rπt , pπt 〉.
2: Let B ← 0 be the bank account of the seller.
3: for t = 1, . . . , T do
4: Set the reserve price rπ̂t = rπt
5: if item is sold, that is, bft ≥ rπ̂t then
6: Collect the buyers’ payment xπ̂t = xπt
7: Pay the seller pπ̂t (xπ̂t ) = max

{
ct, (1− α)xπ̂t −B, pπt (xπ̂t )

}
8: Update the bank account B ← B + pπ̂t (xπ̂t )− (1− α)xπ̂t
9: end if

10: end for

performance in terms of exchange profit compared, for example, with the refund policy. Our goal
in this section is to combine the insights on optimal formats of reserve prices and revenue sharing
policies from the theory in Sections 3 and 4 together with empirical observations from experiments.
Thus motivated, we design a hybrid policy that has profit performance compared with the refund
policy but satisfies the stringent constraints in the previous section.

ALGORITHM 3: Hybrid multi period prefix policy.
1: Let B ← 0 be the bank account of the seller.
2: Determine the optimal dual variable µ∗ ∈ arg min0≤µ≤1 φ̂(µ)
3: for t = 1, . . . , T do
4: Set the reserve price rπt = max{min{c̄t, r∗(ct(µ∗))}, r∗(0)}
5: if item is sold, that is, bft ≥ rπt then
6: Collect the buyers’ payment xπt = max(rπt , b

s
t)

7: Pay the seller pπt (xπt ) = max
{
ct, (1− α)xπ̂t −B

}
8: Update the bank account B ← B + pπt (xπt )− (1− α)xπt
9: end if

10: end for

We call it a hybrid policy since the reserve price rπt is a hybrid of the reserve prices computed in
Sections 3 and 4. The payment to sellers is the least payment required to satisfy the prefix revenue
share constraint (6) and the per-period opportunity cost constraint (7).

7 Empirical Evaluation

In this section, we use anonymized real bid data from a major ad exchange to evaluate the policies
we discussed in previous sections. Our goal will be to validate our insights on data. In the theoretical
part of this paper we made simplifying assumptions, that not necessarily hold on data. For example,
we assume quasi-concavity of the expected profit function Π(r, c). Even though this function is not
concave, we can still estimate it from data and optimize using linear search. Our theoretical results
also assume we have access to distributions of buyers’ bids. We build such distributions from past
data. Finally, in our real data set bids are not necessarily stationary and identically distributed over
time. Even though there might be inaccuracies from bids changing from one day to another, our
revenue sharing policies are also robust to such non-stationarity.

7.1 Data Sets

The data set is a collection of auction records, where each record corresponds to a real time auction
for an impression and consists of:

• a seller (publisher) id,
• the seller declared opportunity cost,
• a set of bid records. Each bid record corresponds to a buyer id and the value of the bid

submitted by that buyers to the auction.
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The maximum revenue share α that the intermediary could take is set to be a constant. To show that
our results do not rely on the selection of this constant, we run the simulation for different values of
α (α = 0.15, 0.2, 0.25).

Our data set will consist of a random sample of auctions from 20 large publishers over the period of 2
days. We will partition the data set in a training set consisting of data for the first day and a testing
set consisting of data for the second day.

7.2 Preprocessing Steps

Before running the simulation, we need to do some preprocessing of the data set. The goal of the
preprocessing is to learn the parameters required by the policies we introduced for each seller, in
particular, the optimal reserve function r∗ and the optimal Lagrange multiplier µ∗. We will do this
estimation using the training set, i.e., the data from the first day.

The first problem is to estimate Π(r, c) and r∗(c). In order to estimate Π(r, c) for a given impression
we look at all impressions in the training set with the same seller and obtain a list of (bf , bs) pairs. We
build the empirical distribution where each of those pairs is picked with equal probability. This allows
us to evaluate and optimize Π(r, c) with a single pass over the data using the technique described in
Paes Leme et al. [2016].

For each seller, to estimate µ∗, we enumerate different µ’s from the discretization of [0, 1] (denoted
by D) and evaluate the profits of these policies on the training set. Then the estimation (µ̂∗) of µ∗ is
the µ that yields the maximum profit on the training set, i.e.,

µ̂∗ , arg max
µ∈D

ˆprofit(µ)

7.3 Evaluating Revenue Sharing Policies

We will evaluate the different policies discussed in the paper on testing set (day 2 of the data set)
using the parameters r̂∗(c) and µ̂∗ learned from the training set during preprocessing. For each
revenue sharing policy we evaluate, we will be concerned with the following metrics: profit of the
exchange, payout to the sellers, match rate which corresponds the number of impressions allocated,
revenue extracted from buyers and buyers values which is the sum of highest bids over allocated
impressions (here we assume that buyers report their values truthfully in the second-price auction run
by the exchange). In addition, the average intermediary’s revenue share will be calculated.

The policies evaluated will be the following:

• NAIVE: naïve policy (Section 2),
• SINGLE: single period policy (Section 3),
• REFUND: multi period refund policy (Algorithm 1 in Section 6.1),
• PREFIX: multi period prefix policy (Algorithm 2 in Section 6.2),
• HYBRID: multi period hybrid policy (Algorithm 3 in Section 6.3).

In Table 1, we report the results of the policies for different values of α (0.15, 0.2, 0.25). The metrics
are reported with respect to the NAIVE policy. In other words, the cell in the table corresponding to
revenue of policy P is the revenue lift of P with respect to NAIVE:

revenue lift(P) =
revenue(P)

revenue(NAIVE)
− 1

The only metric that is not reported as a percentage lift is the revenue share in the last column which
corresponds to:

rev share(P) =
profit(P)

revenue(P)

7.4 Interpreting Simulation Results

What conclusions can we draw from the lift numbers? The first conclusion is that even though the
theoretical model deviates from practice in a number of different ways (concavity of Π(r, c), precise
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(a) α = 0.15

policy profit payout match rate revenue buyers values rev. share
NAIVE 0.00% 0.00% 0.00% 0.00% 0.00% 15.00%
SINGLE +1.23% +1.74% +0.83% +1.66% +0.83% 14.94%
REFUND +8.53% +8.53% +3.71% +8.53% +7.81% 15.00%
PREFIX −3.60% −1.97% −23.96% −2.22% −6.40% 14.79%
HYBRID +3.34% +5.38% +4.09% +5.08% +3.31% 14.75%

(b) α = 0.20

policy profit payout match rate revenue buyers values rev. share
NAIVE 0.00% 0.00% 0.00% 0.00% 0.00% 20.00%
SINGLE +1.29% +2.33% +0.86% +2.12% +1.11% 19.84%
REFUND +9.37% +9.37% +8.30% +9.37% +9.09% 20.00%
PREFIX −2.17% +0.69% −21.87% +0.12% −4.41% 19.54%
HYBRID +3.81% +5.93% +5.26% +5.51% +3.78% 19.68%

(c) α = 0.25

policy profit payout match rate revenue buyers values rev. share
NAIVE 0.00% 0.00% 0.00% 0.00% 0.00% 25.00%
SINGLE +1.64% +2.97% +1.07% +2.64% +1.39% 24.76%
REFUND +9.55% +9.57% +10.71% +9.56% +9.64% 25.00%
PREFIX −1.00% +2.16% −18.51% +1.37% −2.90% 24.41%
HYBRID +4.61% +6.90% +6.74% +6.33% +4.55% 24.60%

Table 1: Performance of the policies for different α’s.

distribution estimates, stationarity of bids), we are still able to improve over the naïve policy. Notice
that the naïve policy implements the optimal reserve price subject to a fixed revenue sharing policy.
So all the gains from reserve price optimization are already accounted for in our baseline.

We start by observing that even for SINGLE, which is a simple policy, we are able to considerably
improve over NAIVE across all performance metrics. This highlights that the observation that “profit
and revenue can be improved by reducing the share taken by the exchange” is not only a theoretical
possibility, but a reality on real-world data.

Next we compare the lifts of SINGLE, which enforces revenue sharing constraints per impression,
versus REFUND, which enforces constraints in aggregate. We can see that the lift is 5.5 to 7 times larger
for REFUND compared to SINGLE. For α = 0.15, the lift5 for SINGLE is +1.23% while REFUND is
+8.53%. This shows the importance of optimizing revenue shares across all auctions instead of
per auction. Additionally, we observe that the match rate and buyers values of REFUND are higher
than those of SINGLE. This is in agreement with Proposition 5.1: because the reserve price of the
single-period constrained model is typically larger than the one of the multi-period constrained model,
we expect REFUND to clear more auctions, which in turns leads to higher buyer values.

Next we analyze the performance of PREFIX and HYBRID policies. While PREFIX is able to raise
payout and revenue in some cases, it fails to have a positive impact on profit in all experiments. In
PREFIX the exchange ends up sacrificing too much of its revenue share. At first glance, such result
seems to be counterintuitive. However, it is not surprising because there is no theoretical guarantee on
the profit of policy PREFIX at all. In particular, PREFIX is subject to tighter constraints than REFUND,

5The reader might ask how to interpret lift numbers. The annual revenue of display advertising exchanges
is on the order of billions of dollars. At that scale, each 1% lift corresponds to tens of millions of dollars
in incremental annual revenue. We emphasize that this lift is in addition to that obtained by reserve price
optimization, since NAIVE already captures the gains from setting reserve prices optimally given a simple
revenue sharing policy.
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and the reserve prices of policy SINGLE and policy NAIVE are not achievable by policy PREFIX with
µ∗ ∈ [0, 1] in general.

This is our motivation for policy HYBRID. We address the shortcomings of policy PREFIX by granting
the intermediary more freedom in picking reserve prices. When µ∗ = 0, for example, rHYBRID =
rSINGLE. As a result, we obtain a policy that is consistently better than SINGLE. Even though HYBRID is
not as good REFUND in terms of revenue lift, it satisfied the more stringent constraints defined in
Section 6.2, which are not necessarily satisfied by REFUND.

One other interesting observation is that the larger the revenue share α, the larger the improvement.
So the higher revenue share the exchange can negotiate with sellers, the more important it is to invest
in sophisticated revenue sharing policies.

To sum up, the policies can be ranked as follows in terms of performance:

REFUND � HYBRID � SINGLE � NAIVE ∼ PREFIX.

7.5 Effectiveness of Multi-period Policies

In Proposition 5.2 we provide a theoretical comparison of single-period and multi-period revenue
sharing policies and concludes that there are two effects at play: the first is the effect of the Lagrange
multiplier 1 − µS which increases as the cost grows and the second is the expected expected lift
provided by second bids over a rescaled version of the cost E[bs − c̄]+ for c̄ = c/(1− α). This effect
decreases with c. For very low values of c there is not a significant difference between policies due to
µS being close to 1. For large values of c, there is again no significant difference since the second bid
is rarely above the cost. Our theorems indicate that there is a sweet spot for costs values which makes
multi-period policies particularly effective with respect to single-period policies.

To verify this hypothesis experimentally on data we perform the following experiment: we choose a
rescaling factor between 0 and 1.5 and evaluate the profit obtained by both SINGLE and REFUND when
all the costs are rescaled by that factor. We obtain the result in Figure 1. First we observe that the

(a) α = 0.15 (b) α = 0.20 (c) α = 0.25

Figure 1: We compare profit(SINGLE) in red and profit(REFUND) in blue for different cost rescaling
parameters. The absolute values in the y-axis are removed for privacy reasons.

total revenue is decreasing in the cost scaling, since the larger the cost the more constrained the
optimizaton problem is. But more interestingly, observe that for very small costs (cost scaling close
to zero) there is little difference between SINGLE and REFUND . The gap grows as the costs increase
but as costs become large, the gap again closes and the two policies again produce similar revenue.
Interestingly, the actual unscaled costs (rescaling factor equal to 1) are in the sweet spot where
REFUND is particularly more effective than SINGLE.

We next provide some intuition for these results. When the opportunity cost is very low, the revenue
constraint binds (µ = 1). Both policies ignore the seller’s opportunity cost, price according to the
Myerson optimal reserve r∗(0), and pay the seller (1 − α) of the buyers’ payments. When the
opportunity cost is very high, the floor constraint binds (µ = 0). Both policies internalize the seller’s
opportunity cost, price according to r∗(c) and pay the seller his opportunity cost. Thus, both policies
coincide when the opportunity cost is too low or too high. In the intermediate regime, both constraints
are binding. Here, REFUND can take advantage of the repeated nature of the auctions to accept a
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revenue share lower than α or operate at a loss for some impressions. This grants REFUND more
freedom in optimizing the auction and extracting more revenue.
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A Proof of Results

A.1 Proof of Theorem 3.1

Proof. Constraints (2b) and (2c) readily imply that pπt (x) ≥ max(c, (1 − α)x). Because the exchange is
maximizing profits he would like to set the payment to the seller as small as possible, which implies that
pπt (x) = max(c, (1− α)x). Furthermore, because bids are stationary we can simplify the problem to

JS = T max
r

E
[
1{bf ≥ r} (max(r, bs)−max (c, (1− α) max(r, bs)))

]
︸ ︷︷ ︸

,ΠS(r)

, (8)

where we denote by ΠS(r) the objective in (8).

Let c̄ = c/(1− α). We next show that the objective ΠS(r) can be written as

ΠS(r) =

{
Π̄S(r) , αΠ(r, 0) if r ≥ c̄ ,

¯
ΠS(r) , Π(r, c)− E [(1− α)bs − c]+ if r < c̄ .

(9)

When r ≥ c̄ the payment to the seller when the item is sold is (1 − α) max(r, bs), which implies that
ΠS(r) = αE

[
1{bf ≥ r}max(r, bs)

]
= αΠ(r, 0). When r ≤ c̄ we can write the objective as follows by

adding and subtracting the expected cost cP
{
bf ≥ r

}
:

ΠS(r) = Π(r, c)− E
[
1{bf ≥ r} (max (c, (1− α) max(r, bs))− c)

]
= Π(r, c)− E

[
1{bf ≥ r} ((1− α) max(r, bs)− c)+

]
= Π(r, c)− E

[
1{bf ≥ r, bs ≥ c̄} ((1− α) max(r, bs)− c)+

]
= Π(r, c)− E

[
((1− α)bs − c)+

]
where the third equality follows because the second term is non-zero when max(r, bs) ≥ c̄ which is equivalent
to bs ≥ c̄ because r ≤ c̄, and the last equation follows because bs ≥ c̄ implies that (i) bs ≥ r because r ≤ c̄ and
(ii) bf ≥ r since bf ≥ bs.

Note that r∗(0) is the maximizer of Π̄S(r) and r∗(c) is the maximizer of
¯
ΠS(r). We prove the result by

considering three cases, that is, whether c̄ falls above, within or below the interval [r∗(0), r∗(c)].

Case 1 (c̄ ≥ r∗(c)). In this case the optimal reserve price will be shown to be r∗(c). For r < c̄ we have that
ΠS(r) =

¯
ΠS(r) for which the maximizer is r∗(c). This solution is feasible because r∗(c) ≤ c̄. We need to

show that the profit of all reserves r ≥ c̄ are dominated by that of r∗(c). For any r ≥ c̄ we have that

ΠS(r) = Π̄S(r) ≤ Π̄S(c̄) =
¯
ΠS(c̄) ≤

¯
ΠS(r∗(c)) = ΠS(r∗(c)) , (10)

where the first equality follows because r ≥ c̄, the first inequality because Π̄S(r) = αΠ(r, 0) is quasi-concave
in r and thus Π̄S(r) is non-increasing when r ≥ r∗(0) (to the right of the maximizer) together with the fact that
r ≥ c̄ ≥ r∗(0), the second equality because of continuity of the objective function at c̄, the second inequality
because r∗(c) is the maximizer of

¯
ΠS(r), and the last equality because r∗(c) ≤ c̄. Therefore r∗(c) is the

optimal reserve.

Case 2 (r∗(0) ≤ c̄ ≤ r∗(c)). In this case the optimal reserve price will be shown to be c̄. We first show that
for all r ≥ c̄ the profit is dominated by that of c̄. For any r ≥ c̄ we have that

ΠS(r) = Π̄S(r) ≤ Π̄S(c̄) = ΠS(c̄) ,

where the first equality follows because r ≥ c̄ and the first inequality because Π̄S(r) = αΠ(r, 0) is quasi-
concave in r and thus Π̄S(r) is non-increasing when r ≥ r∗(0) (to the right of the maximizer) together with
the fact that r ≥ c̄ ≥ r∗(0). We next show that for all r ≤ c̄ the profit is dominated by that of c̄. For any r ≤ c̄
we have that

ΠS(r) =
¯
ΠS(r) ≤

¯
ΠS(c̄) = ΠS(c̄) ,

where the first equality follows because r ≤ c̄ and the first inequality because
¯
ΠS(r) = Π(r, c) −

E [(1− α)bs − c]+ is quasi-concave in r and thus
¯
ΠS(r) is non-decreasing when r ≤ r∗(c) (to the left

of the maximizer) together with the fact that r ≤ c̄ ≤ r∗(c).

Case 3 (c̄ ≤ r∗(0)). In this case the optimal reserve price will be shown to be r∗(0). This case follows
similarly to case 1 and the proof is omitted.
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A.2 Proof of Theorem 4.1

Proof. Consider the following relaxed version of problem (3) when constraints (3c) and (3b) are imposed in
expectation instead of surely.

J̄M , max
π

T∑
t=1

E
[
1{bft ≥ rπt } (xπt − pπt (xπt ))

]
(11a)

s.t.
T∑
t=1

E
[
1{bft ≥ rπt } (pπt (xπt )− (1− α)xπt )

]
≥ 0 , (11b)

T∑
t=1

E
[
1{bft ≥ rπt } (pπt (xπt )− c)

]
≥ 0 , (11c)

where xπt = max(rπt , b
s
t) . (11d)

Notice that the Lagrange relaxation of problem (11) is equivalent to that of problem (3), which implies that
J̄M ≤ inf0≤µ≤1 φ̂(µ). We prove the result by showing that (i) the proposed policy attains the dual objective
and (ii) the proposed policy is primal feasible in (11).

Step 1 (primal objective). Let Jπ be the expected performance of policy π. The expected performance of
the current policy is

Jπ =

T∑
t=1

E
[
1{bft ≥ rπt } (xπt − pπt (xπt ))

]
=

T∑
t=1

E
[
1{bft ≥ rπt } ((1− µ∗(1− α))xπt − (1− µ∗)c)

]
= TE

[
1{bf ≥ r∗(c(µ∗))} ((1− µ∗(1− α)) max(r∗(c(µ∗)), bs)− (1− µ∗)c)

]
= T (1− µ∗(1− α))Π (r∗(c(µ∗)), c(µ∗)) = φ̂(µ∗) ,

where the third equation follows because the policy is stationary and bids are i.i.d.

Step 1 (primal feasibility). Let φ̂′(µ) be the derivative of the dual objective, which is given by

φ̂′(µ) = −TE
[
1{bf ≥ r∗(c(µ))} ((1− α) max(r∗(c(µ)), bs)− c)

]
. (12)

The first-order conditions of µ∗ for the dual problem imply that

1. if µ∗ = 0 then φ̂′(µ∗) ≥ 0

2. if µ∗ ∈ (0, 1) then φ̂′(µ∗) = 0

3. if µ∗ = 1 then φ̂′(µ∗) ≤ 0

Let LHS(11c)π be the expectation on the left hand side of the floor constraint (11c) under policy π. We have that

LHS(11c)π =

T∑
t=1

E
[
1{bft ≥ rπt } (pπt (xπt )− c)

]
= µ∗TE

[
1{bf ≥ r∗(c(µ∗))} ((1− α) max(r∗(c(µ∗)), bst)− c)

]
= −µ∗φ̂′(µ∗) ≥ 0

where the second equality follows because pπt (x) = (1− µ∗)c+ µ∗(1− α)x, third equality follows from the
formula for the derivative of the dual objective in (12) and the last inequality from the first-order conditions of
µ∗ for the dual problem. Let LHS(11b)π be the expectation on the left hand side of the floor constraint (11b)
under policy π. We have that

LHS(11b)π =

T∑
t=1

E
[
1{bft ≥ rπt } (pπt (xπt )− (1− α)xπt )

]
= −(1− µ∗)TE

[
1{bf ≥ r∗(c(µ∗))} ((1− α) max(r∗(c(µ∗)), bst)− c)

]
= (1− µ∗)φ̂′(µ∗) ≥ 0
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where the second equality follows because pπt (x) = (1− µ∗)c+ µ∗(1− α)x, the third equality follows from
the formula for the derivative of the dual objective and the last inequality from the first-order conditions of µ∗

for the dual problem.

A.3 Proof of Theorem 4.3

Proof. We will again apply the Lagrangian relaxation technique and derive from it an optimal policy for the
problem where the constraints (5) and (3b) are imposed in expectation instead of almost surely. We rewrite the
dual function φ(µ, λ) for the random opportunity cost case as follows,

ϕ(µ, λ) , sup
π

T∑
t=1

E
[
1{bft ≥ rπt }

(
xπt − pπt (xπt ) + λ

(
pπt (xπt )− ct

)
+ µ

(
pπt (xπt )− (1− α)xπt

))]
= T

(
1− µ(1− α)

)
sup
r(c)

Ec [Π (r(c), c(µ))] + X{λ+µ=1}.

Again, to prevent the last term X{λ+µ=1} being unbounded, λ+ µ = 1 and then the optimal dual objective is
given by

inf
µ≥0,λ≥0:µ+λ=1

ϕ(µ, λ) = inf
0≤µ≤1

ϕ(µ, 1− µ) = inf
0≤µ≤1

ϕ̂(µ),

where

ϕ̂(µ) , φ(µ, 1− µ) = T
(
1− µ(1− α)

)
sup
r(c)

Ec [Π (r, c(µ))] .

Because the reserve price can be adjusted depending on the cost (i.e., the reserve price is measurable w.r.t. the
publisher’s opportunity cost), we can interchange the order of the supreme sup and expectation E to obtain that

ϕ̂(µ) = T
(
1− µ(1− α)

)
Ec [suprΠ (r, c(µ))] = T

(
1− µ(1− α)

)
Ec [Π (r∗(c(µ)), c(µ))] .

We omit the rest of proof as it follows the same steps as in the proof of Theorem 4.1 except that all the
expectations are now taken over c as well.

A.4 Proof of Proposition 5.1

Proof. We prove the result by considering three cases, that is, whether c̄ falls above, within or below the interval
[r∗(0), r∗(c)].

Case 1 (c̄ ≥ r∗(c)). In this case rS = r∗(c). The result follows because

rM = r∗(c(µ∗)) ≤ r∗(c(0)) = r∗(c) = rS ,

where the inequality follows because µ∗ ≥ 0, r∗(·) is non-decreasing and c(·) is non-increasing.

Case 2 (r∗(0) ≤ c̄ ≤ r∗(c)). In this case rS = c̄. First note that c(µ) = (1−µ)c
1−µ(1−α) is non-increasing

in µ, c(0) = c and c(1) = 0. Thus there exist µS ∈ [0, 1] such that r∗(c(µS)) = rS . We claim that
φ̂′(µS) ≤ 0, which implies that µ∗ ≥ µS and as a result rM = r∗(c(µ∗)) ≤ r∗(c(µS)) = rS because r∗(·) is
non-decreasing and c(·) is non-increasing.

We prove the claim that φ̂′(µS) ≤ 0. Because r∗(c(µS)) = rS and using the formula for φ̂′(·) in (12) we have
that

φ̂′(µS) = −TE
[
1{bf ≥ rS}

(
(1− α) max(rS , bs)− c

)]
= −TE

[
1{bf ≥ rS}

(
max(rS , bs)− c

)]
+ αTE

[
1{bf ≥ rS}max(rS , bs)

]
= αTΠ(rS , 0)− TΠ(rS , c) = TΠ̄S(rS)− T

¯
ΠS(rS)− TE [(1− α)bs − c]+ , (13)

where the last equation follows from the fourth equation from (9). Therefore because rS = c̄

φ̂′(µS) = TΠ̄S(c̄)− T
¯
ΠS(c̄)− TE [(1− α)bs − c]+ = −TE [(1− α)bs − c]+ ≤ 0

where the last equation follows because Π̄S(c̄) =
¯
ΠS(c̄) since the objective of the single period constrained

model is continuous at c̄.

Case 3 (c̄ ≤ r∗(0)). In this case rS = r∗(0). From case 3 of the proof of Proposition 5.2 we have
that JM = JS which implies that rS is an optimal solution for the multi-period constrained model and
rS = rM .
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A.5 Proof of Proposition 5.2

Proof. The first inequality JS ≤ JM is trivial because every policy of the single period constrained problem is
feasible in the multi period constrained problem. For the second bound, we prove the second result by comparing
the optimal objective value of the single period constrained problem to the objective value of the Lagrange
relaxation.

First note that c(µ) = (1−µ)c
1−µ(1−α) is non-increasing in µ, c(0) = c and c(1) = 0. Thus there exist µS ∈ [0, 1]

such that r∗(c(µS)) = rS . As a result:

JM ≤ inf
0≤µ≤1

φ̂(µ) ≤ φ̂(µS) = T
(
1− µS(1− α)

)
Π
(
r∗(c(µS)), c(µS)

)
= TE

[
1{bf ≥ rS}

((
1− µS(1− α)

)
max(rS , bst)− (1− µS)c

)]
= µSαTΠ(rS , 0) + (1− µS)TΠ(rS , c)

= µSTΠ̄S(rS) + (1− µS)T
¯
ΠS(rS) + (1− µS)TE [(1− α)bs − c]+ , (14)

where the first inequality follows from weak duality; the second inequality because µS ∈ [0, 1] is dual
feasible; the first equality follows from (4); the second equality follows because r∗(c(µS)) = rS together with
c(µ) = (1−µ)c

1−µ(1−α) ; and the fourth equation from (9). We conclude the proof by considering three cases, that is,
whether c̄ falls above, within or below the interval [r∗(0), r∗(c)].

Case 1 (c̄ ≥ r∗(c)). In this case rS = r∗(c), which implies that µS = 0 because c(0) = c where
c(µ) = (1−µ)c

1−µ(1−α) . Here (14) gives

JM ≤ T
¯
ΠS(r∗(c)) + TE [(1− α)bs − c]+ = JS + E [(1− α)bs − c]+ ,

where the last equation follows because T
¯
ΠS(r∗(c)) = JS since the optimal reserve price in the single period

constrained model is r∗(c) and r∗(c) ≤ c̄.

Case 2 (r∗(0) ≤ c̄ ≤ r∗(c)). In this case rS = c̄ and µS ∈ [0, 1]. Here (14) gives

JM ≤ µSTΠ̄S(c̄) + (1− µS)T
¯
ΠS(c̄) + (1− µS)TE [(1− α)bs − c]+

= JS + (1− µS)TE [(1− α)bs − c]+ ,

where the last equation follows because TΠ̄S(c̄) = T
¯
ΠS(c̄) = JS since the objective of the single period

constrained model is continuous at c̄ together with the fact the optimal reserve price in the single period
constrained model is c̄.

Case 3 (c̄ ≤ r∗(0)). In this case rS = r∗(0), which implies that µS = 1 because c(1) = 0 where
c(µ) = (1−µ)c

1−µ(1−α) . Here (14) gives

JM ≤ αTΠ (r∗(0), 0) = Π̄S(r∗(0)) = JS ,

where the last equation follows because the optimal reserve price in the single period constrained model is r∗(0)
and r∗(0) ≥ c̄.
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