
A A Master Theorem

Recall that our goal is to provide sufficient conditions for the SJLT matrix � 2 Rm⇥n to preserve
the cost of all solutions for tensor regression, i.e., bounds on the sketching dimension m and the
per-column sparsity s for which

E
�

sup

x2T

�

�k�xk2
2 � 1

�

� < "/10 (14)

where " is a given precision, T =

S

E2V {x 2 E | kxk2 = 1}, and V is an infinite union of subspaces
defined as

V =

[

✓

(r)
d ,�

(r)
d 2Rpd

,8r2[R],d2[D]\{1}

⇢

span


A

n

✓

(r)
\1

o

, A

n

�

(r)
\1

o

��

for the CP model, and

V =

[

✓

(rd)
d ,�

(rd)
d 2Rpd

,8rd2[Rd],d2[D]\{1}

⇢

span


A

n

✓

{rd}
\1

o

, A

n

�

(rd)

\1

o

��

for the Tucker model.

Note that by linearity, it suffices to consider x with kxk2 = 1 in the above, which explains the form
of (14). Also note that by Markov’s inequality, (14) implies that for all # = vec(⇥), where ⇥ follows
the low-rank CP or Tucker decomposition, with probability at least 9/10, we have
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The next theorem follows immediately by plugging in to the bound in Section 8.5 of [2], which our
work builds upon. We instantiate the conditions of that theorem for the CP model; the instantiation
for the Tucker model follows analogously.
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n
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Then with probability at least 9/10, (15) holds if m and s satisfy
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2 V and N (V, ⇢Fin, t) is the

covering number of V with radius t under the Finsler metric.

Proof. From the main result in [2], we have that (14) holds if m and s satisfy
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which can be obtained from (16) and (17). Thus with probability at least 9/10, (15) holds following
the argument above and we finish the proof.

B A Progressive Proof for Main Theorems

Given Theorem 3, the main technical difficulty lies in providing tight bounds on the various terms
involved in m and s in Theorem 3, which depend on whether we are working in the CP model or the
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Tucker model. We start with the most basic case of rank R = 1 for two way tensors (matrices) D = 2

(Theorem 4), then generalize to general ranks R � 1 for two say tensors D = 2 (Theorem 5), then
to general tensors D � 1 with rank R = 1 (Theorem 6), then finally to the generic CP model with
D � 1 and R � 1 (Theorem 1). This helps clarify the analysis and makes the proof of Theorem 1
straightforward. The analysis for the general Tucker model can be addressed in a similar way, and we
only provide the proof for the general case to avoid redundancy.

B.1 Base Case: Rank-1 and Two-Way Tensors
We start with the base case when R = 1 and D = 2, i.e., the parameter space is S2,1. Then the
parameter admits the decomposition ⇥ = ✓1 � ✓2. For notational convenience, we let ⇥ = u � v,
where u 2 Rp1 and v 2 Rp2 , and let Av
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Next, we show the following theorem, which provides sufficient conditions for the base case S2,1.
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and � 2 Rm⇥n be an SJLT matrix with column sparsity s. Then with probability at least 9/10, (15)
holds if m and s satisfy
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The proof of Theorem 4 is provided in Appendix C. From Theorem 4, we have that (15) holds when
m = ⌦(p1 + p2) and s = ⌦(1).

B.2 Extension to General Ranks
We next extend our analysis to the case of two-way tensors with general rank, i.e., the parameter space
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Our next theorem provides sufficient conditions for S2,R.
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and � 2 Rm⇥n be an SJLT matrix with column sparsity s. Then with probability at least 9/10, (15)
holds if m and s satisfy
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The proof of Theorem 5 is provided in Appendix D. From Theorem 5, we have that when m =

⌦(R(p1 +p2)) and s = ⌦(1), (15) holds using an SJLT matrix �. The extra condition that R  p2/2

is not restrictive, as in applications of low-rank tensors, typically R ⌧ min
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B.3 Extension to General Tensors

We first extend our analysis to general tensors with rank 1, i.e., the parameter space is now S
D,1 for
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Our next theorem provides sufficient conditions for S
D,1.
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and � 2 Rm⇥n be an SJLT matrix with column sparsity s. Then with probability at least 9/10, (15)
holds if m and s satisfy
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The proof of Theorem 6 is provided in Appendix E. From Theorem 6, we have that when m =
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C Proof of Theorem 4

We start with an illustration that the set T can be reparameterized to the following set with respect to
tensors with orthogonal factors:

T =
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Suppose hv1, v2i 6= 0. Let v2 = ↵v1 + �z for some ↵,� 2 R and a unit vector z 2 Rp2 , where
hv1, zi = 0. Then we have
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2 i = 0 for all i 2 [2], r 2 [R], and q 6= r by
reparameterizing z(i)

1 as v(i)
1 and z(j)

2 as v(j)
2 .

Next, analogous to Theorem 4, we analyze upper bounds on ⇢V , �2
2(V, ⇢Fin), and N (V, ⇢Fin, "0), and

obtain the result from Theorem 3.

Part 1: Bound pV . It is straightforward that

pV = sup

fW
dim

⇢

span
✓

A

n

v

(r)
i

o

◆�

 2Rp1. (30)

Part 2: Bound �2
2(V, ⇢Fin). The �2-functional in this case is

�2
2(V, ⇢Fin) = inf

{Vk}1
k=0

sup

A

{v
(r)
i }2V

1
X

k=0

2

r/2 · ⇢Fin

✓

A

n

v

(r)
i

o

,V
k

◆

,

where V
k

is an "
k

-net of V .

Following the same argument in Part 2 of the proof for Theorem 4, we have from Lemma 7 that if k0

is the smallest integer such that 2R
A

⌘
k

0  1 and we choose ⌘
k

0+1 =

1
4RA

, then we choose a small
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enough "0 such that "0  2R
A

⌘
k

0 ,

�2
2(V, ⇢Fin) . Rp2 log

R
A

"0
. (31)

Part 3: Bound N (V, ⇢Fin, "0). It is straightforward that N (V, ⇢Fin, "0) 
⇣

3
"0

⌘2Rp2

. Following the
same argument in Part 3 of the proof for Theorem 4, we have

Z

"0

0

[logN (V, ⇢Fin, t)]
1/2dt . "0

r

Rp2 log

1

"0
. (32)

From Lemma 5, we have

e↵2
= max

i2[n]
`2
i

✓

A

n

v

(r)
i

o

◆

 max

i2[n]
`2
i

(A)  1/(R2p2
2). (33)

Combining (30) – (33) and Theorem 3, we have that the claim holds if

m & "�2R

✓

p2 log

R
A

"0
+ p1 + p2 log

1

"0

◆

(log

4 m)(log

5 n) and

s & "�2

✓

log

2 1

"0
+ "20R(p1 + p2) log

1

"0

◆

(log

6 m)(log

5 n).

We finish the proof by taking "0 =

1
R(p1+p2)

. Note that this choice of " satisfies the requirement in
Part 2.

E Proof of Theorem 6

Denote #\1 = ✓
D

⌦ · · ·⌦ ✓2, '\1 = �
D

⌦ · · ·⌦ �2 and A#\1,'\1
=

h

A{✓\1}, A{�\1}i 2 Rn⇥2p1 .
We illustrate that the set T can be reparameterized to the following set with respect to tensors with
partial orthogonal factors:

T =

[

E2V
{x 2 E | kxk2 = 1} , where V =

[

fW

span
�

A#\1,'\1
�

and

fW = {8d 2 [D]\{1}, ✓
d

,�
d

2 B
pd , 9i 2 [D]\{1} s.t. h✓

i

,�
i

i = 0} ,

W.l.o.g., suppose �
D

= ↵✓
D

+ �z for some ↵,� 2 R and a unit vector z 2 RpD , where h✓
D

, zi = 0.
Then we have

A#� A' = A{✓\1}✓1 � A{�\1}�1 = A(✓
D

⌦ · · ·⌦ ✓2 ⌦ I
p1)✓1 � A(�

D

⌦ · · ·⌦ �2 ⌦ I
p1)�1

= A(✓
D

⌦ · · ·⌦ ✓2 ⌦ I
p1)✓1 � A((↵✓

D

+ �z) ⌦ �
D�1 ⌦ · · ·⌦ �2 ⌦ I

p1)�1

= A(✓
D

⌦ · · ·⌦ ✓2 ⌦ I
p1)✓1 � A(↵✓

D

⌦ · · ·⌦ �2 ⌦ I
p1)�1 � A(�z ⌦ · · ·⌦ �2 ⌦ I

p1)�1

= A✓D
(✓

D�1 ⌦ · · ·⌦ ✓1 � ↵�
D�1 ⌦ · · ·⌦ �1) � Az

(�
D�1 ⌦ · · ·⌦ �1) ,

This is equivalent to h✓
D

,�
D

i = 0 by reparameterizing z as �
D

.

Next, analogous to Theorem 4, we analyze upper bounds on ⇢V , �2
2(V, ⇢Fin), and N (V, ⇢Fin, "0), and

obtain the result from Theorem 3.

Part 1: Bound pV . It is straightforward that

pV = sup

fW
dim

�

span
�

A#\1,'\1
�  2p1. (34)

Part 2: Bound �2
2(V, ⇢Fin). The �2-functional in this case is

�2
2(V, ⇢Fin) = inf

{Vk}1
k=0

sup

A

#\1,'\12V

1
X

k=0

2

r/2 · ⇢Fin
�

A#\1,'\1 ,V
k

�

,
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where V
k

is an "
k

-net of V .

Following the same argument in Part 2 of the proof of Theorem 4, we have from Lemma 8 that if k0 is
the smallest integer such that 2

A

�

(1 + ⌘
k

0
)

D � 1

�  1, then we choose "0 small enough such that

"0  2
A

D⌘
k

0  2
A

�

(1 + ⌘
k

0
)

D � 1

�

.

where the second inequality is from the binomial expansion. Then we have

�2
2(V, ⇢Fin) .

D

X

d=2

p
d

· log

D
A

"0
. (35)

Part 3: Bound N (V, ⇢Fin, "0). It is straightforward that N (V, ⇢Fin, "0) 
⇣

3
"0

⌘2
PD

d=2 pd

. Following
the same argument in Part 3 of the proof for Theorem 4, we have

Z

"0

0

[logN (V, ⇢Fin, t)]
1/2dt . "0

v

u

u

t

D

X

d=2

p
d

log

1

"0
. (36)

From Lemma 5, we have

e↵2
= max

i2[n]
`2
i

�

A#\1,'\1
�  max

i2[n]
`2
i

(A)  1

⇣

P

D

d=2 p
d

⌘2 . (37)

Combining (34) – (37) and Theorem 3, we have that the claim holds if

m & "�2

 

p1 +

D

X

d=2

p
d

· log

D
A

"0

!

(log

4 m)(log

5 n) and

s & "�2

 

log

2 1

"0
+ "20

D

X

d=1

p
d

log

1

"0

!

(log

6 m)(log

5 n).

We finish the proof by taking "0 =

1
PD

d=1 pd
. Note that this choice of " satisfies the requirement in

Part 2.

F Proof of Theorem 1

Denote A

n

#

(r)
\1 ,'

(r)
\1

o

=



A

n

✓

(r)
\1

o

, A

n

�

(r)
\1

o

�

. We illustrate that the set T can be reparameterized to

the following set with respect to tensors with partial orthogonal factors:

T =

[

E2V
{x 2 E | kxk2 = 1} , where V =

[

cW

span
✓

A

n

#

(r)
\1 ,'

(r)
\1

o

◆

,

fW =

n

8r 2 [R], d 2 [D]\{1}, ✓(r)
d

,�(r)
d

2 B
pd ; 8r, q 2 [R], 9i 2 [D]\{1} s.t. h✓(r)

i

,�(q)
i

i = 0;

8r 2 [R � 1], q 2 [R]\[r], 9j, k 2 [D]\{1} s.t. h✓(r)
j

, ✓(q)
j

i = h�(r)
k

,�(q)
k

i = 0

o

.

For R = 1, the argument is identical to the analysis in Theorem 6. For any r 2 [R], r � 2, w.l.o.g.,
suppose

✓(r)
D

= ↵(r,1)
1 ✓(1)

D

+

r

X

i=2

↵(r,i)
1 z(i)

1 and �(r)
D

= �(r,1)
1 ✓(1)

D

+

r

X

i=2

�(r,i)
1 z(i)

1 +

r

X

j=1

�(r,j)
2 z(j)

2 ,
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where ↵(r,i)
1 ,�(r,i)

1 ,�(r,j)
2 2 R are real coefficients and h✓(1)

D

, z(i)
1 i = h✓(1)

D

, z(i)
2 i = hz(i)

1 , z(j)
2 i = 0

for any i, j 2 [r]. Then for 2  R  p2/2, we have

A#� A' = A ·
R

X

r=1

⇣

✓(r)
D

⌦ · · ·⌦ ✓(r)2 ⌦ I
p1

⌘

✓(r)1 � A ·
R

X

r=1

⇣

�(r)
D

⌦ · · ·⌦ �(r)
2 ⌦ I

p1

⌘

�(r)
1

= A ·
R

X

r=2

  

↵(r,1)
1 ✓(1)

D

+

r

X

i=2

↵(r,i)
1 z(i)

1

!

⌦ · · ·⌦ ✓(r)1

!

+ A ·
⇣

✓(1)
D

⌦ · · ·⌦ ✓(1)1

⌘

� A ·
R

X

r=2

0

@

0

@�(r,1)
1 ✓(1)

D

+

r

X

i=2

�(r,i)
1 z(i)

1 +

r

X

j=1

�(r,j)
2 z(j)

2

1

A⌦ · · ·⌦ �(r)
1

1

A

� A ·
⇣⇣

�(1,1)
1 ✓(1)

D

+ �(1,1)
2 z(1)

2

⌘

⌦ · · ·⌦ �(1)
1

⌘

=

R

X

r=r

A✓

(1)
D

⇣

↵(r,1)
1 ✓(r)

D�1 ⌦ · · ·⌦ ✓(r)1 � �(r,1)
1 �(r)

D�1 ⌦ · · ·⌦ �(r)
1

⌘

+

R

X

r=2

r

X

i=2

Az

(1)
1

⇣

↵(r,i)
1 ✓(r)

D�1 ⌦ · · ·⌦ ✓(r)1 � �(r,i)
1 �(r)

D�1 ⌦ · · ·⌦ �(r)
1

⌘

�
R

X

r=1

r

X

j=1

Az

(j)
2

⇣

�(r,j)
2 �(r)

D�1 ⌦ · · ·⌦ �(r)
1

⌘

where ↵(,1)
1 = 1. This is equivalent to h✓(r)

D

,�(r)
D

i = 0, h✓(r)
D

, ✓(q)
D

i = 0, and h�(r)
D

,�(q)
D

i = 0 for all
r 2 [R] and q 6= [R]\[r], by reparameterizing z(i)

1 and z(j)
2 as ✓(i)

D

and �(j)
D

properly. The remaining
pairs of orthogonality in fW can be checked analogously by repeating the argument above.

Part 1: Bound pV . It is straightforward that

pV = sup

fW
dim

⇢

span
✓

A

n

#

(r)
\1 ,'

(r)
\1

o

◆�

 2Rp1. (38)

Part 2: Bound �2
2(V, ⇢Fin). The �2-functional in this case is

�2
2(V, ⇢Fin) = inf

{Vk}1
k=0

sup

A

{#
(r)
\1 ,'

(r)
\1 }2V

1
X

k=0

2

r/2 · ⇢Fin

✓

A

n

#

(r)
\1 ,'

(r)
\1

o

,V
k

◆

,

where V
k

is an "
k

-net of V .

Following the same argument in Part 2 of the proof for Theorem 4, we have from Lemma 9 that if k0

is the smallest integer such that 2R
A

�

(1 + ⌘
k

0
)

D � 1

�  1, then we choose "0 small enough such
that

"0  2RD
A

⌘
k

0  2R
A

�

(1 + ⌘
k

0
)

D � 1

�

,

where the second inequality follows from the binomial expansion. Then we have

�2
2(V, ⇢Fin) .

D

X

d=2

p
d

· log

RD
A

"0
. (39)

Part 3: Bound N (V, ⇢Fin, "0). It is straightforward that

N (V, ⇢Fin, "0) 
✓

3

"0

◆2R
PD

d=2 pd

.

20



Following the same argument in Part 3 of the proof for Theorem 4, we have

Z

"0

0

[logN (V, ⇢Fin, t)]
1/2dt . "0

v

u

u

tR
D

X

d=2

p
d

log

1

"0
. (40)

From Lemma 5, we have

e↵2
= max

i2[n]
`2
i

�

A#\1,'\1
�  max

i2[n]
`2
i

(A)  1

⇣

R
P

D

d=2 p
d

⌘2 . (41)

Combining (38) – (41) and Theorem 3, we have that the claim holds if

m & "�2R

 

p1 +

D

X

d=2

p
d

· log

RD
A

"0

!

(log

4 m)(log

5 n),

s & "�2

 

log

2 1

"0
+ "20R

D

X

d=1

p
d

log

1

"0

!

(log

6 m)(log

5 n).

We finish the proof by taking "0 =

1
R

PD
d=1 pd

. Note that this choice of " satisfies the requirement in
Part 2.

G Proof of Theorem 2

Denote A

n

#

{rd}
\1 ,'

{rd}
\1

o

=



A

n

✓

{rd}
\1

o

, A

n

�

{rd}
\1

o

�

. We illustrate that the set T can be reparameterized

to the following set with respect to tensors with partial orthogonal factors:

T =

[

E2V
{x 2 E | kxk2 = 1} , where V =

[

cW

span
✓

A

n

#

{rd}
\1 ,'

{rd}
\1

o

◆

and

fW =

n

8r
d

2 [R
d

], d 2 [D]\{1}, ✓(rd)
d

,�(rd)
d

2 B
pd ; 8r

d

, q
d

2 [R
d

], 9d 2 [D]\{1} s.t. h✓(rd)
d

,�(qd)
d

i = 0;

8r
d

2 [R
d

� 1], q
d

2 [R
d

]\[r
d

], 9d, t 2 [D]\{1} s.t. h✓(rd)
d

, ✓(qd)
d

i = h�(rd)
t

,�(qd)
t

i = 0

o

.

Repeating the argument in the proof of Theorem 1, we have the equivalence of T and the set above.

Part 1: Bound pV . It is straightforward that

pV = sup

fW
dim

(

span

 

A

⇢

#

{rd}
\1 ,'

{rd}
\1

�

!)

 2R1p1. (42)

Part 2: Bound �2
2(V, ⇢Fin). The �2-functional in this case is

�2
2(V, ⇢Fin) = inf

{Vk}1
k=0

sup

A

(

#
{rd}
\1 ,'

{rd}
\1

)

2V

1
X

k=0

2

r/2 · ⇢Fin

 

A

⇢

#

{rd}
\1 ,'

{rd}
\1

�

,V
k

!

,

where V
k

is an "
k

-net of V .

Following the same argument as in Part 2 of the proof for Theorem 4, we have from Lemma 10 that if

k0 is the smallest integer such that 2
A

�

(1 + ⌘
k

0
)

D � 1

�

q

Q

D

d=2 R
d

 1, then we choose "0 small
enough such that

"  2D
A

⌘
k

0

v

u

u

t

D

Y

d=2

R
d

 2C
A

�

(1 + ⌘
k

0
)

D � 1

�

R1

p

nnz(G),
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where the second inequality follows from the binomial theorem. Then we have

�2
2(V, ⇢Fin) .

 

D

X

d=2

R
d

p
d

+ nnz(G)

!

· log

D
A

q

Q

D

d=2 R
d

"0
. (43)

Part 3: Bound N (V, ⇢Fin, "0). It is straightforward that

N (V, ⇢Fin, "0) 
✓

3

"0

◆2
(

PD
d=2 Rdpd+nnz(G)

)

.

Following the same argument in Part 3 of the proof for Theorem 4, we have

Z

"0

0

[logN (V, ⇢Fin, t)]
1/2dt . "0

v

u

u

t

 

D

X

d=2

R
d

p
d

+ nnz(G)

!

log

1

"0
. (44)

From Lemma 5, we have

e↵2
= max

i2[n]
`2
i

�

A#\1,'\1
�  max

i2[n]
`2
i

(A)  1/

 

D

X

d=2

R
d

p
d

+ nnz(G)

!2

. (45)

Combining (38) – (41) and Theorem 3, we have that the claim holds if

m & "�2

 

R1p1 +

 

D

X

d=2

R
d

p
d

+ nnz(G)

!

· log

D
A

R1

p

nnz(G)

"0

!

(log

4 m)(log

5 n),

s & "�2

 

log

2 1

"0
+ "20

 

D

X

d=1

R
d

p
d

+ nnz(G)

!

log

1

"0

!

(log

6 m)(log

5 n).

We finish the proof by taking "0 =

1
PD

d=1 Rdpd+nnz(G)
. Note that this choice of " satisfies the

requirement in Part 2.

H Flattening Leverage Scores

Our analysis makes the weak assumption that the leverage scores of the design A are slightly upper
bounded. This might be restrictive if we have no control on the design A at all. In the sequel, we
apply a standard idea [9, 26] to flatten the leverage scores of a deterministic design A based on the
subsampled randomized hadamard transformation (SRHT) using the Walsh-Hadamard matrix. An
SRHT matrix is defined as  =

p

n

m

�H⌃, where the components ⌃, H , and � are generated as:
(G1) ⌃ is an n ⇥ n diagonal matrix, where ⌃

ii

= 1 or -1 with equal probabilities 1/2.
(G2) H is an n ⇥ n orthogonal matrix generated from a Walsh-Hadamard matrix scaled by n�1/2.
(G3) � is an m ⇥ n SJLT matrix, with column sparsity bounded by s.

Note that computing a matrix-vector product with H takes O(n log n) instead of n2 time. Thus, one
can compute H⌃A for an n ⇥ d matrix A in O(nd log n) time, which is well-suited for the case in
which A is dense, e.g., nnz(A) = ⇥(nd). The purpose of the matrix product H⌃ is to uniformize
the leverage scores before applying our SJLT with �.

We next give a standard lemma for flattening the leverage scores, included for completeness. Without
loss of generality, we assume that n = 2

q for a positive integer q, implying that a Walsh-Hadamard
matrix exists.

Lemma 1. Suppose H and ⌃ are generated as in (G1) and (G2). Given any real value � 2 (0, 1) and
an n ⇥ d matrix A with rank(A) = r, with probability at least 1 � �, we have

max

i2[n]
`2
i

(H⌃A) . r · log

�

nr

�

�

n
.
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Proof. Given a unit vector y 2 Rn, let Z
jk

= H
jk

⌃

kk

y
k

for all j 2 [n]. Then from the independence
of H

jk

and ⌃
kk

, we have

E(Z
jk

) = E(H
jk

⌃

kk

y
k

) = E(H
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n
.

From the Azuma-Hoeffding inequality, for any t > 0 we have
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.

By taking t =

q
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, we have
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By a union bound, we have
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Suppose A = UQ, where U 2 Rn⇥r has orthonormal columns. Then we have for all i 2 [n] and
k 2 [r],

`2
i

(H⌃A) = `2
i

(H⌃U)  r · �e>
i

H⌃Ue
k

�2
.

Using a union bound again, we finish the proof by

P
 

max

i2[n]
`2
i

(H⌃A) >
2r log

�

2nr
�

�

n

!

 P
 

max

i2[n]
r · ��e>

i

H⌃Ue
k

�

�

2

1 >
2r log

�

2nr
�

�

n

!

 �.

Applying this with the bound max

i2[n] `
2
i

(H⌃A)  1/(R ·PD

d=2 p
d

)

2 of Theorem 1 gives:

Proposition 1. Suppose H and ⌃ are generated as in (G1) and (G2). Denote C2 = R
P

D

d=2 p
d

.
For low-rank tensor regression (4), where A 2 Rn⇥

Q

pd is the matricization of all tensor designs,
if n satisfies n & C2

2 · rank(A) · log (n · rank(A)/�), then with probability at least 1 � �, we have
max

i2[n] `
2
i

(H⌃A)  1/C2
2 .

Combining Theorem 1 and Proposition 1, we achieve (8), provided n is sufficiently large. Here we
use that for all x, kH⌃Axk2 = kAxk2 since H⌃ is an isometry.

In the worst case, rank(A) =

Q

p
d

, which requires n = ⌦

✓

R2
⇣

P

D

d=2 p
d

⌘2

·Q p
d

◆

. In overcon-

strained regression, it is often assumed that the number n of examples is at least a small polynomial in
rank(A) [30], which implies this bound on n. Also, if, for example, A

i

is sampled from a distribution
with a rank deficient covariance, one may even have rank(A) ⌧ Q

p
d

. A similar argument applies to
the Tucker model as well in Theorem 2.

One should note that computing �H⌃A takes (n log n)

Q

D

d=1 p
d

time, provided the column sparsity
s of � is O(1). This is O(nnz(A) log n) time for dense matrices A, i.e., those with nnz(A) = ⌦(nd),
but in general, unlike our earlier results, is not O(nnz(A) log n) time for sparse matrices. Analogous
results can be obtained for the Tucker decomposition model, which we omit.

I Intermediate Results

Here we introduce all intermediate results applied in our main analysis.
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Lemma 2. Suppose for A = [A(1), A(2), . . . , A(m)
] 2 Rn⇥mp, each A(i) 2 Rn⇥p is a column-wise

sub-matrix of A. Given a vector v 2 Rm, we have
�

�

�

�

�

m

X

i=1

A(i)v
i

�

�

�

�

�

2

 kAk2kvk2.

Proof. This is an extension of the Cauchy-Schwartz inequality. We have
P

m

i=1 A(i)v
i

= A(v ⌦ I
p

),
where ⌦ is the Kronecker product. This implies

�

�

�

�

�

m

X

i=1

A(i)v
i

�

�

�

�

�

2

= kA(v ⌦ I
p

)k2  kAk2kv ⌦ I
p

k2 = kAk2kvk2.

Lemma 3. Given two sequences of unit vectors {�
i

}n
i=1 and { 

i

}n
i=1, where �

i

, 
i

2 Rpi with
k�

i

�  
i

k2  " for all i 2 [n], we have

k�1 ⌦ �2 ⌦ · · ·⌦ �
n

�  1 ⌦  2 ⌦ · · ·⌦  
n

k2  (1 + ")n � 1.

Proof. Suppose for all i 2 [n], we have  
i

= �1 + x
i

for some vector x
i

2 Rpi . Then we have

k�1 ⌦ · · ·⌦ �
n

�  1 ⌦ · · ·⌦  
n

k2 = k�1 ⌦ · · ·⌦ �
n

� (�1 + x
i

) ⌦ · · ·⌦ ( 
n

+ x
n

)k2


n

X

i=1

k�1 ⌦ · · ·⌦ x
i

⌦ · · ·⌦ �
n

k2

+

n

X

i=1

n

X

j=1,j 6=i

k�1 ⌦ · · ·⌦ x
i

⌦ · · ·⌦ x
j

⌦ · · ·⌦ �
n

k2 + · · · + kx1 ⌦ · · ·⌦ x
n

k2


✓

n
1

◆

"+

✓

n
2

◆

"2 + · · · +
✓

n
n

◆

"n = (1 + ")n � 1,

where the last inequality is from the fact that kv ⌦ uk2 = kvk2kuk2 for any vectors v and u.

Lemma 4. Suppose that A 2 Rn⇥
Q2

d=1 pd has leverage scores `2
i

(A) for all i 2 [n]. Then for any
v1, v2 2 Rp2 , the leverage scores of Av1,v2

= [Av1 , Av2
] 2 Rn⇥2p1 are bounded by `2

i

(Av1,v2
) 

`2
i

(A).

Proof. Let Z have orthonormal columns and have the same span as the column space of A. Then
we have `2

i

(A) = ke>
i

Zk2
2 for all i 2 [n]. Since the column space of Av1,v2 is a subspace of the

column space of A, we can always find a column sub-matrix Z1 2 Rn⇥2p1 of Z such that Z1 spans
the column space of Av1,v2 . Therefore, for each i 2 [n], we have

`2
i

(Av1,v2
) = ke>

i

Z1k2
2  ke>

i

Zk2
2 = `2

i

(A).

Lemma 5. Suppose A 2 Rn⇥
Q2

d=1 pd has leverage scores `2
i

(A) for all i 2 [n]. Then for

any v(r)
i

2 Rp2 , i 2 [2], r 2 [R] with R  p2/2, the leverage scores of A

n

v

(r)
i

o

=

h

Av

(1)
1 , . . . , Av

(R)
1 , Av

(1)
2 , . . . , Av

(R)
2

i

2 Rn⇥2Rp1 are bounded by `2
i

✓

A

n

v

(r)
i

o

◆

 `2
i

(A).

Proof. Let Z have orthonormal columns and have the same span as the column space of A. Then

we have `2
i

(A) = ke>
i

Zk2
2 for all i 2 [n]. Since the column space of A

n

v

(r)
i

o

is a subspace of the
column space of A, as the column space of each Av

(r)
i is a subspace of the column space of A, we

can always find a column sub-matrix Z1 2 Rn⇥2Rp1 of Z such that Z1 spans the column space of

A

n

v

(r)
i

o

. Therefore, for each i 2 [n], we have

`2
i

✓

A

n

v

(r)
i

o

◆

= ke>
i

Z1k2
2  ke>

i

Zk2
2 = `2

i

(A).
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Lemma 6. For any v1, v2 2 B
p2 , suppose hv1, v2i = 0, and v1, v2 2 B

p2 are vectors such that
kv1 � v1k2  ⌘0 and kv2 � v2k2  ⌘0. Then we have

⇢Fin([A
v1 , Av2

], [Av1 , Av2
])  2

A

⌘0.

Proof. Denote Av1,v2
= [Av1 , Av2

]. From a perturbation bound for orthogonal projections given in
[14], we have

⇢Fin(A
v1,v2 , Av1,v2

)  kAv1,v2 � Av1,v2k2

�min(Av1,v2
)

. (46)

We first provide an upper bound on the numerator as

kAv1,v2 � Av1,v2k2 =

�

�

�

�

�

"

p2
X

i=1

A(i)
(v1,i � v1,i),

p2
X

i=1

A(i)
(v2,i � v2,i)

#

�

�

�

�

�

2


�

�

�

�

�

p2
X

i=1

A(i)
(v1,i � v1,i)

�

�

�

�

�

2

+

�

�

�

�

�

p2
X

i=1

A(i)
(v2,i � v2,i)

�

�

�

�

�

2

 2�max(A)⌘0, (47)

where the last inequality is from Lemma 2.

Next, we provide a lower bound on the denominator. Let [u>
1 , u>

2 ]

> be a unit vector corresponding to
the smallest singular value of Av1,v2 , where u1, u2 2 Rp1 . Then we have

�min(Av1,v2
) =

�

�

�

�

Av1,v2



u1

u2

�

�

�

�

�

2

= kA(v1 ⌦ u1 + v2 ⌦ u2)k2 � �min(A)kv1 ⌦ u1 + v2 ⌦ u2k2

= �min(A)

q

kv1 ⌦ u1k2
2 + kv2 ⌦ u2k2

2 + 2hv1 ⌦ u1, v2 ⌦ u2i

= �min(A)

v

u

u

tku1k2
2 + ku2k2

2 + 2

p2
X

i=1

p1
X

j=1

v1,iu1,jv2,iu2,j

= �min(A)

p

1 + 2hv1, v2ihu1, u2i = �min(A), (48)

where the last equality is from the condition hv1, v2i = 0. We finish the proof by combining (46),
(47), and (48).

Lemma 7. For all i 2 [2] and r 2 [R], v(r)
i

2 B
p2 . Suppose for all i 2 [2], r 2 [R], q 2 [R]\{r},

we have hv(r)
i

, v(q)
i

i = hv(r)
1 , v(r)

2 i = 0. Further suppose for all i 2 [2] and r 2 [R], v(r)
i

2 B
p2

is a vector such that kv(r)
i

� v(r)
i

k2  ⌘0. Denote A

n

v

(r)
i

o

=

h
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(1)
1 , . . . , Av

(R)
1 , Av

(1)
2 , . . . , Av

(R)
2

i

.
Then we have
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✓

A

n

v

(r)
i

o

, A

n

v

(r)
i

o

◆

 2R
A

⌘0.

Proof. From the perturbation bound for orthogonal projection given in [14], we have
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✓

A

n

v

(r)
i

o

, A

n

v

(r)
i

o

◆



�

�

�

�

A

n

v

(r)
i

o

� A

n

v

(r)
i

o

�

�

�

�

2

�min

✓

A

n

v

(r)
i

o

◆ . (49)
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We first upper bound the numerator as
�

�

�

�

A

n

v

(r)
i

o

� A

n
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i

o

�

�

�
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=
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�
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A
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⇣
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A
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⌘
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�

2

 2R�max(A)⌘0, (50)

where the last inequality is from Lemma 2.

Next, we provide a lower bound on the denominator. Let
h

u(1)>
1 , . . . , u(R)>

1 , u(1)>
2 , . . . , u(R)>

2

i>
2

R2Rp1 be a unit vector corresponding to the smallest singular value of A

n

v

(r)
i

o

, where u(r)
i
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for all i 2 [2] and r 2 [R]. Then we have
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R
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R

X
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i
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i
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i

i

= �min(A), (51)

where the last equality uses the conditions that for all i 2 [2] and r 2 [R], hv(r)
i

, v(q)
i

i = hv(r)
1 , v(r)

2 i =

0 for q 2 [R]\{r}. We finish the proof by combining (49), (50), and (51).

Lemma 8. For all d 2 [D]\{1}, ✓
d

,�
d

2 B
pd . Suppose there exists an i 2 [D]\{1} such that

h✓
i

,�
i

i = 0. Further suppose for all d 2 [D]\{1}, ✓
d

,�
d

2 B
pd are vectors such that k✓

d

�✓
d

k2  ⌘0
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h

A{✓\1}, A{�\1}i 2 Rn⇥2p1 . From the perturbation bound for orthogonal
projection given in [14], we have
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We denote
P

j2···jD =

P

pD

jD=1 · · ·
P
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j2=1. We first provide an upper bound on the numerator:
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�
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2

�
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�

(1 + ⌘0)
D�1 � 1

�
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where the second inequality is from Lemma 2 and the last inequality is from Lemma 3.

Next, we provide a lower bound on the denominator. Let [u>
1 , u>

2 ]

> be a unit vector corresponding to
the smallest singular value of A#\1,'\1 , where u1, u2 2 Rp1 . Then we have
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where the last inequality is from h✓
i

,�
i

i = 0 for some i 2 {2, . . . , D}. We finish the proof by
combining (52), (53) and (54).

Lemma 9. For all d 2 [D]\{1} and r 2 [R], ✓(r)
d

,�(r)
d

2 B
pd . Suppose that for any r, q 2 [R],

there exists an i 2 [D]\{1} such that h✓(r)
i

,�(q)
i

i = 0, and further, for all r 2 [R � 1], q 2 [R]\[r],
there exist j, k 2 [D]\{1} such that h✓(r)

j

, ✓(q)
j

i = 0 and h�(r)
k

,�(q)
k

i = 0. Further suppose for

all d 2 [D]\{1} and r 2 [R], ✓
(r)

d

,�
(r)

d

2 B
pd are vectors such that k✓(r)

d

� ✓
(r)

d

k2  ⌘0 and
k�(r)

d

� �
(r)

d

k2  ⌘0. Then we have

⇢Fin

✓

A

n

✓

(r)
\1

o

, A

n

�

(r)
\1

o

�

,



A

n

✓

(r)
\1

o

, A

n

�

(r)
\1

o

�◆

 2R
A

�

(1 + ⌘0)
D�1 � 1

�

.

Proof. Denote A

n

#

(r)
\1 ,'

(r)
\1

o

=



A

n

✓

(r)
\1

o

, A

n

�

(r)
\1

o

�

2 Rn⇥2Rp1 . From the perturbation bound on

orthogonal projection given in [14], we have

⇢Fin

✓

A

n

#

(r)
\1 ,'

(r)
\1

o

, A

n

#

(r)
\1 ,'

(r)
\1

o

◆



�

�

�

�

�

A

n

#

(r)
\1 ,'

(r)
\1

o

� A

n

#

(r)
\1 ,'

(r)
\1

o

�

�

�

�

�

2

�min

✓

A

n

#

(r)
\1 ,'

(r)
\1

o

◆ . (55)

27



We denote
P
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where the second inequality is from Lemma 2 and the last inequality is from Lemma 3.
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where the last inequality is from the conditions on ✓(r)
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. We finish the proof by combining
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where the second inequality is from Lemma 2 and the last inequality is from Lemma 3.
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