A A Master Theorem

Recall that our goal is to provide sufficient conditions for the SJLT matrix & € R™*" to preserve
the cost of all solutions for tensor regression, i.e., bounds on the sketching dimension m and the
per-column sparsity s for which

Esup |[|[®z|3 — 1| < /10 (14)
D zecT

where ¢ is a given precision, 7 = (Jgcy {z € E | ||2|]2 = 1}, and V is an infinite union of subspaces
defined as

) (r)
V= U span {A{e\l ,A{¢\1 }] } for the CP model, and
057,647 erra Vre[R],de[D]\{1}
{9{""d} {¢(rd)
V= U span AU\ S AL for the Tucker model.

0§ 6 eRPa Wrye[Ry),de[D]\ {1}

Note that by linearity, it suffices to consider = with ||z||o = 1 in the above, which explains the form
of (14). Also note that by Markov’s inequality, (14) implies that for all ¥ = vec(©), where O follows
the low-rank CP or Tucker decomposition, with probability at least 9/10, we have

[PAY — 0|5 = (1 £ ¢)|| A9 — bJ3. (15)

The next theorem follows immediately by plugging in to the bound in Section 8.5 of [2], which our
work builds upon. We instantiate the conditions of that theorem for the CP model; the instantiation
for the Tucker model follows analogously.

Theorem 3. Let 7 C B,, and ® € R™*" be an SILT matrix with column sparsity s, and
(") &)
py = sup dim (span {A{e\l }7A{¢\1 W) .
6" erva,vre[R], de[D]\{1}
Then with probability at least 9/10, (15) holds if m and s satisfy
(v3(V, prin) + pv + 1og N'(V, prin, £0)) (log* m)(log® n)

mZ, 2 ; (16)
2 =4
({ 080 (log N'(V, pFin, t))l/2 dt} + a2 log® N(V, pgin, €0) + €2py log 510) (log® m)(log® n)
52 = ;
(17)

&) &)
where 2 is the largest leverage score of any {A{e\l },A{¢\1 }} € V and N (V, ppin, t) is the

covering number of )V with radius ¢ under the Finsler metric.

Proof. From the main result in [2], we have that (14) holds if m and s satisfy
m 2 &2(log® m)(10g” )13 (V. pran) + &~ (log" m) (log® n) (py + 1og N'(V, prins 0))
2
s > e 2(log* m)(log® n) <&2 log® N'(V, prin, €0) + 2py log =+ [ 0" (log N'(V, prin, 1)'? dt} )

+=%(log® m)(log* n),

which can be obtained from (16) and (17). Thus with probability at least 9/10, (15) holds following
the argument above and we finish the proof. O

B A Progressive Proof for Main Theorems

Given Theorem 3, the main technical difficulty lies in providing tight bounds on the various terms
involved in m and s in Theorem 3, which depend on whether we are working in the CP model or the

12



Tucker model. We start with the most basic case of rank R = 1 for two way tensors (matrices) D = 2
(Theorem 4), then generalize to general ranks R > 1 for two say tensors D = 2 (Theorem 5), then
to general tensors D > 1 with rank R = 1 (Theorem 6), then finally to the generic CP model with
D > 1and R > 1 (Theorem 1). This helps clarify the analysis and makes the proof of Theorem 1
straightforward. The analysis for the general Tucker model can be addressed in a similar way, and we
only provide the proof for the general case to avoid redundancy.

B.1 Base Case: Rank-1 and Two-Way Tensors

We start with the base case when R = 1 and D = 2, i.e., the parameter space is S ;. Then the
parameter admits the decomposition © = 6; o 5. For notational convenience, we let © = u o v,
where u € RPt and v € RP2, and let AV = -2 AWy, where A = [AV), ... AlP2)] ¢ Rn>P2p1
with A() € R™*P1 for all i € [p,]. Consequently, the observation model (4) can be written as

b=Av®u)+ 2= Au+ z,
and the corresponding OLS and SOLS using an SJLT matrix ® € R™*" are, respectively,
min | A% — b||3 and min | @AYy — ®b]|3.
vERP2 4 ERP1 vERP2 uERP1

Next, we show the following theorem, which provides sufficient conditions for the base case Sy ;.

Theorem 4. Suppose max;c(,) (2(A) < 1/p3. Let

Ax — Ay
T=7_ "9
{ Az — Ayl|2

T =" ®U1,y:U2®U2, Uy, U2 GRPI}

and ® € R™*" be an SILT matrix with column sparsity s. Then with probability at least 9/10, (15)
holds if m and s satisfy

m 2 e~ (p1 + pa)log ((p1 + p2)ka)(log* m)(log® n), (18)
5 2 e 2log?(p1 + p2)(log® m) (log” n). (19)

The proof of Theorem 4 is provided in Appendix C. From Theorem 4, we have that (15) holds when
m = Q(p1 + p2) and s = Q(1).

B.2 Extension to General Ranks

We next extend our analysis to the case of two-way tensors with general rank, i.e., the parameter space
is S, for R > 1. In this case, we have © = Zle u™ o) where u(™ € RP* and v(") € RP2 for

all 7 € [R], and AT""} = [zggl AWV e A%gm}, where A = [A(D), ... AW2)] €

R™*P2P1 and A() € R™*P1 for all i € [py]. Consequently, the observation model (4) can be written
as

. T
p= A{v"} [u(l)T . u(R)T} + z,

and the corresponding OLS and SOLS using an SJLT matrix ® € R™*" are, respectively,

T T 2
. HA{U( ! [u(lﬁ...u(R)T] —bH , and
(M eRP2 ("M eRP1 Vre[R] 2
s T 2
min H@A{”( ) [“(m a ‘“(R)T] - (I)bH ‘
v eRP2 (") cRP1 Vre[R] :

Our next theorem provides sufficient conditions for Sa g.

Theorem 5. Suppose R < ps/2 and max;cp,) /7 (A) < 1/(R*p3). Let

Ax — Ay
T: —_—
{AxAynz

R R
T = ZUY) 2ul”,y= ngr) @ul”, w7 ul? e R vy € [R]}
r=1

r=1
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and ® € R™*" be an SILT matrix with column sparsity s. Then with probability at least 9/10, (15)
holds if m and s satisfy

m 2 5*2(log4 m)(log5 n)R (p1 + p2) log (R(p1 + p2)ka),
s 2 =%(log m) (log” ) log? (R(p1 + p2)ria)

The proof of Theorem 5 is provided in Appendix D. From Theorem 5, we have that when m =
Q(R(p1+p2)) and s = Q(1), (15) holds using an SJLT matrix ®. The extra condition that R < py /2
is not restrictive, as in applications of low-rank tensors, typically R < minge[p) pa-

B.3 Extension to General Tensors

We first extend our analysis to general tensors with rank 1, i.e., the parameter space is now Sp ; for
D > 2. In this case, we have © = 0 o - - - 0 0, where 8, € RP4 for all d € [D]. Consequently, the
observation model (4) can be written as

b:A'(9D®"'®91)+Z:A{9\1}'91“!‘2,

and the corresponding OLS and SOLS using an SJLT matrix ® € R™*" are, respectively,

2
min HA{0\1}91 — bH and min H@A{e\l}91 <I>bH
0,€RPi Vic[D] 2 9,€RPi Vie[D]

Our next theorem provides sufficient conditions for Sp 1.

Theorem 6. Suppose max;¢(y, 2(A) <1/ (Zd 2pd) .Forany9¥ =0p ®---®0; € Sgp,1 and
Y=¢p® Q¢ GS@D,l,Qd,qu ER“ forall d € [D]. Let

AY — Ag
T T
{IM— Ap|2

V=0p®  ®01,p=0¢p R @ ¢1, ed,¢d€RPdan€[D]}

and ® € R™*" be an SILT matrix with column sparsity s. Then with probability at least 9/10, (15)
holds if m and s satisfy

m 2 e (log m) log n) <Zpd log <D/<;A Zpd>>
s > e 2(log® m)(log® n) log? (Zpd>

The proof of Theorem 6 is provided in Appendix E. From Theorem 6, we have that when m =
Q (Zle pd) and s = (1), (15) holds using an SJLT matrix ®.

C Proof of Theorem 4

We start with an illustration that the set 7 can be reparameterized to the following set with respect to
tensors with orthogonal factors:

7= {zeBllela=1}. where V= J{span[A™, 4]} and
Ecy w

W: {Ul,vg S BP27 <U1,1}2> = 0}
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Suppose (v1,v2) # 0. Let v = avy + Bz for some «, 8 € R and a unit vector z € RP2, where
(v1,z) = 0. Then we have

Ax — Ay Ay — AV2uy AVryy — AcvitBzy, AVt — A%yy — ABZyy

||A£L’ — Ay||2 B HAvl’U,l — Av2U2H2 h ||A”1u1 — Aa'u1+62u2||2 o ||AU1U1 — AO‘UIUQ — ABZUQHQ
L (u1 — aug) — A*(Buz)
[[Avr(ur — auz) — A*(Buz) |2’

which is equivalent to (v1,v2) = 0 by reparameterizing z as vs.

Next, by Theorem 3, we need to upper bound py, v5(V, prin), and N'(V, pgin, €0). These will be
addressed separately as follows.

Part 1: Bound py,. For notational convenience, we denote A"z = [A¥t, A2]. Tt is straightforward
that

py = sup dim {span (A"""2)} < 2p;. (20)

v1,v2E€Bpy ,(v1,v2)=0

Part 2: Bound ’y22 (V, prin)- By the definition of the 7y»-functional in (7) for the Finsler metric, we
have

YoV, prin) = _inf sup Z 2R/2 . o (AV2 V),
Vi, Avrv2ev

where Vy, is an e-net of V, i,e., for any A”**2 € V) there exist U1,V € By, with (T1,72) = 0,
llvr — D12 < Mr, and |Jvg — Tal2 < g, such that A?+72 € Vy, and ppip (AV1V2, A"092) < gy,
From Lemma 6, we have prin(A""2, Vi) < 26an for [[v1 — 1|2 < g and [lva — Tal2 < ni. On
the other hand, we have that pg;, (AY*¥2, V) < 1 always holds. Therefore, we have
Prin (A2 Vi) < min{2k A, 1}
Let k' be the smallest integer such that 2x 47, < 1. Then we have
k:/

2V, prin) < Y282 ppn (AU V) < 224 N 2R g (AT V). (21)
k=0 k=0 k=k'+1

Suppose that 779 = 1. Then we have [Vg| = 1. For k > 1, we have n < 1 and [V}.| < (3/n)P?
[29]. By the definition of admissible sequences in the y,-functional, we require |Vk| < 22" Without
loss of generality, suppose that for all k¥ < k/, we have [Vj| < 22" < (3/mx)P2. Then we have

2k/2 < Ipslog 77%’ which implies

K /
2k'/2 L
ok/2 — <4/ (22)
];) V2 -1 P2 o8

For k > k', suppose we choose 741 = 17. Then we have

p2 2pa N 2
) < (2) < (o) = (23)
Nk+1 Mk

which implies [Vii1] < 22" as long as [Vy41| < (3/7k41)P? holds. In other words, we have
Vil < 22" if we choose nk+1 = ni for all k > k’. Suppose k' is the smallest integer such

p 4
that when we choose 7,41 = ﬁ, then (mj’ﬂ) ’ < 22" " holds. This implies (23) holds and
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prin(AV1V2 V) < (1/2)2“’# for all k > k’. Then we have

t
[e%e} . , [ee] 1 2 , 1
>, 2k/2~me(A”1’“2,vk)—2’“/2~22t/2~() <<y plog—, (24
k=k'+1 =1 2 Me!

where the first inequality is from the Cauchy condensation test > 5° ) 2¢/2. (%)2 <232 (1) =1
and the second inequality is from (22).

Combining (21), (22), and (24), we have

Y3V, prin) S (25)

k!
From Lemma 6, suppose we choose a small enough ¢ such that €9 < 2k 47;/. Then (25) implies

K
V2(V, prin) S palog ﬁ (26)

Part 3: Bound N (V, ppin, €0). From our choice from Part 2, 9 € (0, 1) is a constant. Then it is
straightforward that

2p2
N(V, prin, €0) < <3) . 27)

€o

This implies

€0 (=500}
/ log N'(V, pein, t)]*/dt g/ (log (3/t)72)"/* at < \ﬁ/ —logt)"/? dt
0 0

(7log€g)l/2 ) R (710%50)1/2 (7log€o)1/2 )
2 —w —w —w
:\/pz/ 2we™" dw = /p2 [w-e ] _/ e~ dw
— 0 - —o0
2] (T logeo)'/? 1
< VD2 [w e } = €04/ p2log —. (28)
—o00 €0
where (4) is from setting w = (— log t)1/2. From Lemma 4, we have
at = mﬁ)}(fQ(A”“ 2) < r_nfw](é?(A) <1/p3. (29)
em 1€|n

Combining (20), (26)—(29), and Theorem 3, we have that the claim holds if
1
m>e? <p2 log ra + p1 + p2log ) (log* m)(log® n) and
€0 €0

1 1
s>¢e? (1og2 — 4 e2(p1 +p2)log ) (log® m)(log® n).
€0 €0
Taking ¢ :71/(])1 + p2), we finish the proof. Note that since 2k 4mr > 1/2, we only require
Prin(AYV2 Vi) < 1/2 in Part 2. Thus the choice eg = 1/(p1 + p2) is valid here.

D Proof of Theorem 5

) (") ("
Denote A{v"’ g A{vl },A{vz } € R"*2fr1 We illustrate that the set 7 can be reparameter-

ized to the following set with respect to tensors with partial orthogonal factors:

T= U {r € E||z|2 =1}, where V = Uspan (A{ " )}>
w

EeVy

W ={Vie 2, g€ R], g # 70" € By, (07, 0f”) = (0, 0{) = 0}.
2 i 7
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Suppose for all 7 € [R], v{” = a®™v{"” + B2 for some o, 3 € R and unit vectors

2(") € RP2, where (v{"”), (")) = 0. Then we have

R R
Az —Ay=>" (Avi” ) — 4" .ug‘)) =y ( A7 ) e+ g“))

r=1 r=1

(A”iﬂ .ugr) B Aa““)UY) .ugr) _ Aﬁmzm _uér))

( Av7 (u@ _ a(r)u(;)) A2 (5(%;@))

" v{) = 0 by reparameterizing =™ as v{".

Il
= 1[4

Il
—

”
which is equivalent to
Using a similar argument, we show the general scenario. For any r € [R], r > 2, w.Lo.g., suppose
UY) _ agnl)vgl) + Zagr,i)zy) and Uér) _ B%T’l)vg) + ZBY’“Z@ + Zﬂér,j)zéj)_
i=2 i=2 j=1

where o™ (") 8{r3) ¢ R are real coefficients and (v\", 2{7) = (M 209y = (29 200y = 0
forany ¢, j € [r]. For R = 1, the argument is identical to the one above. For 2 < R < py/ 2 we have

R
Ax — Ay = Z (A”Y) . ugr) - A“ér) . uér)>

r=1

1
[M]=

(Aai” I RE O MR e O T RO MR R D VN e .ugﬂ)

\3
||
N

(1,1) (1) (1,1) (1)
e e g (B ),ug)
R
-y (Avg " (ol — BN + ZAZ (ol - )
r=2
(1), (1), 5(1,1) (1)
_ ZAZ . ( (r.3) (J))) 1oAY D A (B DD a0 D) e

which is equ1valent to " 0@y = 0and (", 0{7) = 0foralli € [2], r € [R], and ¢ # r by

(l) (7) G

reparameterizing Z1 as v, and zy’ as vy

Next, analogous to Theorem 4, we analyze upper bounds on py,, ¥3(V, prin), and N'(V, prin, €0 ), and
obtain the result from Theorem 3.

Part 1: Bound py. It is straightforward that

(")
py = sup dim {Span <A{Ui })} < 2Rp;. (30)
w

Part 2: Bound 73(1/, Prin)- The ~y2-functional in this case is

7§(VapFin) = 71Hf sup 221"/ - DFin <A{ (T)} _ )

V1o {<>}e P

where V}, is an €5-net of V.

Following the same argument in Part 2 of the proof for Theorem 4, we have from Lemma 7 that if &’
is the smallest integer such that 2Rk am» < 1 and we choose mgr 1 = 3 Rm , then we choose a small
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enough £ such that g9 < 2Rk A0y,

Rk
BV, prin) < Rpzlog — . (31)
0
.\ 2Rp2
Part 3: Bound N (V, pgin, €0). It is straightforward that N'(V, pgin, €0) < (%) . Following the

same argument in Part 3 of the proof for Theorem 4, we have

[0} 1
/ [log N'(V, prin, t)]l/zdt < eoy/Rpalog o (32)
0

& = max (7 <A{U()}) < max?(A) < 1/(R*p3). (33)

i€[n] i€[n]

From Lemma 5, we have

Combining (30) — (33) and Theorem 3, we have that the claim holds if

RHA
€o

1
m > e °R (pg log + p1 + p2log 6) (log* m)(log® n) and
0

1 1
s>e? <log2 = + &g R(p1 + p2) log 5) (log® m)(log® n).
0 0

We finish the proof by taking g =
Part 2.

Rdpa) Note that this choice of ¢ satisfies the requirement in

E Proof of Theorem 6

Denote 19\1 = QD R ® 92, o1 = ¢D R ® ¢2 and A19\17<p\1 — {A{9\1}7A{¢\1}} c RnXZpl.

We illustrate that the set 7 can be reparameterized to the following set with respect to tensors with
partial orthogonal factors:

T = U {x €eFE ‘ ||(EH2 = 1}, where V = Uspan (Aﬂ\l»‘p\l) and
Eey W
W = {Vd € [DI\{1}, 0a, ¢a € By, Ji € [DI\{1} s.t. (6;,¢;) = 0},

W.Lo.g., suppose ¢p = afp + Bz for some a, 8 € R and a unit vector z € RP?, where (6, z) = 0.
Then we have

A) — Ap = ALY — Aol — A(p @ @0, @ 1,,)00 — A(gp ® - ® ¢ ® I, )y
=Allp®---®0; @1, )01 — A((afp + B2) ®dp_1 @ -+ @ ¢ @ Iy, )1
=Allp®- ®0: 81, )01 — Alabp @ - @ 2 ® I, )1 — A(Bz @ - ® 2 ® I, )1
= A%p Op-1® R0 —adpp_1 Q- Q¢1) — A* (pp-1®@--- R ¢1),

This is equivalent to (fp, ¢p) = 0 by reparameterizing z as ¢p.

Next, analogous to Theorem 4, we analyze upper bounds on py;, v2(V, prin), and N (V, pgin, €0), and
obtain the result from Theorem 3.

Part 1: Bound py. It is straightforward that
py = sup dim {Span (Aﬂ\l"p\l)} < 2p;. (34)
w

Part 2: Bound 72(V, prin). The vo-functional in this case is

oo
Y2(V, ppin) = _inf sup z /2. PFin (Aﬁ\l’go\l,vlg) ,
VeliZo AN\ 1ey g
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where Vj, is an €-net of V.

Following the same argument in Part 2 of the proof of Theorem 4, we have from Lemma 8 that if &’ is
the smallest integer such that 2k 4 ((1 + 7;/)” — 1) < 1, then we choose &g small enough such that

€0 < 264DM < 2K 4 ((1 + W)D - 1) :

where the second inequality is from the binomial expansion. Then we have

D
Dk a
2 ) < .
BV, prn) S D pa-log == (35)
d=2
. . 3 2 EdD:z Pd .
Part 3: Bound N (V, pgin, €0). It is straightforward that N'(V, pgin, €0) < (5) . Following
the same argument in Part 3 of the proof for Theorem 4, we have
€0 D 1
/ [IOgN(V, PFin, t)} 1/2dt S/ €0 Zpd log - - (36)
0 s €o
From Lemma 5, we have
~ 1
a* = max (? (Aﬂ\l’“’\l) <max((A) < ———. 37
i1€[n] i€[n] D
> d=2Pd
Combining (34) — (37) and Theorem 3, we have that the claim holds if
D Dk
m>e? <p1 + Zpd -log A> (log* m)(log® n) and
€0
d=2
1 D 1
s>e 2 [log® — +¢2 Zpd log — | (log® m)(log® n).
€o d=1 o
We finish the proof by taking ey = =" e Note that this choice of ¢ satisfies the requirement in
d=1

Part 2.

F Proof of Theorem 1

(r) _(r) (r) (r)
Denote A{ﬂ\l ey } = {A{g\l ) A{qb\1 } . We illustrate that the set 7 can be reparameterized to

the following set with respect to tensors with partial orthogonal factors:

(1),
T = U {z € E||x|]]2 =1}, where V = Uspan (A{ﬁ\l aav }) ,
w

FEey
W= {w € [R],d € [D\{1},6%, 067 € B,,;¥r,q € [R],3i € [D]\{1} s.t. (6", 6V} = 0;

vre [R-1],q € [R\[], 3.k € [D\{1} s (67, 61) = (6, 6{?) = 0}.

For R = 1, the argument is identical to the analysis in Theorem 6. For any r € [R], r > 2, w.Lo.g.,
suppose

T T s
Hg) = aY’”eg) + Z agr’l)zp and (bg) = 5?’1)9%) + Z,@Y’Z)Z@ + Zﬁém)zéﬂ,
i=2 j=1

= =2
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where o{"", 3" 5{"7) ¢ R are real coefficients and ('), 2"} = (81)) {7y = (219 2y = 0
for any i, j € [r]. Then for 2 < R < ps/2, we have

R R
A0 - Ap =43 (00 000l 01, )6 - 4.3 (o)) 0 wol) @1, ) o
r=1 r=1
R T ) .
A <<a§’"’1)08) +Za§’"’”z§”> ®~~®9§’")> +A- (GS) ®~~®0§”)

=2
R

_AZ Y71)9(1 _’_Zﬁ(rz) +Zﬁrj) ®®¢§r)

_A- ((5§11 +6211) ))@...®¢1 )

ey : : . .
= 3 A (a0, 007 Bl 00 1)

R r
A (a0 60 56 @ e 6f”)

r=2 (=2
R r W
P J 5 ¥ r o
A (6 -0 o)
r=1j=1
where ag’l) = 1. This is equivalent to (Qg), ¢g)> (0 (r) H(q)> =0, and (¢, o8 )> = 0 for all
€ [R] and q # [R]\[r], by reparameterizing zy) and z2 ) as 0% p and qbg) properly. The remaining
pairs of orthogonality in W can be checked analogously by repeating the argument above.
Part 1: Bound py. It is straightforward that
~ sundi Al e}
py = supdim < span AL < 2Rp;. (38)

w

Part 2: Bound 12 (V, prin). The 72-functional in this case is

%Voprn) = inf - sup ZT/ > prin (A{ et} Vk)
Vil A{ & w\l)}evk 0
where V}, is an £j,-net of V.

Following the same argument in Part 2 of the proof for Theorem 4, we have from Lemma 9 that if k¥’
is the smallest integer such that 2Rk 4 ((1 + )P — 1) < 1, then we choose ¢y small enough such
that

0 < 2RDkany < 2Rk a (1 +mp)P — 1),

where the second inequality follows from the binomial expansion. Then we have

D
RDk
BV, prn) S pa-log - 2y (39)
d=2

Part 3: Bound N (V, pgin, €0)- It is straightforward that

3 QRZ(?ZQP(I
NV, prin, €0) < <> .

€0
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Following the same argument in Part 3 of the proof for Theorem 4, we have

€0 D 1
/ [log N'(V, pin, t)]l/zdt Seoy| R Zpd log —. (40)
0 — €0

From Lemma 5, we have

a2 = max 2 (A90) < max P(4) <
i€[n] i€(n] (R ZdD:Q pd)

Combining (38) — (41) and Theorem 3, we have that the claim holds if

D
RD
m 2 e *R (pl +3 pa-log =0

d=2

(41)

A) (log4 m) (log5 n),

1 1
52 <log — +€2R Z pg log ) (1og® m) (log® n).

d=1

We finish the proof by taking ¢y =
Part 2.

——3——. Note that this choice of ¢ satisfies the requirement in
R Zdzl Pd

G Proof of Theorem 2

{ glrat ir }} {9<rd} {¢{rd}} ) )
Denote A TS = A , AL . We illustrate that the set 7 can be reparameterized
to the following set with respect to tensors with partial orthogonal factors:
al7ad ¥
T= U {zr € E||z|l2 =1}, where V = Uspan( Vel }) and
EcVy w
W = {¥r4 € [Ral,d € [DN1},65%), 65" € By, ¥ra, au € [Ral, 3d € [D\{1} st (657, 6) = 0;

Vra € [Ra—1],qa € [Ra\[ra], 3d, t € [DN\{1} 5.t (072, 057) = (67, ¢{*”) = 0}.

Repeating the argument in the proof of Theorem 1, we have the equivalence of 7 and the set above.

Part 1: Bound py. It is straightforward that

{ra} {ra}
v "P\1
py = sup dim {span (A{ M w\ }> } < 2Rip;. 42)

w

Part 2: Bound 'yg (V, prin)- The ~yo-functional in this case is

00 { {;d} {;d}}
5 (V, pin) = _inf sup > 272 ppg | ALY Y
L R =

AUND TN Sy

where Vj, is an e;-net of V.
Following the same argument as in Part 2 of the proof for Theorem 4, we have from Lemma 10 that if

k' is the smallest integer such that 2k 4 ((1 + )P — 1) W/Hc?:z R4 < 1, then we choose ¢y small
enough such that

D
H Ry <2Cka (1 +mp)P — 1) Ry y/nnz(G),
d=2

g S ZDKAnk/
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where the second inequality follows from the binomial theorem. Then we have

D DHA\/HD_ Rd
V5 (V, pein) S (Z Rapa + nnZ(G)> log — V2T (43)

€
d—2 0

Part 3: Bound N (V, pgin, €0 ). It is straightforward that

3 2(25:2 ded—i-nnz(G))
N(V, prin; €0) < () .

€0

Following the same argument in Part 3 of the proof for Theorem 4, we have

€0 D 1
/ [log N'(V, prin, t)}l/th <ep (Z Rapq + nnz(G)) log o (44)
0 i—o 0
From Lemma 5, we have
D 2
& =max (7 (A"\) <max 67(A) <1/ Y Rapa +mnz(G) | . (45)
i€[n] i€[n] e

Combining (38) — (41) and Theorem 3, we have that the claim holds if

D
DkaR G
m>e? <R1p1 + <Z Rapa + nnz(G)) -log A 15 anz{ )> (log* m)(log® n),
d=2 0

D

1 1 5

s> 2 <log2 - + el ( E Rapa + nnz(G)) log 60) (log® m)(log® n).
d=1

1

ST Rupatmn @) Note that this choice of ¢ satisfies the

We finish the proof by taking ¢g =
requirement in Part 2.

H Flattening Leverage Scores

Our analysis makes the weak assumption that the leverage scores of the design A are slightly upper
bounded. This might be restrictive if we have no control on the design A at all. In the sequel, we
apply a standard idea [9, 26] to flatten the leverage scores of a deterministic design A based on the
subsampled randomized hadamard transformation (SRHT) using the Walsh-Hadamard matrix. An
SRHT matrix is defined as ¥ = \/% ® HY, where the components >, H, and ® are generated as:

(G1) X is an n x n diagonal matrix, where >;; = 1 or -1 with equal probabilities 1/2.

(G2) H is an n x n orthogonal matrix generated from a Walsh-Hadamard matrix scaled by n /2.

(G3) @ is an m x n SJILT matrix, with column sparsity bounded by s.

Note that computing a matrix-vector product with H takes O(n logn) instead of n? time. Thus, one
can compute HYX.A for an n x d matrix A in O(ndlogn) time, which is well-suited for the case in
which A is dense, e.g., nnz(A) = ©(nd). The purpose of the matrix product HY is to uniformize
the leverage scores before applying our SJLT with ®.

We next give a standard lemma for flattening the leverage scores, included for completeness. Without
loss of generality, we assume that n = 29 for a positive integer ¢, implying that a Walsh-Hadamard
matrix exists.

Lemma 1. Suppose H and ¥ are generated as in (G1) and (G2). Given any real value 6 € (0,1) and
an n X d matrix A with rank(A) = r, with probability at least 1 — §, we have

max 2(HEA) < rlog (%)

1€[n] n
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Proof. Given a unit vector y € R", let Zj;, = Hj3 Xy forall j € [n]. Then from the independence
of Hjj, and Xy, we have

E(Zji) = E(HjkZreyr) = E(Hjk) - E(Zkr) - yx = 0,
2

Y
Var(Zji) < B(H3.X3%,0%) = E(H3,) - E(33,) - v = ==

From the Azuma-Hoeffding inequality, for any ¢ > 0 we have

- t2 t2
P<ZZ”“ ”) <200 () ~2o0 ()
k=19k

k=1
) , we have

2 log( 2':5”'
n

By taking t =

21 2nr
nr nr

Jk

By a union bound, we have

21og (2nr
P |HZy|, > M max
n

J€(n]

2 log (2nr)

IN
S >

Z

Suppose A = UQ, where U € R™*" has orthonormal columns. Then we have for all ¢ € [n] and
ke [r],

C(HSA) = 2(HSU) < r- (e] HSUey)
Using a union bound again, we finish the proof by
2r log (22 J 2l s
P (mz[u](ﬂz(HEA) rog()) <P (maxr He H>Uey H 7‘0g(§)> <.
S i€ n

O
Applying this with the bound max;ep,) (3 (HXA) < 1/(R - S22, pa)? of Theorem 1 gives:

Proposition 1. Suppose H and ¥ are generated as in (G1) and (G2). Denote Co = R ZdD=2 Pd-
For low-rank tensor regression (4), where A € R"*I1Pa ig the matricization of all tensor designs,
if n satisfies n > C3 - rank(A) - log (n - rank(A)/§), then with probability at least 1 — &, we have

Combining Theorem 1 and Proposition 1, we achieve (8), provided n is sufficiently large. Here we
use that for all z, || HX Az||s = ||Az||2 since HY is an isometry.

2
In the worst case, rank(A) = [] pa, which requires n = Q <R2 (25)22 pd) 11 pd) . In overcon-

strained regression, it is often assumed that the number n of examples is at least a small polynomial in
rank(A4) [30], which implies this bound on n. Also, if, for example, A; is sampled from a distribution
with a rank deficient covariance, one may even have rank(A) < [] p4. A similar argument applies to
the Tucker model as well in Theorem 2.

One should note that computing ® HX A takes (n logn) HdD=1 pq time, provided the column sparsity
s of @ is O(1). This is O(nnz(A) log n) time for dense matrices A, i.e., those with nnz(A) = Q(nd),
but in general, unlike our earlier results, is not O(nnz(A) log n) time for sparse matrices. Analogous
results can be obtained for the Tucker decomposition model, which we omit.

I Intermediate Results

Here we introduce all intermediate results applied in our main analysis.
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Lemma 2. Suppose for A = [A1), AR) A € R**™P each A®) € R"*P is a column-wise
sub-matrix of A. Given a vector v € R™, we have

> AWy <[ Alla]v])2-
i=1 2

Proof. This is an extension of the Cauchy-Schwartz inequality. We have 3" | AWy, = A(v ® I,,),
where ® is the Kronecker product. This implies

i=1

= [[A(v @ L)ll2 < [|All2llv @ Ip[l2 = [[All2][v]]2-
2

O

Lemma 3. Given two sequences of unit vectors {¢; }7 ; and {¢;}?_;, where ¢;,1); € RPi with
l¢; — i]|2 < e foralli € [n], we have

01 @ P2 @ @b — V1 @Y @ @Ypll2 < (1 +e)" — 1.

Proof. Suppose for all i € [n], we have ¢; = ¢1 + x; for some vector x; € RPi. Then we have

<Y 1@ @z @ @ dnlla
i=1

_|_Z Z ||¢1®"'®$i®"'®-Tj®"'®¢n”2+'“+||x1®"'®xn||2

i=1 j=1,j#i
n n 2 n n __ n __
(3 ()0 (30
where the last inequality is from the fact that ||v ® u||2 = ||v||2||u||2 for any vectors v and w. O

Lemma 4. Suppose that A € R™*ITi=1 74 has leverage scores (2(A) for all i € [n]. Then for any
v1,v2 € RP2, the leverage scores of AU1v2 = [AY1 Av2] € R™*2P1 are bounded by (7 (Av1:?2) <
2(A).

Proof. Let Z have orthonormal columns and have the same span as the column space of A. Then
we have /2(A) = |le] Z||2 for all i € [n]. Since the column space of AV**2 is a subspace of the
column space of A, we can always find a column sub-matrix Z; € R™"*2P1 of Z such that Z; spans
the column space of AY*:V2. Therefore, for each i € [n], we have

GA™) = Nlef Z13 < llef Z|13 = £ (A).

O
Lemma 5. Suppose A € R™*Ili-17a has leverage scores (2(A) for all i € [n]. Then for
("
any vlm € Rz, 4 € [2], r € [R] with R < py/2, the leverage scores of A{vi b
C)
[A”§1) . ,A”iR) , Avs” e A”ER)] € R"*28P1 are bounded by ¢? (A{Ui }> < 2(A).

Proof. Let Z have orthonormal columns and have the same span as the column space of A. Then

oMl
we have (2(A) = |le; Z||3 for all i € [n]. Since the column space of A{ o is a subspace of the

.
column space of A, as the column space of each A”i * is a subspace of the column space of A, we
can always find a column sub-matrix Z; € R"*2fP1 of Z such that Z; spans the column space of

o™
A{ i } Therefore, for each ¢ € [n], we have

U(’“)
e (A{ ! }) el i < el 213 = £2(A).
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O

Lemma 6. For any v1,vs € B,,, suppose (v1,v2) = 0, and T1,T2 € B,, are vectors such that
|lvy — T1|l2 < o and ||ve — Tal|2 < 79. Then we have

pFiH([Avl ) sz]a [Aﬁl 5 Aﬁz]) S 2K7A77O~

Proof. Denote A"1V2 = [AY*, A¥2]. From a perturbation bound for orthogonal projections given in
[14], we have

_ V1,V2 __ AU1,V2
Prin(AYV2 ) A102) < 1A A 2

= G (AT) o

We first provide an upper bound on the numerator as

P2 b2
AV — AVP2 |y = ’ Z AD(vy ;= y), ZA@(‘UQ,i - 'U2,i)‘|
i=1 =1 2
D2 ) P2 )
< Z A(Z) (Ul,z' — 5171‘) + Z A(l) (UZ,Z‘ - @Q,i)
i=1 2 i=1 2

é 20max(A)nO, (47)
where the last inequality is from Lemma 2.

Next, we provide a lower bound on the denominator. Let [u{ ,u5 | " be a unit vector corresponding to
the smallest singular value of AV*>"2, where u1, us € RP*. Then we have

= [|A(v1 @ u1 + v2 @ u2)ll2 > Omin(A)||[v1 @ ur + v2 @ us||2

2

u
Omin (A7) = HAUMQ [ u; }

= Gunin () o1 @ w3+ [[e2 © wall3 + 201 © 1,02 © o)

b2 p1

= omin(A) [ lJuald + luzll3 +2D > o1 iua jvaius
i=1 j=1
- Umin(A) \/1 + 2<’U1, 1}2><U13 u2> = Umill(A)7 (48)
where the last equality is from the condition (v, ve) = 0. We finish the proof by combining (46),
(47), and (48). O

Lemma 7. Foralli € [2] and r € [R], vlm € Bp,. Suppose for all i € [2],r € [R], ¢ € [R\{r},

we have (0\”, 09} = v\ v{7) = 0. Further supp(o?e foralli € 2] and r € [R], D" € B,,
is a vector such that Hvzm - @m ll2 < no. Denote A{vi } = [A”il), o A , A”gl), o Avs”
Then we have
o) e
PFin <A{Ui },A{ ‘ }> < 2Rk AN0.
Proof. From the perturbation bound for orthogonal projection given in [14], we have
O e
™ ™ HA{% b A{vi }
e (4 40 : w

Cumin (A{“Y)}>
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We first upper bound the numerator as
” s P2
ot a0 = [$5 oot 5 o8 ot
j=1
P2 | N P2 R R
Soa, () - <,;),...,2Aj(vgjugj>)]
j=1 j=1
R || p2 R || p2
<2 a4 (vl —a1) 4 () -5 || < 2Romac( Ao, (50)
r=1 9 j=1

J=1 2

2

where the last inequality is from Lemma 2.

T
Next, we provide a lower bound on the denominator. Let {ugl)T, el ugR)T, ugl)T, R uéR)T} €

v T
R2%EP1 be a unit vector corresponding to the smallest singular value of A{ ¢ }, where ui ) e R
forall i € [2] and r € [R]. Then we have

i (AU7F) = Al [T T

2

R R
—|a. (Z of? @ul” +vf” ® ué”) > Tmin(A Z (o @ ul” +of” @ uf?)
r=1 2 r=1 2
L@l o SRENRL (") ("), ()
= Grin(4), |3 (H“f g > 235 oo )
r=1 r=1j=1k=1
2 R-1 R P2 ) ) ) )
3 3 I 3 EALALRY
i=1 r=1 q=r+1 j=1 k=1
R 2 R-—1 R
= omin(A)y [1 423017 o) u7) +23 0% DT (0 " uf®)
r=1 i=1 r=1 g=r+1
- Jmin(A)v (51)

where the last equality uses the conditions that forall i € [2] and r € [R], (v\", v} = (0" v{")

K3

0 for g € [R])\{r}. We finish the proof by combining (49), (50), and (51). O

Lemma 8. For all d € [D]\{1}, 64,¢4 € B,,. Suppose there exists an ¢ € [D]\{1} such that
(65, i) = 0. Further suppose for all d € [D]\{1},84, ¢, € By, are vectors such that ||64—04|2 < 1o
and ||¢pg — @,4/|2 < no. Then we have

PFin ([A{"\l},A{W}} : [A{g\l},A{%}D <2k (1+n0)P71 —1).

Proof. Let AV\1:¥\1 = [A{a\l}, A{‘z’\l}} € R™*2P1, From the perturbation bound for orthogonal
projection given in [14], we have
HAﬁ\mD\l _ A19 wH

2
T omm(ATR) e

DFin (Aﬁ\17¢\1,A57¢)
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We denote > aeip = §§:1 e ?22:1. We first provide an upper bound on the numerator:

HA19\1~,90\1 _ AE’EH
2

< thmm AlDsd2) . (91)7]',3 ey, _gD,jD ...@27].2)

. Hzfz~-jp AUP22) (bp iy - 025y = Op i+ G2 ,)
< Omax(A) - (|p @ ®0—0p@-- @O, + |00 @ @ b2 — dp @+ @ by |,)
< 20max(A4) (L4+n0)P 71 = 1), (53)

where the second inequality is from Lemma 2 and the last inequality is from Lemma 3.

2

Next, we provide a lower bound on the denominator. Let [u; ,ug | " be a unit vector corresponding to
the smallest singular value of A\1#\1 | where u1, us € RP!, Then we have

O, i, Uy
Omin (AN\VAV1) = HA \L#AL [ s }

=A(fp®--- @02 @u1 +dp @+ @ dpa @ ug) [|2
2

> omin(A)]|0p @+ @02 @u1 +dp @ -+ @ P2 @ uz2
= uin( A/ 160 © - © O @ w3+ 60 ® - © ¢ © wall}

+2(0p @ - ® 02 @ U1, pp @ - - ® P2 ® ug)

p1
= omin(A) |l 3+ w23 +2 D> Y Opp 0oty - bpjp - b2 jntin

J2-+jp j1=1
- Umin(A) \/1 + 2<9D7 ¢D> e <027 ¢2><U1, u2> = Umin(A>7 (54)
where the last inequality is from (6;, ¢;) = 0 for some i € {2,...,D}. We finish the proof by
combining (52), (53) and (54). O]

Lemma 9. For all d € [D]\{1} and r € [R], 6,6\ € B,,. Suppose that for any r,q € [R],
there exists an ¢ € [D]\{1} such that (95”, ¢§Q)> = 0, and further, for all » € [R — 1], ¢ € [R]\[r].
there exist j,k € [D]\{1} such that <€§T),9§Q)> = 0and (¢”,6\?) = 0. Further suppose for

all d € [D]\{1} and r € [R], ES)@S) € B,, are vectors such that ||} — ?;T)HQ < 1o and
chg) - E((;) l2 < 1o. Then we have

. ([A{(;(\Q ’A{qﬁ{p}] | [A{"@ ’A{d)(\?}D < 2Riq (L4+m0)P" —1).

GG ) (r)
Proof. Denote A{ﬁ\l et } = [A{e\l ,A{d)\l }] € R™*2Ep1_ From the perturbation bound on

orthogonal projection given in [14], we have
[COIRC) T (M
PR BT

Omin (A{ﬂg) #PS) } >

- < AP0} 40 ,m}) < 2, (55)
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We denote >, . =>""_, -3 0" . We first upper bound the numerator as

A{ 1 790\1)} A{ﬁi?’w(\q }

2
= H [Zh“‘jD Alp-2) <9g,)jD ' 0( 9D Jp §SJ>2> LA ’ij'“jD Alp-2) <9(DR;D o Q(R

2,52 DJD' 2]2

)
Z]é'“jn Alpe2) <¢g:>jD . .QB(ij - 5DJD . aé1J)2) A ’ZJZ“'jD AlD2) (¢D jp '¢2 2 cbD Jp "0y, J2>] H
2,

R JD s j (r) (r) _p0) 7 Dy,
< 27'11 szz“'jD AUz <9D-,jn o 92..72 N ODJD o 02-J2) + "ZjZ"'jD AUz <$D jin ¢2 J2 ¢)D Jp 2 J2

< oman(4) - (DI |05 @008 05 @ 08|+ o) 000 -85 @0 ¢§” )
S 2}go-max(f4> ((1 + 770>D_1 - 1) ) (56)

where the second inequality is from Lemma 2 and the last inequality is from Lemma 3.

T
Next, we lower bound the denominator. Let [ugl)T WS (0T ugR)T € R?fP1 be a

yoeey Uq , Uy geeey

(")
unit vector corresponding to the smallest singular value of A{ﬂ\l P } where uz(-T) € RP1 for all
i € [2] and r € [R]. Then we have

T
Omin (A{ M 790\1 }> HA{ \ 7Lp\1 } |: (1)T e ER)Tﬂlél)T, ey UgR)T:|
2
R
A (Zeg) ©- 005 @ul”) + o8 @ ol ®u§”)>
r=1 2
R
> omin(A| 305 0200 @ul) + 60 @ ® ¢ @ uf”
r=1 2
2 2
= Umin(A)\/Zle (Hug ) 9 + Hu(Q ) 2) + 22?:1 Z;il Zjl"']D H(D Jp 2]2 (1J>1 ¢Si()])]1) ¢<2qj)2 éqJ>1

(r) , (r)  pla) (q) , (q) (r) (r) , (r) () (q) , (a)
+2 Z Zq r+1 Z:]1 JD ( Dyjp " '027.72u1:j1 ’ quij o 92372” Wt ¢D<,]'D o ¢27J'2u2,j1 ' ¢qujn 9 ¥ UZ(,I]'l)

L.j1 2,j2

:Umm 1+QZZ Gg, D <9(7’ ¢ ><ugr)7 ()>

r=1g=1
R— R
+gz Z (165,668,657 (", ul®) + (63, 652) -+ (03, 65y (), ul?))
= O'min(iA)vi (57)

where the last inequality is from the conditions on Gy) and gbg). We finish the proof by combining
(55), (56), and (57). O

Lemma 10. Foralld € [D]\{1} andr € [R], Gl(i”), (ra) ¢ B,,. Suppose that for any 74, ¢q € [Rd]
d € [R]\{1}, there exists an i € [D]\{1} such that (9(7' ¢\?) = 0,and forall r € [R— 1], ¢
[R]\[r], there exist j, k € [D]\{1} such that <0§T), 0;9)) 0 and (¢, (), ,(CQ)> = 0. Further suppose

for all d € [D]\{1} and r € [R], 95;),5,(;) € By, are vectors such that |8} — ?Eir)Hg < 19 and
g’ — 55;) |l2 < no. Then for some constant C', we have

P <[A{9§?},A{¢§T1)}] {A{QW} Afeh }D <20k ((1+m0)P~1 = 1) Ry/anz(G).
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glra} {ra}
Proof. Denote A{ At } =

{ra} {ra}
RES PG
bound for orthogonal projection given in [14], we have

A{ {Id}7 Eld}} A{gi{:d}@t‘d}}

€ R™*2E1ip1 - From the perturbation

{ra} {ra} {ra} {Td}
PFin A{ﬂ\l i },A{ﬂ o } < 2. (58)
{ oiral, {w}}
Omin A M
2 R
We denote Ejz-»-jp = ?2:1'” ?g:l’ ZTQ rp ng 17 ZTDDZI’ and Zrlmrp =
251:1 e ZfDDzl. We first upper bound the numerator as

A{ﬂ{rd}’ i:d}} - A{g{;d})wg‘d}}

2

r 2 (rp) (r2)
[Z D7 Gz rp)AUPI) (055) 67 = B0 0y )

T2 "D j2 - JD

S Y GlRiracrp) AP (658607 — 85 057

T2 TD j2 D

1 1 T T (rp) r2)
Z Z G(l,rz,...,TD)A(]D’“"JQ) (sbﬁfji) éjz) ¢D[3)D ¢2,]22),

T2 TD j2°JD

1 j T T D) (r2)
3 Gl (o) 355, )|

T2 TD J2°JD

S e rop o (657) o) 5 - 7)

2

< 2.

,JD 2,2 2J2
r1rp || jo-dp 2
i 1 T T (rp) (r2)
+ Z G(Tl,...,TD)A(JD""’”) ‘ (¢(Dl;i, éjz,j ¢D§D ¢2,]22)
J2+JjD 2
< amax(A)< S 1G] 057 @ @6 — 8 @ 0By
T1TD 2
(rp) (rz2) (TD) —(r2)
+|G(ri,....rp)| - ||¢p” @ ® Py — ¢p @ Py
2

< 2|[vec(G) |1 - Omax(A) (L+m0)°~" = 1), (59)

where the second inequality is from Lemma 2 and the last inequality is from Lemma 3.

.
Next, we provide a lower bound on the denominator. Let [ugl)T7...,ugRl)T7u(1)T,... (Rl)T} €
{ {Td}$ {Td}}
R2%1P1 be a unit vector corresponding to the smallest singular value of A A% where
Y _ P PD
u; € Rm f(;r all ¢ ep 2] and 1 € [Ri]. Denote 3 ; . = = > )i,
— 1 “e D —
ZQI"'QD - q1=1 qp=1° ZTd:jd:Qd - ZTI'“TD Zjl"‘jD ZQI'“QD’ ]IG(Tlv--*vTD)?éO as
the indicator function that is 1 if G(ry,...,7p) # 0 and is O otherwise, and uglﬁ =

29



2
min,, {H (r1) + Huéﬁ) , £ 0}. Then we have
glra} {’”d} glra} { a) T
O min (A{ v 0P\ }) _ A{ A1 0P\ } [ugl)T’ o 7u§R1)T7ugl)T7 o 7uéR1)T}
2

A- ( Z G(’r‘l, e 77'D) <98D) X .- 9(7’2) ® u(rl 4 ¢DD) ® - ¢g’2) ® ugm)))

T1y--sTD 2
ZUmin(A) Z G(’f‘l,...77'D) (9([3“D)®,..®9ér2)®ugm) +¢([7)"D)®...®¢ér2)®u;m))
T1,y--3sTD 2
A a2 Ol Ll
= Opnin(A) Z (ri,...,rp) (Hul 2+ Hu2 2)
T1,.-3TD
D D
Td>Jd,qd

D,jp 2,52 %1,5.YD,jp 2,52 U1, D,jp 2,52 42,51 PD,jp 2,j2 72,51

40T L glr) (rglan) g, () | ) (), (m) ylan) <q2>u(q1)>

> omin (A ; G2 ) 2 G(ry, ... H(TD) (ap)y, . 1g(r2) plaz)y g, (1), (a1)
= 0 ( ) n}“inz (Tla T + Z Tla T < ¢ > <2 ’¢2 ><u1 » U >

T2,.-sTD Td,Jd,qd

_|_<9(D?“D)70gD)>“'<9§r2)79£Q2)><u§r1)’u(1m)> <¢(7‘D) ¢QD)> - érz)7 ng)><u§T1)’ug]1)>)

= omin(A mln Z G2(r1,...,Tp), (60)

T2,..sTD

where the last inequality is from the conditions on 05[) and ¢g). We finish the proof by combining
(58), (59), (60), and the fact that

[vec(@ly < CR1+/nnz(G),
min"‘l \/Z’r’g,...,’r‘p GZ(T17 "'7TD)
where C' = max,, \/27.27“_,7.D G2(r1,...,rp)/ min,, \/2727 op G2(r1, D). O
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