
Random Projection Filter Bank for Time Series Data

Amir-massoud Farahmand
Mitsubishi Electric Research Laboratories (MERL)

Cambridge, MA, USA
farahmand@merl.com

Sepideh Pourazarm
Mitsubishi Electric Research Laboratories (MERL)

Cambridge, MA, USA
sepid@bu.edu

Daniel Nikovski
Mitsubishi Electric Research Laboratories (MERL)

Cambridge, MA, USA
nikovski@merl.com

Abstract

We propose Random Projection Filter Bank (RPFB) as a generic and simple
approach to extract features from time series data. RPFB is a set of randomly
generated stable autoregressive filters that are convolved with the input time series
to generate the features. These features can be used by any conventional machine
learning algorithm for solving tasks such as time series prediction, classification
with time series data, etc. Different filters in RPFB extract different aspects of
the time series, and together they provide a reasonably good summary of the time
series. RPFB is easy to implement, fast to compute, and parallelizable. We provide
an error upper bound indicating that RPFB provides a reasonable approximation
to a class of dynamical systems. The empirical results in a series of synthetic and
real-world problems show that RPFB is an effective method to extract features
from time series.

1 Introduction

This paper introduces Random Projection Filter Bank (RPFB) for feature extraction from time series
data. RPFB generates a feature vector that summarizes the input time series by projecting the time
series onto the span of a set of randomly generated dynamical filters. The output of RPFB can
then be used as the input to any conventional estimator (e.g., ridge regression, SVM, and Random
Forest [Hastie et al., 2001; Bishop, 2006; Wasserman, 2007]) to solve problems such as time series
prediction, and classification and fault prediction with time series input data. RPFB is easy to
implement, is fast to compute, and can be parallelized easily.

RPFB consists of a set of randomly generated filters (i.e., dynamical systems that receive inputs),
which are convolved with the input time series. The filters are stable autoregressive (AR) filters, so
they can capture information from the distant past of the time series. This is in contrast with more
conventional approach of considering only a fixed window of the past time steps, which may not
capture all relevant information. RPFB is inspired from the random projection methods [Vempala,
2004; Baraniuk and Wakin, 2009], which reduce the input dimension while preserving important
properties of the data, e.g., being an approximate isometric map. It is also closely related to

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Random Kitchen Sink [Rahimi and Recht, 2009] for approximating potentially infinite-dimensional
reproducing kernel Hilbert space (RKHS) with a finite set of randomly selected features. RPFB can
be thought of as the dynamical system (or filter) extension of these methods. RPFB is also related to
the methods in the Reservoir Computing literature [Lukoševičius and Jaeger, 2009] such as Echo
State Network and Liquid State Machine, in which a recurrent neural network (RNN) with random
weights provides a feature vector to a trainable output layer. The difference of RPFB with them is that
we are not considering an RNN as the underlying excitable dynamical system, but a set of AR filters.

The algorithmic contribution of this work is the introduction of RPFB as a generic and simple to use
feature extraction method for time series data (Section 3). RPFB is a particularly suitable choice for
industrial applications where the available computational power is limited, e.g., a fault prognosis
system for an elevator that has only a micro-controller available. For these industrial applications, the
use of powerful methods such as various adaptable RNN architectures [Hochreiter and Schmidhuber,
1997; Cho et al., 2014; Oliva et al., 2017; Goodfellow et al., 2016], which learn the feature extractor
itself, might be computationally infeasible.

The theoretical contribution of this work is the finite sample analysis of RPFB for the task of time
series prediction (Section 4). The theory has two main components. The first is a filter approximation
error result, which provides an error guarantee on how well one might approximate a certain class of
dynamical systems with a set of randomly generated filters. The second component is a statistical
result providing a finite-sample guarantee for time series prediction with a generic class of linear
systems. Combining these two, we obtain a finite-sample guarantee for the use of RPFB for time
series prediction of a certain class of dynamical systems.

Finally, we empirically study RPFB along several standard estimators on a range of synthetic and
real-world datasets (Section 5). Our synthetic data is based on Autoregressive Moving Average
(ARMA) processes. This lets us closely study various aspects of the method. Moving to real-world
problems, we apply RPFB to the fault diagnosis problem from ball bearing vibration measurements.
We compare the performance of RPFB with that of the fixed-window history-based approach, as well
as LSTM, and we obtain promising empirical results. For more empirical studies, especially in the
context of fault detection and prognosis, refer to Pourazarm et al. [2017].

2 Learning from Time Series Data

Consider a sequence (X1, Y1), . . . , (XT , YT) of dependent random variables with X ∈ X and
Y ∈ Y . Depending on how Xt and Yt are defined, we can describe different learning/decision
making problems. For example, suppose that Yt = f∗(Xt) + εt, in which f∗ is an unknown function
of the current value of Xt and εt is independent of the history X1:t = (X1, . . . , Xt) and has a
zero expectation, i.e., E [εt] = 0. Finding an estimate f̂ of f∗ using data is the standard regression
(or classification) problem depending on whether Y ⊂ R (regression) or Y = {0, 1, . . . , c −
1} (classification). For example, suppose that we are given a dataset of m time series Dm =
{(Xi,1, Yi,1), . . . , (Xi,Ti , Yi,Ti)}

m
i=1, each of which might have a varying length Ti. There are many

methods to define an estimator for f∗, e.g., K-Nearest Neighbourhood, decision tree, SVM, various
neural networks [Hastie et al., 2001; Bishop, 2006; Wasserman, 2007; Goodfellow et al., 2016]. An
important class of estimators is based on (regularized) empirical risk minimization (ERM):

f̂ ← argmin
f∈F

1

m

m∑
i=1

1

Ti

Ti∑
t=1

l(f(Xi,t), Yi,t) + λJ(f). (1)

Here F : X → Y ′ is a function space (e.g., an RKHS with the domain X ; with Y ′ = R). The loss
function is l : Y ′ × Y → [0,∞), and it determines the decision problem that is being solved, e.g.,
l(y1, y2) = |y1 − y2|2 for the squared loss commonly used in regression. The optional regularizer
(or penalizer) J(f) controls the complexity of the function space, e.g., it can be ‖f‖2F when F is an
RKHS. The difference of this scenario with more conventional scenarios in the supervised learning
and statistics is that here the input data does not satisfy the usual independence assumption anymore.
Learning with dependent input data has been analyzed before [Steinwart et al., 2009; Steinwart and
Christmann, 2009; Mohri and Rostamizadeh, 2010; Farahmand and Szepesvári, 2012].

More generally, however, Yt is not a function of onlyXt, but is a function of the historyX1:t, possibly
contaminated by a (conditionally) independent noise: Yt = f∗(X1:t) + εt. In the learning problem,

2

f∗ is an unknown function. The special case of f∗(X1:t) = f∗(Xt) is the same as the previous
setting.

To learn an estimator by directly using the history X1:t is challenging as it is a time-varying vector
with an ever increasing dimension. A standard approach to deal with this issue is to use a fixed-
window history-based estimator, which shall be explained next (cf. Kakade et al. [2017] for some
recent theoretical results). The RPFB is an alternative approach that we describe in Section 3.

In the fixed-window history-based approach (or window-based, for short), we only look at a fixed
window of the immediate past values of X1:t. That is, we use samples in the form of Zt , Xt−H+1:t

with a finite integer H that determines the length of the window. For example, the regularized
least-squares regression estimator would then be

f̂ ← argmin
f∈F

1

m

m∑
i=1

1

Ti −H

Ti∑
t=H

|f(Xi,t−H+1:t))− Yi,t|2 + λJ(f), (2)

which should be compared to (1).

A problem with this approach is that for some stochastic processes, a fixed-sized window of length H
is not enough to capture all information about the process. As a simple illustrative example, consider
a simple moving average MA(1) univariate random process (i.e., X = R):

Xt = U(t) + bU(t− 1) = (1 + bz−1)Ut, b ∈ (−1, 1)

in which z−1 is the time-delay operator (cf. Z-transform, Oppenheim et al. 1999), i.e., z−1Xt = Xt−1.
Suppose that Ut = U(t) (t = 1, 2, . . .) is an unobservable random process that drives Xt. For
example, it might be an independent and identically distributed (i.i.d.) Gaussian noise, which we do
not observe (so it is our latent variable). To predict Yt = Xt+1 given the previous observations X1:t,
we write Ut = Xt

1+bz−1 , so

Xt+1 = Ut+1 + bUt = Ut+1 +
b

1 + bz−1
Xt = Ut+1 + b

∑
k≥0

(−b)kXt−k. (3)

This means that Xt is an autoregressive process AR(∞). The prediction of Xt+1 requires the value of
Ut+1, which is unavailable at time t, and all the past valuesX1:t. Since Ut+1 is unavailable, we cannot
use it in our estimate, so this is the intrinsic difficulty of prediction. On the other hand, the values of
X1:t are available to us and we can use them to predict Xt+1. But if we use a fixed-horizon window
of the past values (i.e., only use Xt−H+1:t for a finite H ≥ 1), we would miss some information
that could potentially be used. This loss of information is more prominent when the magnitude of
b is close to 1. This example shows that even for a simple MA(1) process with unobserved latent
variables, a fixed-horizon window is not a complete summary of the stochastic process.

More generally, suppose that we have a univariate linear ARMA process

A(z−1)Xt = B(z−1)Ut, (4)

with A and B both being polynomials in z−1.1 The random process Ut is not available to us, and
we want to design a predictor (filter) for Xt+1 based on the observed values X1:t. Suppose that
A and B are of degree more than 1, so we can write A(z−1) = 1 + z−1A′(z−1) and B(z−1) =
1 + z−1B′(z−1).2 Assuming that A and B are both invertible, we use (4) to get

Ut = B−1(z−1)A(z−1)Xt.

Also we can write (4) as

(1 + z−1A′(z−1))Xt+1 = (1 + z−1B′(z−1))Ut+1 = Ut+1 +B′(z−1)Ut.

Therefore, we have

Xt+1 = Ut+1 +

[
B′(z−1)A(z−1)

B(z−1)
−A′(z−1)

]
Xt = Ut+1 +

B′(z−1)−A′(z−1)

B(z−1)
Xt. (5)

1We assume that A and B both have roots within the unit circle, i.e., they are stable.
2The fact that both of these polynomials have a leading term of 1 does not matter in this argument.

3

So if the unknown noise process Ut has a zero mean (i.e., E [Ut|U1:t−1] = 0), the estimator

X̂t+1(X1:t) =
B′(z−1)−A′(z−1)

B(z−1)
Xt, (6)

is unbiased, i.e., X̂t+1(X1:t) = E [Xt+1|X1:t].

If we knew the model of the dynamical system (A and B), we could design the filter (6) to provide an
unbiased prediction for the future values of Xt+1. If the learning problem is such that it requires us
to know an estimate of the future observations of the dynamical system, this scheme would allow us
to design such an estimator. The challenge here is that we often do not know A and B (or similar for
other types of dynamical systems). Estimating A and B for a general dynamical system is a difficult
task. The use of maximum likelihood-based approaches is prone to local minimum since U is not
known, and one has to use EM-like algorithms, cf. White et al. [2015] and references therein. Here
we suggest a simple alternative based on the idea of projecting the signal onto the span of randomly
generated dynamical systems. This would be RPFB, which we describe next.

3 Random Projection Filter Bank

The idea behind RPFB is to randomly generate many simple dynamical systems that can approximate
dynamical systems such as the optimal filter in (6) with a high accuracy. Denote the linear filter in (6)
as

B′(z−1)−A′(z−1)

B(z−1)
=
p(z−1)

q(z−1)
,

for two polynomials p and q, both in z−1. Suppose that deg(q) = deg(B) = dq and deg(A) = dA,
then deg(p) = dp = max{dA − 1, dq − 1}. Assume that q has roots z1, . . . , zdq ∈ C without any
multiplicity. This means that

q(z−1) =

dq∏
i=1

(z−1 − zi).

In complex analysis in general, and in control engineering and signal processing in particular, the roots
of q are known as the poles of the dynamical system and the roots of p are its zeros. Any discrete-time
linear time-invariant (LTI) dynamical system has such a frequency domain representation.3

We have two cases of either dp < dq or dp ≥ dq. We focus on the first case and describe the RPFB,
and the intuition behind it. Afterwards we will discuss the second case.

Case 1: Suppose that dp < dq , which implies that dA − 1 < dq . We may write

p(z−1)

q(z−1)
=

dq∑
i=1

bi
1− ziz−1

, (7)

for some choice of bis. This means that we can write (5) as

Xt+1 = Ut+1 +
B′(z−1)−A′(z−1)

B(z−1)
Xt

= Ut+1 +

dq∑
i=1

bi
1− ziz−1

Xt.

That is, if we knew the set of complex poles Zp = {z1, . . . , zdq} and their corresponding coefficients
Bp = {b1, . . . , bdq}, we could provide an unbiased estimate of Xt+1 based on X1:t. From now on,
we assume that the underlying unknown system is a stable one, that is, |zi| ≤ 1.

Random projection filter bank is based on randomly generating many simple stable dynamical
systems, which is equivalent to generating many random poles within the unit circle. Since any stable
LTI filter has a representation (7) (or a similar one in Case 2), we can approximate the true dynamical

3For continuous-time systems, we may use Laplace transform instead of Z-transform, and have similar
representations.

4

system as a linear combination of randomly generated poles (i.e., filters). If the number of filters is
large enough, the approximation will be accurate.

To be more precise, we cover the set of {z ∈ C : |z| ≤ 1} with N (ε) random points Nε =
{Z ′1, . . . , Z ′N (ε)} such that for any zi ∈ Zp, there exists a Z ′ ∈ Nε with |zi − Z ′(zi)| < ε. Roughly
speaking, we require N (ε) = O(ε−2) random points to cover the unit circle with the resolution of ε.
This shall be shown in Lemma 1 in Section 4.1.1. We then define the RPFB as the following set of
AR filters denoted by φ(z−1):4

φ(z−1) : z−1 7→

(
1

1− Z ′1z−1
, . . . ,

1

1− Z ′N (ε)z
−1

)
. (8)

With a slight abuse of notation, we use φ(X) to refer to the (multivariate) time series generated after
passing a signal X = (X1, . . . , Xt) through the set of filters φ(z−1). More concretely, this means
that we convolve the signalX with the impulse response of each of filters 1

1−Z′iz−1 (i = 1, . . . ,N (ε)).

Recall that the impulse response of 1
1−az−1 is the sequence (at)t≥0, and the convolution X ∗ Y

between two sequences (Xt)t≥0 and (Yt)t≥0 is a new sequence

(X ∗ Y)t =
∑
τ

XτYt−τ . (9)

We use [φ(X)]i ∈ CN (ε) to refer to the i-th time-step of the multivariate signal φ(X1:i).

The intuition of why this is a good construction is that whenever |z1 − z2| is small, the behaviour
of filter 1

1−z1z−1 is similar to 1
1−z2z−1 . So whenever Nε provides a good coverage of the unit circle,

there exists a sequence (b′j) such that the dynamical system

p′(z−1)

q′(z−1)
= φ(z−1)b′ =

N (ε)∑
j=1

b′j
1− Z ′jz−1

behaves similar to the unknown p
q (7). As this is a linear model, parameters b′ can be estimated using

ordinary least-squares regression, ridge regression, Lasso, etc. For example, the ridge regression
estimator for b′ is

b̂← argmin
b

1

m

m∑
i=1

Ti∑
t=1

1

Ti
|[φ(Xi)]tb−Xi,t+1|2 + λ ‖b‖22 .

After obtaining b̂, we define

X̃(X1:t; b̂) =

N (ε)∑
j=1

b̂j
1− Z ′jz−1

X1:t,

which is an estimator of X̂(X1:t) (6), i.e., X̂(X1:t) ≈ X̃(X1:t; b̂).

Case 2: Suppose that dp ≥ dq , which implies that dA − 1 ≥ dq . Then, we may write

p(z−1)

q(z−1)
= R(z−1) +

ρ(z−1)

q(z−1)
,

where ρ and R are obtained by the Euclidean division of p by q, i.e., p(z−1) = R(z−1)q(z−1) +
ρ(z−1) and deg(R) ≤ dA − 1− dq and deg(ρ) < dq . We can write:

p(z−1)

q(z−1)
=

dA−1−dq∑
j=0

νjz
−j +

dq∑
i=1

bi
1− ziz−1

. (10)

4One could generate different types of filters, for example those with nonlinearities, but in this work we focus
on linear AR filters to simplify the analysis.

5

Algorithm 1 Random Projection Filter Bank

// Dm = {(Xi,1, Yi,1), . . . , (Xi,Ti , Yi,Ti)}mi=1: Input data
// l : Y ′ × Y → R: Loss function
// F : Function space
// n: Number of filters in the random projection filter bank
Draw Z ′1, . . . , Z

′
n uniformly random within the unit circle

Define filters φ(z−1) =
(

1
1−Z′1z−1 , . . . ,

1
1−Z′nz−1

)
for i = 1 to m do

Pass the i-th time series through all the random filters φ(z−1), i.e., X ′i,1:Ti
= φ(z−1) ∗Xi,1:Ti

end for
Find the estimator using extracted features (X ′i,1:Ti

), e.g., by solving the regularized empirical risk
minimization:

f̂ ← argmin
f∈F

m∑
i=1

Ti∑
t=1

l(f(X ′i,t), Yi,t) + λJ(f). (12)

return f̂ and φ

This is similar to (7) of Case 1, with the addition of lag terms. If we knew the set of complex poles
and their corresponding coefficients as well as the coefficients of the residual lag terms, νj , we could
provide an unbiased estimate of Xt+1 based on X1:t. Since we do not know the location of poles, we
randomly generate them as before. For this case, the feature set (8) should be expanded to

φ(z−1) : z−1 7→

([
1, z−1, .., z−(dA−1−dq)

]
,

1

1− Z ′1z−1
, ..,

1

1− Z ′N (ε)z
−1

)
, (11)

which consists of a history window of length dA − 1 − dq and the random projection filters. The
regressor should then estimate both bis and νis in (10).

RPFB is not limited to time series prediction with linear combination of filtered signals. One may
use the generated features as the input to any other estimator too. RPFB can be used for other
problems such as classification with time series too. Algorithm 1 shows how RPFB is used alongside
a regularized empirical risk minimization algorithm. The inputs to the algorithm are the time series
dataDm, with appropriate target values created depending on the problem, the pointwise loss function
l, the function space F of the hypotheses (e.g., linear, RKHS, etc.), and the number of filters n in
the RPFB. The first step is to create the RPFB by randomly selecting n stable AR filters. We then
pass each time series in the dataset through the filter bank in order to create filtered features, i.e., the
feature are created by convolving the input time series with the filters’ impulse responses. Finally,
taking into account the problem type (regression or classification) and function space, we apply
conventional machine learning algorithms to estimate f̂ . Here we present a regularized empirical risk
minimizer (12) as an example, but other choices are possible too, e.g., decision trees or K-NN. We
note that the use of φ(z−1) ∗Xi,1:Ti in the description of the algorithm should be interpreted as the
convolution of the impulse response of φ(z−1), which is in the time domain, with the input signal.
Remark 1. In practice, whenever we pick a complex pole Z ′ = a + jb with j =

√
−1, we also

pick its complex conjugate Z̄ ′ = a − jb in order to form a single filter 1
(1−Z′z−1)(1−Z̄′z−1)

. This
guarantees that the output of this second-order filter is real valued.
Remark 2. RPFB is described for a univariate time series Xt ∈ R. To deal with multivariate time
series (i.e., Xt ∈ Rd with d > 1) we may consider each dimension separately and pass each one
through RPFB. The filters in RPFB can be the same or different for each dimension. The state of
the filters, of course, depends on their input, so it would be different for each dimension. If we
have n filters and d-dimensional time series, the resulting vector X ′i,t in Algorithm 1 would be nd
dimensional. Randomly choosing multivariate filters is another possibility, which is a topic of future
research.
Remark 3. The Statistical Recurrent Unit (SRU), recently introduced by Oliva et al. [2017], has
some similarities to RPFB. SRU uses a set of exponential moving averages at various time scales
to summarize a time series, which are basically AR(1) filters with real-valued poles. SRU is more

6

complex, and potentially more expressive, than RPFB as it has several adjustable weights. On the
other hand, it does not have the simplicity of RPFB. Moreover, it does not yet come with the same
level of theoretical justifications as RPFB has.

4 Theoretical Guarantees

We develop tools necessary to analyze the RPFB-based time series prediction problem, i.e., predicting
E [Xt+1|X1:t] given X1:t. This corresponds to the choice of Yt = Xt+1 and the loss function
l(y1, y2) = |y1 − y2|2 in Algorithm 1. We further restrict the analyze to the ERM procedure, as
opposed to a regularized ERM. Note that the time series prediction problem is only a subset of the
possible problems that can benefit from RPFB as the feature extractor.

In Section 4.1 we develop filter approximation theory, which indicates how well a RPFB can
approximate a certain class of dynamical systems. We focus on the statistical aspect of the theory in
Section 4.2, and provide a guarantee for time series prediction for a large class of dynamical systems
in Section 4.2.1. All these result in Theorem 8 in Section 4.3, which provides a finite-sample error
upper bound guarantee for the RPFB-based time series prediction.

4.1 Filter Approximation Guarantees

4.1.1 Random Covering of Rd

Let us denote an Euclidean ball in Rd centered at x with radius R > 0 by Bd(x,R). If x = 0 or the
position of x is not relevant to the argument, we simply use Bd(R). Let µ ∈M(Rd) be the uniform
distribution over Bd(R), and λ ∈ M(Rd) be the Lebesgue measure, which we use to measure the
volume of a ball. We have the following lemma.
Lemma 1. Consider a ball Bd(R) with R ≥ 1

2 . Let X1, . . . , Xn be a set of independent random
points uniformly distributed in Bd(R). For any fixed δ > 0, with probability at least 1− δ, it holds
that

min
i

sup
x∈Bd(R)

‖x−Xi‖2 ≤ 2R
d

√
2d log

(
20Rn
δ

)
n

.

Proof. The strategy is to first cover Bd(R) deterministically, and then argue that randomly choosing
{Xi}ni=1 could replace that covering with high probability.

Let X◦ε/2 = {x∗1, . . . , x∗N} be an optimal ε
2 -cover of Bd(R), w.r.t. the Euclidean norm, with

the covering number of N = N (ε/2, Bd(R), ‖·‖2). We define the sets Ai = Bd(x
∗
i , ε/2) for

i = 1, . . . ,N (ε/2, Bd(R), ‖·‖2), i.e., balls located at the points in the covering set with radius ε/2.

Given n independent random points {Xj}nj=1 uniformly distributed in Bd(R), define integer-valued
random variables Mi to be the number of Xjs that fall within Ai, i.e.,

Mi = | {Xj ∈ Ai : j = 1, . . . , n } |.

Now consider any x ∈ Bd(R). By the definition of the covering set, there exists x∗i ∈ X◦ε/2
such that ‖x− x∗‖ ≤ ε/2. Moreover, if Mi ≥ 1, there exists a random point Xj that falls
within the set Ai. In that case, we have ‖Xj − x∗i ‖ ≤ ε/2. Therefore, by triangle inequality,
‖Xj − x‖ ≤ ‖Xj − x∗i ‖ + ‖x∗i − x‖ ≤ ε, which means that for that x, there exists a point in the
random set that is less than ε-away from it. This may not hold, if one or more of Mi = 0. So the
failure probability is

δ , P

{
min
i

sup
x∈Bd(Rd)

‖x−Xi‖2 ≥ ε

}
≤ P {M1 = 0 ∨ · · · ∨MN = 0}

≤
N∑
i=1

P {mi = 0} =

N∑
i=1

(1− µ(Ai))
n

≤
N∑
i=1

exp (−nµ(Ai)) , (13)

7

where the equality on the second line is because the probability that a sample from a uniformly
distributed X does not hit Ai is 1− µ(Ai), and the last inequality is because 1− x ≤ e−x. Next, we
provide the value of µ(Ai) and an upper bound on N .

Because µ is a uniform distribution over Bd(R), the probability µ(Ai) is the ratio of the volume of
Ai, a ball with radius ε/2, measured according to the Lebesgue measure, to the volume of Bd(R),
i.e.,

µ(Ai) =
λ(Ai)

λ(Bd(R))
=
(ε

2R

)d
.

Lemma 9 in Appendix A.1 provides an upper bound on N :

N = N
(ε

2
, Bd(R), ‖·‖2

)
≤
(

10R

ε

)d
.

Therefore, we upper bound (13) by

δ ≤
(

10R

ε

)d
exp

(
− nεd

(2R)d

)
= (10R)d exp

(
−
[
nεd

(2R)d
− d log

1

ε

])
. (14)

Consider the condition that
nεd

(2R)d
− d log

1

ε
≥ 1

2

nεd

(2R)d
, (15)

which holds whenever ε ≥ d

√
2(2R)dd log(1/ε)

n . To simplify this, suppose for a moment that ε ≥ 1
2n .

In this case, if we have

ε ≥ d

√
2(2R)dd log 2n

n
, (16)

condition (15) holds, too. It is easy to see that for R > 1/2 (or any other R > 0 bounded away from
zero, at the cost of changing constants), we also have ε ≥ 1

2n , as required earlier.

Under condition (16), we upper bound (14) by

δ ≤ (10R)d exp

(
− nεd

2(2R)d

)
.

After solving for ε as a function of δ, and considering (16), we get that with probability at least 1− δ,
it holds that

ε ≤ 2R
d

√
2d log

(
10R
δ

)
n

+ 2R
d

√
2d log 2n

n
≤ 4R

d

√
d log

(
20Rn
δ

)
n

,

as desired.

Note that for d = 2, we observe the O(1√
n

) behaviour, as mention in Section 3.

4.1.2 Perturbation of Autoregressive Filters

This section presents a result that indicates how changing an AR filter’s poles would affect its output.
Let us first introduce some notations and definitions. Denote hp(t) as the impulse response of a first
order AR filter with pole at p = rejw ∈ C. We use Hp(z) to indicate this filter’s frequency domain
representation, i.e.,

Hp(z) =
1

1− pz−1
=

z

z − p
.

When p is within the unit circle, the filter is stable.

Given an input u(t), the output response of hp is

y(t) = (hp ∗ u)(t) =
∑
τ

u(τ)hp(t− τ).

8

We are interested in knowing the difference between the output response of two filters hp and hp′ ,
given the same input signal u, as a function of the difference between p and p′.

There are several ways to measure the error of a vector (or signal) e = yp−yp′ . Let us first define some
vector (or signal) norms, cf. Boyd and Doyle [1987]. For a vector x = (x(1), x(2), . . . , x(T)) =
(x1, x2, . . . , xT) (in which T can be set to∞, if needed), we define

‖x‖∞ = sup
t≥1
|x(t)|, ‖x‖22 =

T∑
t=1

|x(t)|2, ‖x‖2rms = lim sup
T→∞

1

T

T∑
t=1

|x(t)|2.

We denote `p (1 ≤ p ≤ ∞) as the space of p-norm bounded vectors (or sequences).

The system (semi-)norms are

‖H‖2 = sup
‖u‖2 6=0

‖Hu‖2
‖u‖2

, ‖H‖rms = sup
‖u‖rms 6=0

‖Hu‖rms

‖u‖rms
,

‖H‖∞ = sup
w∈[0,2π]

∣∣H(ejw)
∣∣2 , ‖H‖22 =

1

2π

∫ π

−π

∣∣H(ejw)
∣∣2 dw.

The norm ‖H‖2 and the semi-norm ‖H‖rms are (semi-)induced norms. It can also be shown that
‖H‖rms = ‖H‖∞.

Lemma 2. Suppose that hp1
and hp2

are both stable AR systems with pi = rie
jθi with 0 ≤ ri < 1,

for i = 1, 2. Given an input signal u, let e = (hp1
− hp2

) ∗ u. The following statements hold:

(a) If u ∈ `∞, we have

‖e‖∞ ≤
|p1 − p2|

(1−max{r1, r2})2
‖u‖∞ .

(b) If u ∈ `2, we have

‖e‖∞ ≤ ‖e‖2 ≤
|p1 − p2|

(1− r1)(1− r2)
‖u‖2 .

(c) If u is rms-bounded,

‖e‖rms ≤
|p1 − p2|

(1− r1)(1− r2)
‖u‖rms .

Proof. First recall Young’s inequality for convolutions: For vectors u ∈ `p and v ∈ `q with
1 ≤ p, q, r ≤ ∞ satisfying 1

p + 1
q = 1 + 1

r , it holds that

‖u ∗ v‖r ≤ ‖u‖p ‖v‖q .

For notational conciseness, we denote ∆h = hp1
− hp2

, and its corresponding frequency domain
representation ∆H = Hp1

−Hp2
.

For case (a), we apply Young’s inequality with the choice of r =∞, p = 1, and q =∞:

‖e‖∞ ≤ ‖∆h‖1 ‖u‖∞ . (17)

To upper bound ‖∆h‖1, note that the impulse response of a first-order filter hp is the sequence
hp(t) = (rejw)t for t = 0, 1, For two complex numbers z1, z2 and an integer t ≥ 1, we have

zt1 − zt2 = (z1 − z2)
(
zt−1

1 z0
2 + zt−2

1 z2 + . . .+ z1
1z
t−2
2 + z0

1z
t−1
2

)
.

Setting z1 = pt1 = (r1e
jw1)t and z2 = pt2 = (r2e

jw2)t, and defining r̄ = max{r1, r2}, we obtain
the upper bound

|pt1 − pt2| ≤ |p1 − p2|
t−1∑
i=0

|r1e
jw1 |t−1−i |r2e

jw2 |i ≤ |p1 − p2| tr̄t−1.

9

Therefore,

‖∆h‖1 =
∑
t≥0

|hp1(t)− hp2(t)| ≤ |p1 − p2|
∑
t≥1

tr̄t−1 =
|p1 − p2|
(1− r̄)2

.

To prove cases (b) and (c), we have [Boyd and Doyle, 1987]

‖e‖2 ≤ ‖∆H‖∞ ‖u‖2 ,
‖e‖rms ≤ ‖∆H‖∞ ‖u‖rms . (18)

So we need to upper bound ‖∆H‖∞. We have∣∣∆H(ejw)
∣∣2 =

∣∣∣∣ ejw(p1 − p2)

(ejw − p1)(ejw − p2)

∣∣∣∣2 =
|p1 − p2|2

|ejw − p1|2 |ejw − p2|2
.

Therefore,

‖∆H‖2∞ = max
w

∣∣∆H(ejw)
∣∣2 =

|p1 − p2|2

minw

{
|ejw − p1|2 |ejw − p2|2

}
≤ |p1 − p2|2

minw

{
|ejw − p1|2

}
minw

{
|ejw − p2|2

}
=

|p1 − p2|2

(1− r1)2(1− r2)2
. (19)

The last equality is because for p = rejθ with 0 ≤ r < 1 (a point within a unit circle), we have

min
w
|ejw − p| = min

w
|1ejw − rejθ| = |1− r|,

with the minimizer being w = θ. By (18) and (19), we can relate ‖e‖2 (‖e‖rms) to ‖u‖2 (‖u‖rms) and
the location of the poles p and p′, as desired. This finishes the proof of upper bounding ‖e‖2 and
‖e‖rms. Noticing that ‖e‖∞ ≤ ‖e‖2 concludes the proof.

Remark 4. We could prove ‖e‖∞ ≤
|p1−p2|

(1−r1)(1−r2) ‖u‖2 differently. By Young’s inequality (17) with
r =∞ and p = q = 2, we get

‖e‖∞ ≤ ‖∆h‖2 ‖u‖2 .
By the Parseval’s theorem, which shows that ‖∆h(t)‖2 = ‖∆H(z)‖2, we have

‖e‖∞ ≤ ‖∆H‖2 ‖u‖2 . (20)

We need to upper bound ‖∆H‖2. For a contour Γ in C with length L(Γ) and a continuous complex-
valued function f , it holds that ∣∣∣∣∮

Γ

f(z)dz

∣∣∣∣ ≤ L(Γ) max
z∈Γ
|f(z)|.

Therefore, for the contour Γ being the unit circle (i.e., |z| = 1), we have

‖∆H‖22 =
1

2π

∫ π

−π

∣∣∆H(ejw)
∣∣2 dw =

1

2π

∮
Γ

|p1 − p2|2

|z − p1|2|z − p2|2
dz

≤ 2π

2π
|p1 − p2|2 max

z∈Γ

1

|z − p1|2|z − p2|2
≤ |p1 − p2|2

(1− r1)2(1− r2)2
.

This inequality together with (20) lead to the desired result.

The following is an immediate corollary of this lemma.
Corollary 3. Consider the same definitions and conditions as in Lemma 2. In addition, assume that
r1, r2,≤ 1 − ε0 for some ε0 > 0 bounded away from zero. Under the condition that u ∈ `q for
q ∈ {∞, 2, rms}, we have

‖e‖q ≤
|p1 − p2|

ε2
0

‖u‖q .

10

This result is somehow conservative as it assumes that both r1 and r2 in Lemma 2 take value of
1− ε0. This leads to the observed O(ε−2

0) behaviour. Notice than if one of them, say r1, takes 1− ε0,
but the other is well within the unit circle, the behaviour would be O(ε−1

0). Nonetheless to simplify
the rest of analysis, we use this corollary as is.

4.1.3 Filter Approximation Error

This section provides the main theoretical result on the filter approximation error. We show that a
class of filter spaces can be approximated by a set of randomly selected filters.

Let us first introduce a class of filters (or dynamical systems) for which we will provide an approxima-
tion guarantee. Let hθ be a filter, parametrized by θ ∈ Θ, that maps a sequence x1:t ⊂ X to another
sequence y1:t ⊂ Y , for any t = 1, 2, We consider that Θ is a metric space, so that the distance
between two points in Θ is well-defined. We denote the output of a filter parameterized by θ by y(θ)

1:t .

An example of hθ would be a stable linear AR(1) filter hθ(z) = 1
1−θz−1 where θ is within the

unit circle. For such a linear system, y(t) = (hθ ∗ x)(t) =
∑
τ hθ(τ)x(t − τ), cf., (9). RPFB

consists of such filters. Another example is a mapping defined by an RNN, such as LSTM, which is
parameterized by θ.

Denote g ∈ G as a mapping from a sequence y1:t to a real/complex number. Therefore, g(hθ(x1:t))
is a mapping from a sequence to a number. The function g acts as a link function. Some examples are
g(y1:t) = yt (selecting the last elements of a sequence), g(y1:t) = max1≤i≤t yi (max pooling over
the temporal dimension), and g(y1:t) = 1

t

∑t
i=1 yi (mean pooling over the temporal dimension).

Consider an integer number n ∈ N. For a set of functions g = (g1, . . . , gn) with each gi being a
member of G, a set of parameters θ = (θ1, . . . , θn) with each θi ∈ Θ, and a set of weights w ∈ Rn,
we define a linear combination of filters on the input x1:t (for any t = 1, 2, . . .)

f(x1:t;w, g, θ) =

n∑
i=1

wigi (hθi(x1:t)) .

Fix M ∈ N, 1 ≤ p ≤ ∞, and Λ > 0. We define the following classes of filters:

F(M,G,Θ,p) =
{
x1:t 7→ f(x1:t;w, g, θ) : w ∈ RM , ‖w‖p <∞, gi ∈ G, θi ∈ Θ, i = 1, . . . ,M

}
,

F(M,G,Θ,p,Λ) =
{
x1:t 7→ f(x1:t;w, g, θ) : w ∈ RM , ‖w‖p ≤ Λ, gi ∈ G, θi ∈ Θ, i = 1, . . . ,M

}
.

(21)
We use F when parameters M , G, Θ, p, and Λ are clear from context. Occasionally we may only use
those subscripts that are relevant to the context, e.g., FΛ is F(M,G,Θ,p,Λ) for certain parameters M ,
G, Θ, and p that should be clear from the context.

The true filter, which we want to approximate, is f∗(x1:t) = f(x1:t;w
∗, g∗, θ∗) ∈ F for a certain

unknown w∗, g∗, and θ∗.

Now consider an ordered set of parameters Θ̃ = {θ̃1, . . . , θ̃n} with θ̃i ∈ Θ. We shall later choose
these θ̃ to be random parameters that define a random projection filter bank. For the parameter space
Θ̃, we can define an index function I(θ) : θ 7→ {1, . . . , n} that returns the index of a member of Θ̃

that is closest to θ. Given Θ̃ and for n ≥M , we define the filter space constructed by Θ̃:

F̃ = F(n,G,Θ̃,p),

F̃Λ = F(n,G,Θ̃,p,Λ). (22)

We make two assumptions. We will later show the condition that they hold (cf. Proposition 5 for
Assumption A2 and the proof of Theorem 6 for Assumption A1).

Assumption A1 For a given 1 ≤ q, r ≤ ∞, and for any sequence (xt) ∈ `r, there exists a finite
ε <∞ such that for any θ ∈ Θ and t = 1, 2, . . . , we have∥∥∥∥y(θ)

1:t − y
(θ̃I(θ))
1:t

∥∥∥∥
q

≤ ε ‖x1:t‖r ,

11

where y(θ)
1:t and y

(θ̃I(θ))
1:t are the output of filters parameterized by θ and θ̃I(θ) with the same input of

xt.

The intuition behind this assumption is that it requires that the response y1:t of a filter parametrized
by θ is similar to the response of its closest filter within the filter space defined by Θ̃. The error can
depend on the size of the input signal x1:t. In the proof of Theorem 6 we show that this assumption
holds for RPFB with a certain choice of ε, q, and r.

Assumption A2 Fix 1 ≤ p, q ≤ ∞. For any g ∈ G and for any T ∈ N and for any y1:T and y′1:T ,
there exists L <∞ such that

p

√√√√ T∑
t=1

|g(y1:t)− g(y′1:t)|
p ≤ Lq→p ‖y1:T − y′1:T ‖q , (1 ≤ p <∞)

max
1≤t≤T

|g(y1:t)− g(y′1:t)| ≤ Lq→∞ ‖y1:T − y′1:T ‖q . (p =∞)

The intuition behind this assumption is that it requires that the link function g does not amplify
its input signal too much. The amplification is characterized by Lq→p. Proposition 5 provides
some example link function for which this assumption holds. We may refer to such a G as an
Lq→p-Lipschitz w.r.t. (`p, `q) link space.

Next we show that under the aforementioned assumptions, any function in F (21), can be approxi-
mated by a member F̃ (22). This approximation result indicates that, under certain assumptions, a
finite cover Θ̃ is enough to approximate a function with parameters in Θ, which might be continuous.

Lemma 4. Let 1 ≤ p, q, r ≤ ∞, and consider the function spaces F = F(M,G,Θ,p) and F̃ =
F(n,G,Θ̃,p) as defined above. Suppose that Assumptions A1 and A2 hold. Then for any f∗ ∈ F ,
T ∈ N, and input signal x1:T ∈ `r we have

min
f̃∈F̃

p

√√√√ T∑
t=1

∣∣∣f∗(x1:t)− f̃(x1:t)
∣∣∣p ≤ εLq→p ‖w∗‖p ‖x1:T ‖r ,

min
f̃∈F̃

p

√
max

1≤t≤T

∣∣∣f∗(x1:t)− f̃(x1:t)
∣∣∣p ≤ εLq→∞ ‖w∗‖p ‖x1:T ‖r .

Furthermore, let Λ > 0. If F = F(M,G,Θ,p,Λ) and F̃ = F(n,G,Θ̃,p,Λ), the same inequalities hold.

Proof. Consider f∗(x1:t) = f(x1:t;w
∗, g∗, θ∗) ∈ F . We define θ̃

∗
= (θ̃∗1 , . . . , θ̃

∗
n) by

θ̃
∗
i =

{
θ̃I(θ∗i) 1 ≤ i ≤M
0 M < i ≤ n

So each element of θ̃
∗

is selected to be a member of Θ̃ that is the closest to θ∗i . We let w̃ = (w∗;0n−M)
and g̃ = (g∗;0n−M), which means that the first n elements of w̃ (or g̃) are the same as w∗ (or g∗),
and their last n − M elements are zero scalars (or functions). With these choices, we define
f̃ ′(x1:t) = f(x1:t; w̃, g̃, θ̃

∗
), which is a member of F̃ .

12

We have the following chain of inequalities:

min
f̃∈F̃

T∑
t=1

∣∣∣f∗(x1:t)− f̃(x1:t)
∣∣∣p (a)

≤
T∑
t=1

∣∣∣f∗(x1:t)− f̃ ′(x1:t)
∣∣∣p

=

T∑
t=1

∣∣∣∣∣∣∣∣∣∣
M∑
i=1

w∗i

g∗i
(
hθ∗i (x1:t)︸ ︷︷ ︸

,y(i)
1:t

)
− g∗i

(
hθ̃∗

I(θ∗
i

)
(x1:t)︸ ︷︷ ︸

,ỹ(i)
1:t

)
∣∣∣∣∣∣∣∣∣∣

p

(b)

≤
T∑
t=1

M∑
i=1

|w∗i |p
∣∣∣g (y(i)

1:t

)
− g

(
ỹ

(i)
1:t

)∣∣∣p
(c)
=

M∑
i=1

|w∗i |p
T∑
t=1

∣∣∣g (y(i)
1:t

)
− g

(
ỹ

(i)
1:t

)∣∣∣p
(d)

≤ Lpq→p

M∑
i=1

|w∗i |p
∥∥∥y(i)

1:T − ỹ
(i)
1:T

∥∥∥p
q

≤ Lpq→p ‖w∗‖
p
p max
i=1,...,M

∥∥∥y(i)
1:T − ỹ

(i)
1:T

∥∥∥p
q

(e)

≤ Lpq→p ‖w∗‖
p
p ‖x1:T ‖pr ε

p.

The inequality (a) is because of the optimizer property of f̃ and the fact that the function f̃ ′ ∈ F̃ , as
constructed above, cannot make the objective smaller than the minimizer. Jensen’s inequality shows
inequality (b). We use Tonelli’s theorem to exchange the order of summations in the equality (c).
Assumption A2 shows (d); and (e) is by Assumption A1. The definition y(i)

1:t is a short-hand for y(θ∗i)
1:t ,

and likewise for ỹ(i)
1:t.

The proof of the other case, the supremum over the sequence, is similar too:

min
f̃∈F̃

max
1≤t≤T

∣∣∣f∗(x1:t)− f̃(x1:t)
∣∣∣p ≤ max

1≤t≤T

∣∣∣f∗(x1:t)− f̃ ′(x1:t)
∣∣∣p

= max
1≤t≤T

∣∣∣∣∣
M∑
i=1

w∗i

[
g
(
y

(i)
1:t

)
− g

(
ỹ

(i)
1:t

)]∣∣∣∣∣
p

≤ max
1≤t≤T

M∑
i=1

|w∗i |p
∣∣∣g (y(i)

1:t

)
− g

(
ỹ

(i)
1:t

)∣∣∣p
=

M∑
i=1

|w∗i |p max
1≤t≤T

∣∣∣g (y(i)
1:t

)
− g

(
ỹ

(i)
1:t

)∣∣∣p
≤ Lpq→∞

M∑
i=1

|w∗i |p
∥∥∥y(i)

1:T − ỹ
(i)
1:T

∥∥∥p
q

≤ Lpq→∞ ‖w∗‖
p
p max
i=1,...,M

∥∥∥y(i)
1:T − ỹ

(i)
1:T

∥∥∥p
q
≤ Lpq→∞ ‖w∗‖

p
p ‖x1:T ‖pr ε

p.

Finally note that by construction ‖w̃‖p = ‖w∗‖p for any p ≥ 1. Therefore, if f∗ ∈ FΛ, no extra
error is introduced by restricting the minimization to F̃Λ.5

We now provide some examples of G = { g : y1:t 7→ R : t = 1, 2, . . . } for which Assumption A2
holds. We only provide examples when G has a single function g, which is specified by the next
proposition.

5Evidently, there might be a better minimizer within a larger function space F̃Λ′ with Λ′ > Λ.

13

Proposition 5. Consider Assumption A2 with the choice of 1 ≤ p, q ≤ ∞, q ≥ p and T ∈ N.

• If g(y1:t) = yt, we have Lq→p = T
1
p−

1
q .

• If g(y1:t) = max1≤i≤t yi, we have L∞→p = T
1
p .

• If g(y1:t) = 1
t

∑t
i=1 yi, for 1 ≤ p <∞, we have Lq→p = p

√
Hp+ p

q−1(T), where Hs(T) is

the generalized Harmonic number, i.e., Hs(T) =
∑T
t=1

1
ts . We also have L∞→∞ = 1.

Proof. Case g(y1:t) = yt. Given p, q, let r = q/p and s = q/(q − p). The pair (r, s) satisfies
1/r + 1/s = 1. By the application of the Hölder’s inequality, we can write

T∑
t=1

|g(y1:t)− g(y′1:t)|
p

=

T∑
t=1

|yt − y′t|
p ≤

[
T∑
t=1

(|yt − y′t|p)
r

]1/r [T∑
t=1

1s

]1/s

=

[
T∑
t=1

|yt − y′t|q
]p/q

T
q−p
q .

Raising two sides to the power of 1/p leads to the desired result. When q =∞, we have

T∑
t=1

|yt − y′t|
p ≤ T max

1≤t≤T
|yt − y′t|p = T ‖y1:T − y′1:T ‖

p
∞ .

Case g(y1:t) = max1≤i≤t yi. When p <∞, we have

T∑
t=1

|g(y1:t)− g(y′1:t)|
p

=

T∑
t=1

∣∣∣∣max
1≤i≤t

yi − max
1≤i≤t

y′i

∣∣∣∣p ≤ T∑
t=1

max
1≤i≤t

|yi − y′i|
p

≤ T ‖y1:T − y′1:T ‖
p
∞ ,

which shows the desired result. For p =∞, we have

max
1≤t≤T

|g(y1:t)− g(y′1:t)| ≤ max
1≤t≤T

max
1≤i≤t

|yi − y′i| ≤ ‖y1:T − y′1:T ‖∞ .

Case g(y1:t) = 1
t

∑t
i=1 yi. For the clarity of the proof, first consider q <∞. We choose the same

pair (r, s) as in the first case. We have

T∑
t=1

|g(y1:t)− g(y′1:t)|
p

=

T∑
t=1

∣∣∣∣∣1t
t∑
i=1

(yi − y′i)

∣∣∣∣∣
p

≤
T∑
t=1

1

tp

t∑
i=1

|yi − y′i|p

≤
T∑
t=1

1

tp

(t∑
i=1

|yi − y′i|pr
)1/r (t∑

i=1

1s

)1/s

=

T∑
t=1

1

tp−
1
s

(
t∑
i=1

|yi − y′i|q
)p/q

≤ ‖y1:T − y′1:T ‖
p
q

T∑
t=1

1

t
pq+p−q

q

.

So we may choose Lpq→p =
∑T
t=1

1

t
pq+p−q

q

= Hp+ p
q−1(T).

When q =∞ and p <∞, we have

T∑
t=1

1

tp

t∑
i=1

|yi − y′i|p ≤
T∑
t=1

1

tp
t ‖y1:t − y′1:t‖

p
∞ ≤ ‖y1:T − y′1:T ‖

p
∞

T∑
t=1

1

tp−1
,

14

so we can choose L∞→p = p
√
Hp−1(T).

When p = q =∞, we have

max
1≤t≤T

∣∣∣∣∣1t
t∑
i=1

(yi − y′i)

∣∣∣∣∣ ≤ max
1≤t≤T

1

t
t ‖y1:t − y′1:t‖∞ ≤ ‖y1:T − y′1:T ‖∞ ,

so we can choose L∞→∞ = 1.

As some examples of the behaviour of the (generalized) Harmonic function, we mention that
limT→∞H1(T) − lnT = γ, where γ ≈ 0.57721 is the Euler-Mascheroni constant. For finite T ,
a simple upper bound is H1(T) ≤ 2 ln(T + 1), which is within a factor of 2 of the optimal value.
Another example is H2(T) ≤ H2(∞) = π2

6 .

4.1.4 Linear Filter Approximation

We consider the following space of linear dynamical systems that has M ∈ N stable poles all with
magnitude less than or equal to 1− ε0 for some ε0 > 0 and a bounded `p-norm on the weights (with
the bound of Λ > 0 in the second definition):

Hε0,M,p ,

{
M∑
i=1

wi
1− ziz−1

: |zi| ≤ 1− ε0, ‖w‖p <∞

}
,

Hε0,M,p,Λ ,

{
M∑
i=1

wi
1− ziz−1

: |zi| ≤ 1− ε0, ‖w‖p ≤ Λ

}
. (23)

If the values of ε0, M , p, or Λ are clear from context, we might refer to Hε0,M,p by H (and
likewise forHε0,M,p,Λ byHΛ). A function h ∈ H is identified by its set of {zi}Mi=1 and the vector
w = (w1, . . . , wM). We may switch back and forth between these two representations.

Given a function (or filter) h ∈ H, we use h(x1:t) as a shorthand to refer to the output at time t of
convolving a signal x1:t through h. In the notation of Section 4.1.3, this refers to g(h(x1:t)) with
g(y1:t) = yt.

To define the random projection filter bank, we randomly draw n ≥M independent complex numbers
Z ′1, . . . , Z

′
n uniformly from a complex circle with radius 1− ε0, i.e., |Zi| ≤ 1− ε0 (cf. Algorithm 1).

The RPFB is

φ(z−1) =

(
1

1− Z ′1z−1
, . . . ,

1

1− Z ′nz−1

)
.

Given these random poles, we define the following approximation (filter) spaces:

H̃n,p =

{
n∑
i=1

αi
1− Z ′iz−1

: ‖α‖p <∞

}
, H̃n,p,Λ =

{
n∑
i=1

αi
1− Z ′iz−1

: ‖α‖p ≤ Λ

}
. (24)

These define randomly constructed dynamical system spaces, which as we show, approximate
Hε0,M,p andHε0,M,p,Λ (23). We are now ready to state the main result of this section.
Theorem 6. Consider the class of LTI systems Hε0,M,p for 0 < ε0 < 1, M ≥ 1, and p ∈ {1, 2}.
For n ≥M , define the space of RPFB as described above. Fix δ > 0. For any input signal x1:T ∈ `2
(T ∈ N), the following statements hold with probability at least 1− δ:

• For any dynamical system h∗ ∈ Hε0,M,1, with its corresponding w∗, we have

min
h̃∈H̃n,1

T∑
t=1

∣∣∣h∗(x1:t)− h̃(x1:t)
∣∣∣ ≤ 4

ε2
0

√
T log(20n

δ)

n
‖w∗‖1 ‖x1:T ‖2 .

• For any dynamical system h∗ ∈ Hε0,M,2, with its corresponding w∗, we have

min
h̃∈H̃n,2

√√√√ T∑
t=1

∣∣∣h∗(x1:t)− h̃(x1:t)
∣∣∣2 ≤ 4

ε2
0

√
log(20n

δ)

n
‖w∗‖2 ‖x1:T ‖2 .

15

• For any input signal x1:T ∈ `∞, any p ≥ 1, and for any dynamical system h∗ ∈ Hε0,M,p,
with its corresponding w∗, we have

min
h̃∈H̃n,p

p

√
max

1≤t≤T

∣∣∣h∗(x1:t)− h̃(x1:t)
∣∣∣p ≤ 4

ε2
0

√
log(20n

δ)

n
‖w∗‖p ‖x1:T ‖∞ .

Furthermore, if for some Λ > 0, h∗ ∈ Hε0,M,p,Λ, the same inequalities hold when the minimization
is restricted within H̃n,p,Λ.

Proof. Fix δ > 0. By Lemma 1 with the choice of d = 2 andR = 1−ε0, we get that with probability
at least 1− δ, it holds that

min
i

sup
|z|≤1−ε0

‖Z ′i − z‖2 ≤ ε
′ , 4

√
log(20n

δ)

n
.

So the random numbers Z̃ = {Z ′1, . . . Z ′n} induce an ε′-covering of the circle
{ z ∈ C : |z| ≤ 1− ε0 }, that is, for any z within this circle, there exists a Z̃I(z) ∈ Z̃ with a
distance less than ε′ to z. We can evoke Corollary 3 to see that Assumption A1 holds for the choice
of q = r = 2 and ε = ε′

ε20
, with a probability at least 1− δ. The same conclusion holds for the choice

of q = r =∞.

Proposition 5 shows that when g(y1:t) = yt, for the choice of p = q = 2, we can select L2→2 = 1 in
Assumption A2; for the choice of p = 1 and q = 2, we can select L2→1 =

√
T ; and for the choice of

p = q =∞, we can select L∞→∞ = 1.

We now use Lemma 4, whose assumptions are satisfied as just shown. For any input signal x1:T ∈ `2
and dynamical system h∗ ∈ Hε0,M,1 (with its corresponding w∗), we have

min
h̃∈H̃n,1

T∑
t=1

∣∣∣h∗(x1:t)− h̃(x1:t)
∣∣∣ ≤ ε′

√
T

ε2
0

‖w∗‖1 ‖x1:T ‖2 ,

with probability at least 1− δ. Likewise, for h∗ ∈ Hε0,M,2, with the same probability we have

min
h̃∈H̃n,2

√√√√ T∑
t=1

∣∣∣h∗(x1:t)− h̃(x1:t)
∣∣∣2 ≤ ε′

ε2
0

‖w∗‖2 ‖x1:T ‖2 .

For any input signal x1:T ∈ `∞ and h∗ ∈ Hε0,M,p, with the same probability we have

min
h̃∈H̃n,p

p

√
max

1≤t≤T

∣∣∣h∗(x1:t)− h̃(x1:t)
∣∣∣p ≤ ε′

ε2
0

‖w∗‖p ‖x1:T ‖∞ .

Furthermore, Lemma 4 also implies that when ‖w∗‖p ≤ Λ, the minimizer in H̃Λ also satisfies the
same inequalities.

Note that the choices of (23) and (24) correspond to Case 1 of Section 3. The result for Case 2 is
similar, as the non-triviality of the approximation error comes from using randomly selected AR
filters, and not from the lagged filters.

4.2 Statistical Guarantee

This section develops the statistical guarantee for a time series predictor under general assumptions
on the underlying stochastic process. We specifically focus on an ERM-based estimator. We then use
this result to provide a guarantee for a time series predictor that uses RPFB to process the time series.
Note that Algorithm 1 is not restricted to time series prediction problem, or the use of ERM-based
estimator, but the analysis of this section is.

A challenge in analyzing time series data is that the input to the estimator does not satisfy the usual
i.i.d. assumption, required by commonly-used tools (e.g., Hoeffding’s inequality, etc.) in statistical

16

learning theory and empirical processes [Györfi et al., 2002; Steinwart and Christmann, 2008]. A
common approach to extend those results is by considering mixing processes [Doukhan, 1994], which
are stochastic processes that gradually forget their past, and use tools such as the independent block
technique [Yu, 1994] to extend the results of i.i.d. processes to mixing processes. Such extensions
and analysis have been performed by many prior work.

For example, Meir [2000], used covering number-based analysis for β-mixing processes and de-
rived guarantees for time series prediction that is adaptive to the model complexity. Mohri and
Rostamizadeh [2009] derived Rademacher complexity-based results for β-mixing processes. Mohri
and Rostamizadeh [2010] derived stability-based results for β and φ-mixing processes. Farahmand
and Szepesvári [2012] provided a finite sample error upper bound for regularized least-squares
regression under exponential β-mixing, with a convergence rate comparable to the rates available for
i.i.d. processes, showing that learning under exponential β-mixing is not significantly slower than
learning under the i.i.d. process.

One may summarize all these mixing-based approaches for analyzing learning with dependent
stochastic process as follows: We first make certain assumptions on the stochastic process, and then
convert it to a similar i.i.d. process with a controlled amount of error. We then use tools developed for
i.i.d. processes, including all complexity measures such as covering number, Rademacher complexity,
etc., to analyze the derived i.i.d. process.

The shortcoming of this approach is that it decouples the stochastic process and the complexity
of the function (hypothesis) space. In this work, we directly use notions of complexity that are
tailored to the stochastic process. We follow recent developments in defining various notions of
sequential complexities [Rakhlin et al., 2010, 2014] to derive our results. Our results do not require
any mixing assumption on the stochastic process. Instead, these assumptions would be incorporated
in the definition of the sequential complexity [Rakhlin et al., 2010] and discrepancy [Kuznetsov and
Mohri, 2015] of the function space-stochastic process couple.

4.2.1 Time Series Prediction Under Function Approximation Error

Consider the time series (X1, X2, . . .) with Xt ∈ X . In this section, X is a separable metric space.
We denote X ∗ = ∪t≥1X t. The main object of interest in time series prediction is the conditional
expectation of Xt+1 given X1:t, which we denote by h∗, i.e.,

h∗(X1:t) = E [Xt+1|X1:t] . (25)

We now define the function space to which our estimator belongs. Let φ : X ∗ → Rn for some
n ∈ N. This is a set of n filters that accepts any input sequence from X and returns an n-dimensional
real-valued vector. A particular example is the RPFB with AR filters defined in Section 3, but in this
section we do not specialize to RPFB in this section. For notational simplicity, we may occasionally
use wt = φ(x1:t).

Given a w ∈ Rn, the function ψ : Rn → H0 defines a feature map from Rn to a pre-Hilbert
space H0. There is no restriction on the finiteness of the dimension of H0, so it can be countably
infinite. Therefore, we are allowed to think ofH0 (orH after completion) as an RKHS with a kernel
K(w1, w2) = 〈ψ(w1) , ψ(w2) 〉H0

. In that case, the feature map ψ may be defined only implicitly.
We may use ψi to refer to the i-th component of ψ.

Let us define
h̃(x1:t;α) = h̃(x1:t) =

∑
i

αiψi(φ(x1:t)) = 〈α , ψ(wt) 〉 .

We may also use h̃α to refer to h̃(·;α). Functions h̃ define the following function space

H̃Λ =
{
h̃α : X ∗ → R : ‖α‖2 ≤ Λ

}
,

for a Λ > 0.

Because some of the tools that we are going to use assume the boundedness of functions involved, we
shall focus on a truncated function space instead. Let us define the truncation operator. Consider a
real-valued function f defined over a domain Z , which its particular choice shall be specified shortly.

17

For a fixed B > 0, the truncation operator TrB [f] is defined as

TrB [f] (z) ,

{
f(z) if |f(x)| ≤ B,
sgn (f(z))B otherwise.

So for B > 0 and Λ > 0, we define

H̃Λ,B =
{

TrB
[
h̃α

]
: X ∗ → [−B,B] : ‖α‖2 ≤ Λ

}
. (26)

Consider that we have a sequence (X1, X2, . . . , XT , XT+1, XT+2). By denoting Yt = Xt+1, we
define ((X1, Y1), . . . , (XT , YT), (XT+1, YT+1)). We assume that |Xt| is B-bounded almost surely.
Define the estimator ĥ by solving the following ERM and performing truncation:

ĥ′ ← argmin
h∈H̃Λ

1

T

T∑
t=1

|h(X1:t)− Yt|2 ,

ĥ← TrB
[
ĥ′
]
. (27)

The goal is to provide a guarantee on the closeness of ĥ(X1:T+1) to h∗(X1:T+1).

Here we are focusing on using a squared loss, which is suitable for time series prediction problem,
whereas the choice of loss is flexible in Algorithm 1. Also we are particularly focusing on a truncated
ERM estimator.

A central object in our result is the notion of discrepancy, introduced by [Kuznetsov and Mohri, 2015].
Discrepancy captures the non-stationarity of the process with respect to the function space.6

Definition 1 (Discrepancy—Kuznetsov and Mohri 2015). For a stochastic process X1, X2, . . . , a
function spaceH : X ∗ → R, and T ∈ N, define

∆T (H) , sup
h∈H

{
E
[
|h(X1:T+1)− YT+1|2 |X1:T+1

]
− 1

T

T∑
t=1

E
[
|h(X1:t)− Yt|2 |X1:t

]}
.

If the value of T is clear from the context, we may use ∆(H) instead.

The following theorem is the main result of this section.
Theorem 7. Consider the time series (X1, . . . , XT+2) with |Xt| ≤ B almost surely. For Λ > 0,
consider the function space H̃Λ,B and let the estimator ĥ be defined as (27). Assume that r ,
supw∈Rn ‖ψ(w)‖2 < ∞. Without loss of generality, suppose that B2Λr ≥ 1, B ≥ 1, and T ≥ 2.
Fix δ > 0. It then holds that there exists a constant c > 0 such that with probability at least 1− δ, we
have∣∣∣ĥ(X1:T+1)− h∗(X1:T+1)

∣∣∣2 ≤ inf
h̃∈H̃Λ,B

∣∣∣h̃(X1:T+1)− h∗(X1:T+1)
∣∣∣2 + cBΛr log3(T)

√
log(1/δ)

T
+

2∆(H̃Λ,B).

Proof. Note that for any (measurable) function h : X ∗ → R, we have

E
[∣∣h(X1:t)− Yt|2

∣∣X1:t

]
=E

[
|h(X1:t)− h∗(X1:t)|2 |X1:t

]
+ E

[
|h∗(X1:t)− Yt|2 |X1:t

]
+

2E [(h(X1:t)− h∗(X1:t)) (h∗(X1:t)− Yt) |X1:t]

= |h(X1:t)− h∗(X1:t)|2 + E
[
|h∗(X1:t)− Yt|2 |X1:t

]
where we used the fact that h(X1:t)− h∗(X1:t) is σ(X1:t)-measurable and that by the definition of
h∗, the inner product term is zero, because

E [(h(X1:t)− h∗(X1:t)) (h∗(X1:t)− Yt) |X1:t] = (h(X1:t)− h∗(X1:t)) (h∗(X1:t)− E [Yt|X1:t])

= 0.

6Our definition is a simplified version of the original one (by selecting qt = 1/T in the original paper) and is
adapted to our choice of function space.

18

So we have the following function (or filter) approximation and estimation error decomposition:∣∣∣ĥ(X1:T+1)− h∗(X1:T+1)
∣∣∣2 =(

E
[∣∣∣ĥ(X1:T+1)− YT+1

∣∣∣2 |X1:T+1

]
− inf
h̃∈H̃Λ,B

E
[∣∣∣h̃(X1:T+1)− YT+1

∣∣∣2 |X1:T+1

])
+(

inf
h̃∈H̃Λ,B

E
[∣∣∣h̃(X1:T+1)− YT+1

∣∣∣2 |X1:T+1

]
− E

[
|h∗(X1:T+1)− YT+1|2 |X1:T+1

])

= est(T, H̃Λ,B) + inf
h̃∈H̃Λ,B

∣∣∣h̃(X1:T+1)− h∗(X1:T+1)
∣∣∣2 . (28)

The first term is the estimation error, and the second is the approximation error of the function space
H̃Λ,B . We now provide an upper bound on the estimation error.

est(T, H̃Λ,B) = sup
h̃∈H̃Λ,B

{
E
[∣∣∣ĥ(X1:T+1)− YT+1

∣∣∣2 |X1:T+1

]
− E

[∣∣∣h̃(X1:T+1)− YT+1

∣∣∣2 |X1:T+1

]}
=

(29)

sup
h̃∈H̃Λ,B

{
E
[∣∣∣ĥ(X1:T+1)− YT+1

∣∣∣2 |X1:T+1

]
− 1

T

T∑
t=1

E
[∣∣∣ĥ(X1:t)− Yt

∣∣∣2 |X1:t

]
(30)

+
1

T

T∑
t=1

E
[∣∣∣ĥ(X1:t)− Yt

∣∣∣2 |X1:t

]
− 1

T

T∑
t=1

∣∣∣ĥ(X1:t)− Yt
∣∣∣2 (31)

+
1

T

T∑
t=1

∣∣∣ĥ(X1:t)− Yt
∣∣∣2 − 1

T

T∑
t=1

∣∣∣h̃(X1:t)− Yt
∣∣∣2 (32)

+
1

T

T∑
t=1

∣∣∣h̃(X1:t)− Yt
∣∣∣2 − 1

T

T∑
t=1

E
[∣∣∣h̃(X1:t)− Yt

∣∣∣2 |X1:t

]
(33)

+
1

T

T∑
t=1

E
[∣∣∣h̃(X1:t)− Yt

∣∣∣2 |X1:t

]
− E

[∣∣∣h̃(X1:T+1)− YT+1

∣∣∣2 |X1:T+1

]}
.

(34)

The term (32), 1
T

∑T
t=1 |ĥ(X1:t)− Yt|2 − 1

T

∑T
t=1 |h̃(X1:t)− Yt|2, is less than or equal to zero. To

see this, we write it as

1

T

T∑
t=1

∣∣∣ĥ(X1:t)− Yt
∣∣∣2 − 1

T

T∑
t=1

∣∣∣h̃(X1:t)− Yt
∣∣∣2 =(

1

T

T∑
t=1

∣∣∣ĥ(X1:t)− Yt
∣∣∣2 − 1

T

T∑
t=1

∣∣∣ĥ′(X1:t)− Yt
∣∣∣2)+(

1

T

T∑
t=1

∣∣∣ĥ′(X1:t)− Yt
∣∣∣2 − 1

T

T∑
t=1

∣∣∣h̃(X1:t)− Yt
∣∣∣2) .

Recall that ĥ = TrB
[
ĥ′
]
. Since |Yt| ≤ B a.s., |TrB

[
ĥ′(X1:t)

]
− Yt| ≤ |ĥ′(X1:t) − Yt|, so the

first term on the RHS is non-positive. For the second term, recall that ĥ′ is the minimizer of
1
T

∑T
t=1 |h(X1:t)− Yt|2 within H̃Λ. So the empirical loss with h̃′ is no larger than the value of the

loss with any other function h ∈ H̃Λ, including those in H̃Λ,B ⊆ H̃Λ.

19

Because both h̃ and ĥ are in H̃Λ,B , we can upper bound terms (30) and (34), as well as terms (31)
and (33) with their supremum in H̃Λ,B to get that

est(T, H̃Λ,B) ≤2 sup
h∈H̃Λ,B

{
E
[
|h(X1:T+1)− YT+1|2 |X1:T+1

]
− 1

T

T∑
t=1

E
[
|h(X1:t)− Yt|2 |X1:t

]}
+

2 sup
h∈H̃Λ,B

{
1

T

T∑
t=1

(
E
[
|h(X1:t)− Yt|2 |X1:t

]
− |h(X1:t)− Yt|2

)}
. (35)

The first term is the discrepancy ∆(H̃Λ,B). The second term is the supremum of a martingale
equivalent of an empirical process, which we shall upper bound next.

Define the following function space:

GΛ,B ,
{
g(x1:t, y1:t) = |TrB [〈α , ψ(φ(x1:t)) 〉]− yt|2 : ‖α‖2 ≤ Λ

}
. (36)

By Lemma 10 in Appendix A.2, upon satisfaction of its conditions, we have that

P

{
sup

h∈H̃Λ,B

∣∣∣∣∣ 1

T

T∑
t=1

(
E
[
|h(X1:t)− Yt|2 |X1:t

]
− |h(X1:t)− Yt|2

)∣∣∣∣∣ > α

}
≤

8L exp

(
− α2

c ln3(T)Rad2
T (GΛ,B)

)
, (37)

for some absolute constant c > 0 and with

L = max

e4,
∑
j≥1

[N∞(2−j ,GΛ,B , T)]−1

 .

To choose L, we evoke Proposition 12 in Appendix A.3, which indicates that N∞(ε,GΛ,B , T) ≥
2B2Λr
ε . So

∑
j≥1[N∞(2−j ,GΛ,B , T)]−1 ≤ 1 whenever B2Λr ≥ 1. So we may choose L = e4.

To verify the conditions of Lemma 10, note that by the same proposition, the condition
N∞(2−1,GΛ,B , T) ≥ 4 is satisfied. Moreover, because g0(x1:t, y1:t) = |TrB [〈 0 , ψ(φ(x1:t)) 〉] −
yt|2 = y2

t belongs to GΛ,B , we may use the Khintchine inequality to conclude that

RadT (GΛ,B) ≥ sup
(x1:T ,y1:T)

Eε1:T

[
1

T

T∑
t=1

εtg0(x1:t(ε1:T), yt(ε1:T))

]

≥ 1

T
sup
y1:T

A1

√√√√ T∑
t=1

|yt|4 =
A1B

2

√
T
,

in which A1 is the constant of the lower bound of the Khintchine inequality and can be set to
1√
2

[Haagerup, 1981]. So the condition RadT (GΛ,B) ≥ 1
T is also satisfied when T ≥ 2 and B ≥ 1.

To upper bound RadT (GΛ,B) in the exponential bound (37), we use Proposition 11 in Appendix A.3,
which shows that

RadT (GΛ,B) ≤ 32B
(

1 + 4
√

2 ln3/2(eT 2)
) Λr√

T
.

20

Now pick a fixed δ > 0, and let the probability of the failure event in the LHS of (37) be equal to δ.
Solve for δ to obtain that with probability more than 1− δ, it holds that

sup
h∈H̃Λ,B

∣∣∣∣∣ 1

T

T∑
t=1

(
E
[
|h(X1:t)− Yt|2 |X1:t

]
− |h(X1:t)− Yt|2

)∣∣∣∣∣
≤ RadT (GΛ,B) ln3/2(T)

√
c ln

(
8e4

δ

)

≤ 32B(1 + 4
√

2 ln3/2(T)) ln3/2(T)

√
c ln

(
8e4

δ

)
Λr√
T

≤ c1BΛr log3(T)

√
log
(

1
δ

)
T

, (38)

for some absolute constant c1 > 0.

The error decomposition (28) alongside upper bounds (35) and (38) lead to the desired result.

4.3 Finite Sample Error Bound for RPFB-based Time Series Predictor

After developing the filter approximation result of Section 4.1.4 and the statistical guarantee of
Section 4.2.1, we are ready to provide a finite-sample error upper bound for a RPFB-based estimator.
Here we consider univariate time series, i.e., X = R.

We consider the case that the conditional expectation of Xt+1 given X1:t, the function h∗(X1:t) (25),
belongs toHε0,M,2,Λ (23).

Recall that for RPFB, φ : X ∗ → Rn is

φ(x1:t) =

[(
1

1− Z ′1z−1
, . . . ,

1

1− Z ′nz−1

)
∗ x1:t

]
t

,

where notation [·]t means that we take the last value of the output sequence. The next theorem is the
main theoretical result of this paper.
Theorem 8. Consider the time series (X1, . . . , XT+2), and assume that |Xt| ≤ B (a.s.). Without
loss of generality suppose that B ≥ 1. Let 0 < ε0 < 1, M ∈ N, and Λ > 0 and assume
that the conditional expectation h∗(X1:t) = E [Xt+1|X1:t] belongs to the class of linear filters
Hε0,M,2,Λ (23). Set an integer n ≥ M for the number of random projection filters and let H̃Λ =

H̃n,2,Λ (24) and the truncated space be H̃Λ,B (26). Consider the estimator ĥ that is defined as (27).

Without loss of generality assume that Λ ≥ ε0
B2
√
n

and T ≥ 2. Fix δ > 0. It then holds that there
exists constants c1, c2 > 0 such that with probability at least 1− δ, we have∣∣∣ĥ(X1:T+1)− h∗(X1:T+1)

∣∣∣2 ≤c1B2Λ

ε0
log3(T)

√
n log(1/δ)

T
+
c2B

2Λ2

ε4
0

log
(

20n
δ

)
n

+ 2∆(H̃Λ,B).

Proof. We start by obtaining an upper bound on r = supw∈Rn ‖ψ(w)‖2 < ∞ in Theorem 7. The
mapping ψ (Section 4.2.1) is

ψ(φ(x1:t)) = (φ1(x1:t), . . . , φn(x1:t)) ,

so we first provide an upper bound on φi(x1:t) for a B-bounded sequence x1:t. Consider the output
of a filter φ(x1:t) = [hz ∗ x1:t]t, corresponding to a filter hz specified by a pole at z = ρejθ with
0 ≤ ρ < 1. By Young’s inequality for convolutions, we have

|φ(x1:t)| ≤ ‖hz ∗ x1:t‖∞ ≤ ‖hz‖1 ‖x1:t‖∞ ≤ B
∑
t≥0

|ρejθ|t =
B

1− ρ
. (39)

By construction ρ < 1− ε0, so we can set

r =
B
√
n

ε0
. (40)

21

As |Xt| ≤ B, the function h∗(X1:t) = E [Xt+1|X1:t] is alsoB-bounded. Therefore, by the truncation
argument, for any h, we have

|TrB [h(X1:T+1)]− h∗(X1:T+1)|2 ≤ |h(X1:T+1)− h∗(X1:T+1)|2 .

Let h′ be the minimizer of the approximation loss within H̃Λ, i.e.,

h′ ← inf
h̃∈H̃Λ

∣∣∣h̃(X1:T+1)− h∗(X1:T+1)
∣∣∣2 .

The function h′ is not necessarily B-bounded, so we consider its truncation at the magnitude of
B. Notice that the truncated function TrB [h′] is in H̃Λ,B . The truncated function, however, is not
necessarily the minimizer of the approximation loss within H̃Λ, but it provides an upper bound to the
loss. This argument and Theorem 6 indicate that for any δ1 > 0, and for any h∗ ∈ Hε0,M,2,Λ (with
its corresponding w∗), we have

inf
h̃∈H̃Λ,B

∣∣∣h̃(X1:T+1)− h∗(X1:T+1)
∣∣∣2 ≤ |TrB [h′] (X1:T+1)− h∗(X1:T+1)|2

≤ |h′(X1:T+1)− h∗(X1:T+1)|2

= inf
h̃∈H̃Λ

∣∣∣h̃(X1:T+1)− h∗(X1:T+1)
∣∣∣2

≤ min
h̃∈H̃Λ

max
1≤t≤T+1

∣∣∣h∗(x1:t)− h̃(x1:t)
∣∣∣2

≤
16 log

(
20n
δ1

)
ε4

0n
‖w∗‖22 ‖x1:T+1‖2∞

≤
16 log

(
20n
δ1

)
ε4

0n
Λ2B2, (41)

with probability at least 1− δ1.

We apply Theorem 7, with the choice of r (40), and with the upper bound (41) on the filter approxi-
mation error. We obtain that for any δ1, δ2 > 0, there exists a constant c > 0 such that∣∣∣ĥ(X1:T+1)− h∗(X1:T+1)

∣∣∣2 ≤ inf
h̃∈H̃Λ,B

∣∣∣h̃(X1:T+1)− h∗(X1:T+1)
∣∣∣2 + cBΛr ln3(T)

√
ln(1/δ2)

T
+

2∆(H̃Λ,B)

≤16B2Λ2

ε4
0

log
(

20n
δ1

)
n

+ c
B2Λ

ε0
ln3(T)

√
n ln(1/δ2)

T
+ 2∆(H̃Λ,B).

with probability at least 1− (δ1 + δ2). Setting δ1 = δ2 = δ/2 finishes the proof.

The upper bounds has three terms: estimation error, filter approximation error, and the discrepancy.

The term B2Λ
ε0

log3(T)
√

n log(1/δ)
T corresponds to the estimation error. It decreases as the length T of

the time series increases. As we increase the number of filters n, the upper bounds shows an increase
of the estimation error. This is a manifestation of the effect of the input dimension on the error of the
estimator.

The second term B2Λ2

ε40

log(20n
δ)

n provides an upper bound to the filter approximation error. It shows that
the error decreases as we add more filters. This indicates that RPFB provides a good approximation
to the space of the dynamical systemsHε0,M,2,Λ (23).

Both terms have a proportional dependence on the magnitude B of the random variables in the time
series. Also as the minimum distance ε0 of the poles to the unit circle decreases, the upper bound
increases too. This can be intuitively understood by recalling that as the magnitude of a pole of a filter

22

gets closer to 1, the filter decays slower, and it behaves similar to an integrator. In that case, given
proper input signal, the size of the feature can become large, as can be seen in (39). Another related
reason is that poles becomes more sensitive to perturbation, and thus approximation by another pole,
as we get close to the unit circle, as shown by Lemma 2 and Corollary 3.

Finally, the discrepancy term ∆(H̃Λ,B) captures the non-stationarity of the process, and has been dis-
cussed in detail by Kuznetsov and Mohri [2015]. Understanding the conditions when the discrepancy
gets close to zero is an interesting topic for future research.

By setting the number of RP filters to n = T 1/3Λ2/3

ε20
, and under the condition that Λ ≤ T , we can

simplify the upper bound to

∣∣∣ĥ(X1:T+1)− h∗(X1:T+1)
∣∣∣2 ≤ cB2Λ4/3 log3(T)

√
log(1

δ)

ε2
0T

1/3
+ 2∆(H̃Λ,B),

which holds with probability at least 1− δ, for some constant c > 0. As T →∞, the error converges
to the level of discrepancy term.
Remark 5. Theorem 8 is stated for the choice of linear dynamical system space Hε0,M,2,Λ (23),
which corresponds to Case 1 in Section 3. A similar result holds for Case 2 as well. The reason is
that the proof of this theorem uses Theorem 7, which does not depend on the particular choice of
space H̃Λ,B , so one can incorporate additional time-lagged features of (11). As long as the number
of time-lagged features matches (or exceeds) the true filter’s, we do not have any additional filter
approximation error.
Remark 6. The values of M , ε0, and Λ of the true dynamical system space Hε0,M,2,Λ are often
unknown, so the choice of number of filters n in RPFB, the size of the space M , etc. cannot be
selected based on them. Instead one should use a model selection procedure to pick the appropriate
values of the parameters, either by using a validation set or by a complexity regularization procedure.
The complexity regularization for dependent data is explored by Meir [2000], albeit under known
mixing condition.

5 Experiments

In this section we empirically study RPFB on a range of time-series-related problem. First we focus
on the time series prediction problem of an ARMA process (Section 5.1). Afterwards, we study the
fault detection problem of ball bearings (Section 5.2). This is an example of an industrial problem
where the computational resources might be limited. We compare RPFB with the fixed-window
history-based approach, and also report some preliminary results on the application of LSTM for
that problem. Our results show the competitiveness of RPFB. Finally, we compare RPFB and the
fixed-window history-based approach for the task of heart rate classification problem (Section 5.2).

5.1 Time Series Prediction of an ARMA Process

In order to show the effectiveness of the RPFB approach, we start with predicting the next time-step
value of an ARMA time series. Our goal is to find a function f̂ that predicts Xt+1 given the values of
the time series in previous steps, i.e., X1:t.

The time series generating process is an ARMA process, characterized by the location of its zero −z:

Xt =
(1 + zz−1)

(1− 0.6z−1)
Ut, Ut ∼ N(0, 1). (42)

We apply two approaches for feature extraction: fixed-window history-based approach and RPFB.
In the former approach, we use a sliding window with length H , that is, we use the feature vector
Zi = Xi−H+1:i for i = H, . . . , T .

For the RPFB, we first randomly draw n stable degree 1 (real pole) or degree 2 (a complex conjugate
pair of poles) filters in order to create a filter bank with stable auto-regressive filters. More specifically,
a fraction of the filters are selected to be of degree 1, for which the location of the j-th pole Z ′j = r
is selected by drawing r from a uniform distribution over [−1,+1]. For degree 2 filters, which are

23

0 5 10 15 20 25 30 35 40

Feature No.

1.0

1.1

1.2

1.3

1.4

1.5

P
re

d
ic

ti
o
n
 E

rr
o
r

RPFB

z=0.99

z=0.95

z=0.9

z=0.8

0 5 10 15 20 25 30 35 40

Feature No.

1.0

1.1

1.2

1.3

1.4

1.5
Fixed_window

z=0.99
z=0.95
z=0.9
z=0.8

Figure 1: (ARMA time series) The prediction error using RPFB and fixed-window features for
different location of the (moving average) zero as a function of the number of features.

described by the conjugate pairs Z ′j = rejθ and Z̄ ′j = re−jθ, we choose r from a uniform distribution
over [0, 1], and θ from a uniform distribution over [0, 2π] (cf. Remark 1).7 The time series X1:T ,
generated from (42) in a manner to be described shortly, is then passed through all such filters to
construct the feature set of

Zi =
(
X̃1,i, · · · X̃n,i

)
i = 1, . . . , T.

Here X̃k,i denotes the filtered signal at time i obtained by the convolution of the time series and the
impulse response of the k-th filter, i.e. X̃k,1:T = hk(t) ∗X1:T .

We then use a standard regression algorithm over both feature sets to perform the next step prediction
task and compare their performance. In this example we use ridge regression as the estimator.

For each fixed value of z, we generate 20 independent time series with the length of T = 10000 from
the process (42). For each time series (or signal), we generate multiple RPFBs containing different
numbers of filters from the same random seed. Thus, a RPFB with fewer filters is a subset of a RPFB
with more filters for each signal. We use different random seeds for generating RPFBs for different
signals. We then pass each ARMA time series through all its corresponding RPFBs with different
filter sizes. Creating both RPFB and fixed-window feature sets, we then divide each feature set into
training and testing datasets by assigning the first 6000 data points of a time series to the training
dataset and the rest 4000 of data points to the testing dataset. We investigate the predication error, in
the `2-norm, for different zero locations by changing the value of z in (42).

Figure 1 depicts the mean of the prediction error, for both RPFB and fixed-window history-based
approaches, as the number of features (filters for RPFB; size of history for the window-based
approach) varies and the location of zero z is changing. We observe that as the number of features
increases, the prediction error decreases to 1, the optimal value, for both feature extraction methods.
This indicates that both methods can provide a reasonably good summary of the time series for this
time series prediction task.

We also observe that compared to the fixed-window features, the ridge regression with RPFB performs
better when the ARMA’s zero (i.e., the root of the moving average term) is close to the unit circle
(z = 0.99, z = 0.95) and it reaches close to the optimal error with fewer number of features. On
the other hand, when the ARMA’s zero moves farther from the unit circle (z = 0.9, z = 0.8), the
performance of ridge regression on both feature sets becomes comparable, i.e., with almost the same
number of features (e.g., n = H = 11), they both have very small errors. This can be understood

7So the distribution of poles is not uniform over the unit circle.

24

2
0

0

5
0

0

1
0

0
0

2
0

0
0

5
0

0
0

1
0

0
0

0

2
0

0
0

0

5
0

0
0

0
Signal length

1.00

1.05

1.10

1.15

1.20

1.25

1.30

P
re

d
ic

ti
o
n
 E

rr
o
r

RPFB
N=3
N=6
N=12
N=20
N=35

2
0

0

5
0

0

1
0

0
0

2
0

0
0

5
0

0
0

1
0

0
0

0

2
0

0
0

0

5
0

0
0

0

Signal length

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Fixed_window

H=3
H=6
H=12
H=20
H=35

Figure 2: (ARMA time series) The prediction error using RPFB and fixed-window features for
different number of features as a function of the number of training points (signal length). The dashed
line is the optimal error obtained using optimal estimator (6). The error bars shows one standard
error.

better by noticing that the zero of the process would become the pole of the optimal estimator, so
whenever the magnitude of the zero becomes close to one, the response of the optimal estimator,
which depends on the location of the pole, decays slower. Therefore, by ignoring the values of the
distant past, the fixed-window history-based approach would lose more information about the process.
See the discussion in the paragraph just after (3) and the Section 2 in general.

5.1.1 Effect of Number of Samples

In this section we study the effect of number of samples in the training set on the prediction error.
Using the same ARMA process as in Section 5.1 with z = 0.99, we generate multiple time series
with different lengths. For each length, we generate 64 independent time series. To generate RPFB
feature set we pass signals with the same length through different RPFBs generated using different
random seeds. Figure 2 shows the empirical mean of the prediction error vs. the size of the training
set for different feature sizes of both RPFB and fixed-window history-based method. As before, we
use ridge regression as the estimator. The error bars on the curve show one standard error around the
mean. The error obtained using the optimal filter (6) is also depicted as a dashed horizontal line.

As expected, the prediction error decreases with the increase in the size of the training set as well
as the number of features. Another observation is that for small number of filters in RPFB (n = 3)
the error bar is large, i.e., RPFB has a high variance. This is because it is less likely to capture the
dynamic of the system with only a few filters. But as we increase the number of features, RPFB’s
performance becomes comparable or even slightly better than history-based approach.

5.2 Fault Detection: Condition Monitoring for Bearings

Reliable operation of rotating equipments (e.g., turbines) depends on the condition of their bearings,
which makes the detection of whether a bearing is faulty and requires maintenance of crucial
importance. We consider a bearing vibration dataset provided by Machinery Failure Prevention
Technology (MFPT) Society in our experiments.8 Fault detection of bearings is an example of
industrial applications where the computational resources are limited, and fast methods are required,
e.g., only a micro-controller or a cheap CPU, and not a GPU, might be available.

8Available from http://www.mfpt.org/faultdata/faultdata.htm.

25

http://www.mfpt.org/faultdata/faultdata.htm

5 25 50 100 200 400
Features No

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cl
as

sif
ica

tio
n

Er
ro

r

LR (RPFB)
LR (Window)
RF (RPFB)
RF (Window)
SVM (RPFB)
SVM (Window)

Figure 3: (Bearing Dataset) Classification error on the test dataset using RPFB and fixed-window
history-based feature sets. The RPFB results are averaged over 20 independent randomly selected
RPFB. The error bars show one standard error.

The dataset consists of three univariate time series corresponding to a baseline (good condition/class
0), an outer race fault (class 1), and inner race fault (class 2). The goal is to find a classifier that
predicts the class label at the current time t given the vibration time series X1:t. In a real-world
scenario, we train the classifier on a set of previously recorded time series, and later let it operate on
a new time series observed from a device. The goal would be to predict the class label at each time
step as new data arrives. Here, however, we split each of three time series to a training and testing
subsets. More concretely, we first pass each time series through RPFB (or define a fixed-window
of the past H values of them). We then split the processed time series, which has the dimension of
the number of RPFB or the size of the window, to the training and testing sets. We select the first
3333 time steps to define the training set, and the next 3333 data points as the testing dataset. As we
have three classes, this makes the size of training and testing sets both equal to 10K. We process each
dimension of the features to have a zero mean and a unit variance for both feature types. We perform
20 independent runs of RPFB, each of which with a new set of randomly selected filters.

Figure 3 shows the classification error of three different classifier (Logistic Regression (LR) with the
`2 regularization, Random Forest (RF), and Support Vector Machine (SVM) with Gaussian kernel)
on both feature types, with varying feature sizes. We observe that as the number of features increases,
the error of all classifiers decreases too. It is also noticeable that the error heavily depends on the type
of classifier, with SVM being the best in the whole range of number of features. The use of RPFB
instead of fixed-window history-based one generally improves the performance of LR and SVM, but
not for RF. Refer to Appendix B for more detail on the experiment.

The filters in RPFB are not adapted to data, but are randomly selected independent of the data.
Therefore, it is possible that a method that adjusts filters data-dependently extract more suitable
features from the time series. To test how much better such a method might be, and see whether RPFB
is still a reasonable feature extractor or not when the computational cost is not the main consideration,
we provide some preliminary results of applying LSTM to the very same problem of bearings fault
detection.

Figure 4 shows the classification error as a function of the number of filters (i.e., LSTM units). The
difference between three columns is the size of the input sequence window given to the LSTM module
before it has to make a prediction. This is similar to the fixed-window history-based approach with
the difference that we allow the feature extractor to process the window sequentially and construct

26

5 25 50 100 200 400
Filters No

0.0

0.1

0.2

0.3

0.4

0.5

Cl
as

sif
ica

tio
n

Er
ro

r

LSTM (horizon:100)
LSTM + FC(100) (horizon:100)

5 25 50 100 200 400
Filters No

0.0

0.1

0.2

0.3

0.4

0.5
LSTM (horizon:200)
LSTM + FC(100) (horizon:200)

5 25 50 100 200 400
Filters No

0.0

0.1

0.2

0.3

0.4

0.5
LSTM (horizon:400)
LSTM + FC(100) (horizon:400)

Figure 4: (Bearing Dataset) Classification error on the test dataset using LSTM with varying number
of filters and different sizes of the input sequence. The results are averaged over 20 independent runs.
The error bars show one standard error.

an internal state to summarize the sequence. The length of the input sequence window is selected
to be either 100, 200, or 400. There are two curves in each figure. The solid one corresponds to an
architecture with several LSTM units (corresponding to Filters No in the graphs) whose outputs are
connected to the 3 output of the network using a fully-connected (FC) layer with softmax activation.
The loss is log loss, i.e., cross-entropy. The dashed one corresponds to a slightly deeper architecture:
the output of the LSTM units are connected to a FC layer with 100 units (with ReLu activations),
which is then connected to 3 outputs. For each setting of the parameters and architectures, we run
the experiment 20 times to measure the variability of the results, and we report the average. The
error bars show one standard error across the average. Appendix B.4 describes some detail of the
optimization procedure.

There are several notable observations. The first is that the performance of LSTM at each run is
highly variable, which is due to the stochastic nature of the optimizer and the possibility of getting to
different regions of the parameters space because of the non-convexity of the loss function w.r.t. the
parameters of the network. This variability is especially noticeable for larger input sequence sizes
(200 and 400). Moreover, the performance of the deeper architecture seem to be generally better than
the shallower one. Finally, the LSTM-based estimators do not outperform SVM or RF. In fact, SVM
with RPFB achieves the error less than 0.1, whereas this does not happen by any of the LSTM-based
estimators. One should notice that we have not extensively optimized the hyper-parameters of the
LSTM-based networks; so it is possible that with better choices of parameters, we could obtain better
performance.

One of the premises of RPFB is that it is computationally fast: the computation time per sample
is linear in the number of features. To understand the relative cost of RPFB compared to other
parts of the estimation, we record the computation time of all the methods used within the bearing
experiments. Figure 5 shows the result. The reported time is the average time per run, and consists of
all steps of the pipeline, except the loading of the data: extracting features (for RPFB or fixed-window
history-based approach), preprocessing, initializing the model (which is relatively noticeable for
LSTM), model selection (for LR and SVM only), training the model, and evaluating the test error. RF
is clearly the fastest, partly because we do not perform any model selection. SVM is slow, as we do
an extensive model selection (225 different models for each choice of features). LSTM is especially
slow, particularly noting that we do not perform any hyper-parameter search, and it is running on a
GPU.

Since the computation time of RPFB is independent of the estimator, it should be less than that
of RF (RPFB). So at least we can claim that for a method such as LR or SVM, the computational
cost of passing data through RPFB is not the dominant factor. To get a more accurate estimate, we
pass a larger fraction of the same dataset with 300K number of samples through RPFB with varying
number of filters (compare this with 20K samples of the previous experiments). Here we do not fit

27

5 25 50 100 200 400
Features No

1

10

100

1000

Ti
m

e
(s

ec
) SVM (RPFB)

SVM (Window)
RF (RPFB)
RF (Window)

LR (RPFB)
LR (Window)
LSTM (horizon = 100)
LSTM (horizon = 400)

Figure 5: (Bearing Dataset) Computation time of various estimation methods as a function of the
number of features.

1 2 4 10 21 46 100 215 464 1000
RP Filters No

0.0

0.1

1.0

10.0

Ti
m

e
(s

ec
)

1 2 4 10 21 46 100 215 464 1000
RP Filters No

2.0

2.2

2.4

2.6

2.8

3.0

Sa
m

pl
e-

Fi
lte

r/s
ec

1e7

Figure 6: (Bearing Dataset) Computation time of RPFB for a time series with 300K data points. The
left figure shows the computation time as a function of the number of filters. The right figure shows
the number of samples-filter processed per second.

the estimators anymore. The results are depicted in the left hand side of Figure 6. As expected, the
computational cost increases almost linearly as the number of filters increases. For example, we
observe that RPFB can process 300K data points and generate 1000 filters in about 10 seconds. On
the right hand side, we report the number of samples-filter that can be processed per second. The
number is approximately 25M samples-filter/second, which is relatively fast, e.g., one can generate a
thousand features at the rate of 25K samples per second. Refer to Appendices B.1 and B.2 for the
detail of software and hardware used for this part of the experiment.

Considering these performance comparisons between RPFB and other solutions, including LSTM,
and noticing that RPFB as a feature extraction method is fast (and can easily be parallelized or
implemented on cheap specially-designed hardware, which is not the case for LSTM), one might
suggest that RPFB is a viable approach for feature extraction from time series.

28

0 20 40 60 80 100

Feature No.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
la

ss
if
ic

a
ti

o
n
 E

rr
o
r

RPFB-LR

RPFB-SVM

RPFB-RF

window-LR

window-SVM

window-RF

Figure 7: (Heart Rate Dataset) Classification error on the test dataset using RPFB feature sets and
fixed-window feature sets.

5.3 Condition Monitoring for Heart Rate

To show the flexibility of the RPFB approach to analyze time series data, we conduct experiments
on a problem from a completely different domain: heart rate classification. This dataset is provided
by MIT-BIH database distribution.9 It includes 4 time series corresponding to 4 subjects. Each time
series records evenly-spaced measurements of instantaneous heart rate from each subject. While
subjects were involving in similar activities, the measurements occur at 0.5 second intervals. We
apply the same methodology as we did for the bearing dataset. Figure 7 shows the error rates of
different classifiers (LR, SVM, RF) with either the RPFB or fixed-window feature sets.

The error rates of SVM and RF classifiers that use RPFB features are smaller than those that use
fixed-window feature sets—with the same number of features. In this experiment, RF offers the best
performance for both feature sets, with the error rate of 0.059 for n = 70 for the RPFB and 0.172 for
n = 100 for the fixed-window feature sets. Similar to our observation for bearing dataset, one can
see that the error rate of RPFB decays faster and with a relatively smaller number of features, e.g.,
n = 12, we can reach the error rate of 0.17 for the SVM classifier.

6 Conclusion

This paper introduced Random Projection Filter Bank (RPFB) as a simple and effective method
for feature extraction from time series data. RPFB comes with a finite-sample error upper bound
guarantee for a class of linear dynamical systems. We believe that RPFB should be a part of the
toolbox for time series processing.

A future research direction is to better understand other dynamical system spaces, beyond the linear
one considered here, and to design other variants of RPFB beyond those that are defined by stable
linear autoregressive filters. Another direction is to investigate the behaviour of the discrepancy
factor.

A Auxiliary Results

We provide some auxiliary results that are used for the proofs in Section 4.

9Available from http://ecg.mit.edu/time-series/.

29

http://ecg.mit.edu/time-series/

A.1 Covering Number of a Ball in Rp

The following lemma, quoted from van de Geer [2000], upper bounds the covering number of a ball
with radius B in Rd.

Lemma 9 (Covering number of a ball in an Euclidean space – Lemma 2.5 of van de Geer 2000). A
ball in Rd with radius B w.r.t. Euclidean metric can be covered by

(
4B+ε
ε

)d
balls with radius ε.

A.2 Concentration Inequality for the Supremum of Martingalized Empirical Process

We quote a concentration inequality for a martingale variant of an empirical process from Rakhlin
et al. [2014]. The definitions closely follows theirs.

Consider an arbitrary complete probability space (Ω,F , P). Let Z be a separable metric space
and G = {g : Z → R} be a set of bounded real-valued functions on Z . Consider a filtration
F1 ⊆ F2 ⊆ F3 ⊆ · · · with ∪tFt ⊆ F . Let a sequence of random variables Z1, Z2, . . . be adapted
to that filtration, i.e., Zt is Ft-measurable.

Let RadT (G) be the sequential complexity of a function space G (Definition 3 of Rakhlin et al.
2014) and N∞(ε,G, T) be its sequential covering number w.r.t. `∞-norm (Definition 4 of the same
paper).

Lemma 10 (Lemma 15 of Rakhlin et al. 2014—Slightly Simplified). Let G be a 1-bounded
function space. Assume that RadT (G) ≥ 1

T and N∞(1
2 ,G, T) ≥ 4. Let L =

max{e4,
∑
j≥1[N∞(2−j ,G, T)]−1}. There exists an absolute constant c such that for any ε > 0

and T ≥ 2, we have

P

{∣∣∣∣∣sup
g∈G

1

T

T∑
t=1

(g(Zt)− E [g(Zt)|Z1:t−1])

∣∣∣∣∣ > ε

}
≤ 8L exp

(
− ε2

c ln3(T)Rad2
T (G)

)
.

The absolute constant c can be selected to be 217.

Remark 7. The quantity supg∈G
1
T

∑T
t=1 (g(Zt)− E [g(Zt)|Z1:t−1]), which might be seen as a

martingale variant of an empirical process, has been studied by van de Geer [2000] (Section 8.2).
Theorem 8.13 there provides a concentration inequality in terms of a generalized entropy with
bracketing in which the difference between functions are measured w.r.t. the Bernstein difference. It
is interesting to see the relation between different complexity measures.

A.3 Sequential Rademacher Complexity for the Regression Loss of a Ball in Hilbert Space

We provide an upper bound on the sequential Rademacher complexity for the squared regression loss
with the function space being a bounded ball within a Hilbert space. This result is indeed very similar
to Lemma 6 of Kuznetsov and Mohri [2015] (the extended version) with some minor differences. The
first difference is that here we explicitly consider the truncated function space, whereas Kuznetsov
and Mohri make the boundedness an assumption of their result. Additionally, their result considers
a weighted version of the sequential Rademacher complexity, while we consider a uniform weight
in this work. Since we do not need such a weighted version, we report a simplified result. Another
minor difference is that they consider the p-th power of the regression error instead of the squared
error of here.

Proposition 11. Let B,Λ > 0. Consider a sequence (X1, X2, . . .) with |Xt| ≤ B (a.s.). Denote
Yt = Xt+1. Consider the function space

GΛ,B ,
{
g(x1:t, y1:t) = |TrB [〈α , ψ(φ(x1:t)) 〉]− yt|2 : ‖α‖2 ≤ Λ

}
.

Assume that r , supw∈Rn ‖ψ(w)‖2 <∞. The sequential Rademacher complexity of this function
space is upper bounded by

RadT (GΛ,B) ≤ 32B
(

1 + 4
√

2 ln3/2(eT 2)
) Λr√

T
.

30

Proof. We closely follow the proof of Lemma 6 of Kuznetsov and Mohri [2015] (the extended
version). Define these function spaces:

FΛ , { (x1:t, y1:t) 7→ 〈α , ψ(φ(x1:t)) 〉 − yt : ‖α‖2 ≤ Λ } ,
FΛ,B , { (x1:t, y1:t) 7→ TrB [〈α , ψ(φ(x1:t)) 〉]− yt : ‖α‖2 ≤ Λ } .

We now use the structural properties of the sequential Rademacher complexity to relate the complexity
of GΛ,B to quantities that we can control easier. First note that the function s 7→ s2 with s ∈ [−1, 1]
is 2-Lipschitz, so we use Lemma 13 and Proposition 14 of Rakhlin et al. [2014] to get

RadT (GΛ,B) = RadT

(∣∣∣∣2B(FΛ,B

2B

)∣∣∣∣2
)
≤ (2B)2RadT

(∣∣∣∣(FΛ,B

2B

)∣∣∣∣2
)

≤ (2B)28(2)
(

1 + 4
√

2 ln3/2(eT 2)
)
RadT

(
FΛ,B

2B

)
≤ 32B

(
1 + 4

√
2 ln3/2(eT 2)

)
RadT (FΛ,B) . (43)

Because FΛ,B ⊆ FΛ, by Proposition 14-1 of Rakhlin et al. [2014], we get that RadT (FΛ,B) ≤
RadT (FΛ) too.

We have10

RadT (FΛ) = sup
(x1:T ,y1:T)

Eε1:T

[
sup
‖α‖≤Λ

1

T

T∑
t=1

(〈α , ψ (φ(x1:t(ε1:T))) 〉 − yt(ε1:T)) εt

]

= sup
(x1:T ,y1:T)

Eε1:T

[
sup
‖α‖≤Λ

1

T

T∑
t=1

εt 〈α , ψ (φ(x1:t(ε1:T))) 〉

]
+

sup
(x1:T ,y1:T)

Eε1:T

[
sup
‖α‖≤Λ

1

T

T∑
t=1

yt(ε1:T)εt

]
.

The second term on the RHS is zero because εts are zero mean and εt is independent of yt(ε1:T) =
yt(ε1, . . . , εt−1).

Because sup‖u‖2≤1 | 〈u , v 〉 | = ‖v‖2, in a Hilbert space, we have

sup
(x1:T ,y1:T)

Eε1:T

[
sup
‖α‖≤Λ

1

T

T∑
t=1

εt 〈α , ψ (φ(x1:t(ε1:T))) 〉

]
=

sup
(x1:T ,y1:T)

Eε1:T

Λ

T

∥∥∥∥∥
T∑
t=1

εtψ (φ(x1:t(ε1:T)))

∥∥∥∥∥
H0

 ≤
Λ

T
sup

(x1:T ,y1:T)

√√√√√Eε1:T

∥∥∥∥∥
T∑
t=1

εtψ (φ(x1:t(ε1:T)))

∥∥∥∥∥
2

H0

 =

Λ

T
sup

(x1:T ,y1:T)

√√√√Eε1:T

[
T∑

s,t=1

εtεsψ (φ(x1:t(ε1:T)))ψ (φ(x1:s(ε1:T)))

]
=

Λ

T
sup

(x1:T ,y1:T)

√√√√Eε1:T

[
T∑
t=1

‖ψ (φ(x1:t(ε1:T)))‖2H0

]
≤ Λr√

T
,

where in the last inequality we used the assumption that for any w, ‖ψ(w)‖H0
≤ r. Together

with (43), we reach the desired upper bound.

10We use the notation of Rakhlin et al. [2014] in defining a function specified by a path on a tree. The notation
x1:t(ε1:T) should be understood similarly: It is a sequence (x1(∅), x2(ε1), . . . , xt(ε1:t−1)).

31

Remark 8. Comparing this result with Lemma 6 of Kuznetsov and Mohri [2015] (the extended
version), one may notice that the definitions of r are slightly different even though both r appear
linearly in the upper bound. Here we have r = supw ‖ψ(w)‖2, while they have r′ = supw K(w,w),
with K being the kernel of an RKHS corresponding to the feature map ψ. By definition, K(w,w) =

〈ψ(w) , ψ(w) 〉H0
= ‖ψ(w)‖2H0

, so their choice of r′ corresponds to r2. This appears to be a typo.

The next proposition is useful to verify a technical condition on the covering number in Lemma 10.

Proposition 12. Consider the function space GΛ,B (36). Assume that the sequence X1, X2, · · · is
such that |Xt| ≤ B (a.s.). Denote Yt = Xt+1. The sequential covering number satisfies

N∞(ε,GΛ,B , T) ≥ 2B2Λr

ε
.

Proof. Note that each g(x1:t, y) ∈ GΛ,B is in the form of

g(x1:t, y1:t) = |TrB [〈α , ψ(φ(x1:t)) 〉]− yt|2 =
∣∣∣h̃(wt)− yt

∣∣∣2 .
for h̃(wt) ∈ H̃Λ,B (26). To provide a lower bound on the sequential covering number, let us pick
g1, g2 ∈ GΛ,B and their corresponding h̃1, h̃2 ∈ H̃Λ,B . Note that the worst case distance, over the
choice of w1:T , y1:T , appearing in the definition of the sequential covering number can be lower
bounded by

sup
w1:T ,y1:T

max
1≤t≤T

|g1(wt(ε), yt(ε))− g2(wt(ε), yt(ε))|2 =

sup
w1:T ,y1:T

max
1≤t≤T

|h1(wt(ε))− h2(wt(ε))| × |h1(wt(ε)) + h2(wt(ε))− 2yt(ε)| ≥

2B sup
w1:T

max
1≤t≤T

|h1(wt(ε))− h2(wt(ε))| ,

because we are free to choose the sequence y1:T only with the constraint that |yt| ≤ B, so the second
multiplicative term would be at least as large as 2B. Therefore, if we need more than Nε functions to
ε-cover H̃Λ,B , we need more than Nε functions to 2Bε-cover GΛ,B as well.

According to the discussion after Lemma 15 of Rakhlin et al. [2014], the class of linear functions H̃Λ,B

with r = supw ‖Ψ(w)‖2 has a lower bound on the covering number of N∞(ε′, H̃Λ,BT) ≥ BΛr
ε′ (we

use a linear scaling of the space to get this from their result). So

N∞(ε, G̃Λ,BT) ≥ 2B2Λr

ε
.

B Detail of Experiments

B.1 Software

All experiments were implemented in Python. We used SciPy [Jones et al., 2001–] to implement the
filters in RPFB. We used scikit-learn [Pedregosa et al., 2011] to implement various estimators, and
Keras package Chollet [2015] on top of Theano [Theano Development Team, 2016] to implement
LSTM.

B.2 Hardware

Experiments of Section 5.2 were run on a machine with Intel Xeon CPU E5-2620 v4 @ 2.10GHz
and 128GB of RAM. We used NVIDIA Titan X (Pascal) (12GB) for the GPU computation of the
LSTM experiment. We did not optimize the code to maximally benefit from the hardware.

32

B.3 Model Selection for LR and SVM for Bearing Dataset

For each setting (number of features, RPFB vs. Window-based) and for each independent run of
RPFB, we perform a model selection to choose the best hyper-parameters by doing a 3-split time
series cross-validation over the training dataset.

For LR, the model selection is over the regularization coefficient (10 parameters over the logarithmic
grid between 10−3 and 10+3). For SVM, the model selection is over both the regularization coefficient
and the Gaussian kernel scale parameters. This is done over a 15× 15 = 225 logarithmic grid.

For RF, we do not perform any model selection on the number of trees; it is always set to 25 in the
reported results.

B.4 LSTM for Bearing Dataset

We use Adam as the optimizer [Kingma and Ba, 2015], with parameters suggested in their Algorithm 1:
the stepsize α = 0.001, the decay rates for the moment estimates β1 = 0.9 and β2 = 0.999, and
ε = 10−8, in their notations. We use a mini-batch of size 128. We train for 50 epochs over the
training set. We have not performed any hyper-parameter optimization. For each setting of the
parameters and architectures, we run the experiment 20 times to measure the variability of the results.

B.5 Distribution of RPFB for Bearing Dataset

For the bearing experiment, we use a slightly different sampling distribution for the poles of RPFB.
We choose a fraction (1

4) of the filters to have poles on the unit circle, i.e., Z ′j = ejθ and Z̄ ′j = e−jθ.
The rest, as before are either on the real line, or are Z ′j = rejθ and Z̄ ′j = re−jθ with r < 1.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful feedback.

References
Richard G. Baraniuk and Michael B. Wakin. Random projections of smooth manifolds. Foundations

of computational mathematics, 9(1):51–77, 2009. 1

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. 1, 2

Stephen P. Boyd and John Doyle. Comparison of peak and RMS gains for discrete-time systems.
Systems and Control Letters, 9:1–6, 1987. 9, 10

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.
2

François Chollet. Keras. https://github.com/fchollet/keras, 2015. 32

Paul Doukhan. Mixing: Properties and Examples, volume 85 of Lecture Notes in Statistics. Springer-
Verlag, Berlin, 1994. 17

Amir-massoud Farahmand and Csaba Szepesvári. Regularized least-squares regression: Learning
from a β-mixing sequence. Journal of Statistical Planning and Inference, 142(2):493 – 505, 2012.
2, 17

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. 2

László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A Distribution-Free Theory of
Nonparametric Regression. Springer Verlag, New York, 2002. 17

Uffe Haagerup. The best constants in the Khintchine inequality. Studia Mathematica, 70(3):231–283,
1981. 20

33

https://github.com/fchollet/keras

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2001. 1, 2

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997. 2

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python,
2001–. URL http://www.scipy.org/. 32

Sham Kakade, Percy Liang, Vatsal Sharan, and Gregory Valiant. Prediction with a short memory.
arXiv:1612.02526v2, 2017. 3

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015. 33

Vitaly Kuznetsov and Mehryar Mohri. Learning theory and algorithms for forecasting non-stationary
time series. In Advances in Neural Information Processing Systems (NIPS - 28), pages 541–549.
Curran Associates, Inc., 2015. 17, 18, 23, 30, 31, 32

Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent neural
network training. Computer Science Review, 3(3):127–149, 2009. 2

Ron Meir. Nonparametric time series prediction through adaptive model selection. Machine Learning,
39(1):5–34, 2000. 17, 23

Mehryar Mohri and Afshin Rostamizadeh. Rademacher complexity bounds for non-i.i.d. processes.
In Advances in Neural Information Processing Systems 21, pages 1097–1104. Curran Associates,
Inc., 2009. 17

Mehryar Mohri and Afshin Rostamizadeh. Stability bounds for stationary φ-mixing and β-mixing
processes. Journal of Machine Learning Research (JMLR), 11:789–814, 2010. ISSN 1532-4435.
2, 17

Junier B. Oliva, Barnabás Póczos, and Jeff Schneider. The statistical recurrent unit. In Proceedings
of the 34th International Conference on Machine Learning (ICML), volume 70 of Proceedings of
Machine Learning Research, pages 2671–2680. PMLR, August 2017. 2, 6

Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Prentice
Hall, second edition, 1999. 3

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research
(JMLR), 12:2825–2830, 2011. 32

Sepideh Pourazarm, Amir-massoud Farahmand, and Daniel N. Nikovski. Fault detection and
prognosis of time series data with random projection filter bank. In Annual Conference of the
Prognostics and Health Management Society (PHM), pages 242–252, 2017. 2

Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimization
with randomization in learning. In Advances in Neural Information Processing Systems (NIPS -
21), pages 1313–1320, 2009. 2

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Random averages,
combinatorial parameters, and learnability. In Advances in Neural Information Processing Systems
(NIPS - 23), 2010. 17

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Sequential complexities and uniform
martingale laws of large numbers. Probability Theory and Related Fields, 2014. 17, 30, 31, 32

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer, 2008. 17

34

http://www.scipy.org/

Ingo Steinwart and Andreas Christmann. Fast learning from non-i.i.d. observa-
tions. In Advances in Neural Information Processing Systems (NIPS - 22), pages
1768–1776. Curran Associates, Inc., 2009. URL http://papers.nips.cc/paper/
3736-fast-learning-from-non-iid-observations.pdf. 2

Ingo Steinwart, Don Hush, and Clint Scovel. Learning from dependent observations. Journal of
Multivariate Analysis, 100(1):175–194, 2009. 2

Theano Development Team. Theano: A Python framework for fast computation of mathematical
expressions. arXiv e-prints, abs/1605.02688, May 2016. URL http://arxiv.org/abs/1605.
02688. 32

Sara A. van de Geer. Empirical Processes in M-Estimation. Cambridge University Press, 2000. 30

Santosh S. Vempala. The Random Projection Method. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 2004. ISBN 9780821837931. 1

Larry Wasserman. All of Nonparametric Statistics (Springer Texts in Statistics). Springer, 2007. 1, 2

Martha White, Junfeng Wen, Michael Bowling, and Dale Schuurmans. Optimal estimation of
multivariate ARMA models. In Proceedings of the 29th AAAI Conference on Artificial Intelligence
(AAAI), 2015. 4

Bin Yu. Rates of convergence for empirical processes of stationary mixing sequences. The Annals of
Probability, 22(1):94–116, January 1994. 17

35

http://papers.nips.cc/paper/3736-fast-learning-from-non-iid-observations.pdf
http://papers.nips.cc/paper/3736-fast-learning-from-non-iid-observations.pdf
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

