A Proof of Theorems 1 and 2

Proof: [Theorem 1] Let x = [z1;23] y = [v1;Va] then the proximal operator of f(z) =
Amax(]|z1]|2, ||x2]|2) can be expressed as

1
U = proxy(y) = argmin §||~"L“ —yll3 + f(2)
1 9 1 2
= arg min |z — vi|l3 + S lz2 — vall3
T1,T2 2 2

+ Amax(|[z1]]2, [|z2(]2)- (6)

Now, splitting the search space into two subspace S1 = {z|||z1]|2 > ||z2]|2} and its complement
space Sa = {xz|||z2]|2 > ||z1]|2}. If we confine our search to subspace S; the optimization problem
(6) can be reformulated as the following convex constraint problem

1 1
min o [z — vi 3 + S llza = vall3 + Az 2.
x1,22 2 2
subject to ||z1|[2 > [|z2]|2 (7
According to KKT optimality conditions for convex problem (Boyd and Vandenberghe, |2004), a point
x* = [x7T; 3] is optimal point of this optimization problem if the following conditions are satisfied:
(x5 = va) +vay/||z3lls = 0
(21 —v1) + Az /aills — vay/|atll2 = O
[21ll2 = [lz3][2 = 0

v(l|lz7ll2 = #3]l2) = 0
v>0 (8)

where v is the Lagrange multiplier for the inequality constraint. Solving (8) for ], x5 and v one can
readily obtain

xf = vy * max{1l — \/LV%H’O} ©
a5 = vy xmax{l — £7k, 0}
According to the slackness condition () if ||z7||2 — ||z5]l2 > 0 then v = 0 or if v > 0 then
[|z%]]2 = ||%||2- Therefore the optimal v can be obtained as
v=20 if |[vi|| + A < [[va|
v="S5(vill = Ivall +A) if [lval < [lva] < [[vall + A
Hence, the optimum solution under 57 is
T =V )
" if [vi||+A<|v
lxz = vy * max{1l — |v2|’0}] val vl
(10)

lx}‘ = vy max{l — 7, 0}

* A—v
aj = vy xmax{l — $7, 0}

1 if |[vi|l < [vall < [[vill + A

We can repeat the same approach to obtain the optimal solution for the complement subspace .S;. H

Lemma 2 Let Gyf(x,v) := L||x — v||3 + \f(2) therefore the Moreau envelope of function \f is
defined as M f(v) := ming Gs(x,v) (Parikh and Boyd, 2013)).
a) M)\f (V) = G>\f (prOXAf(v)a U)

b If f(2) = ||zll2v = max([[z1][2, [[z2]|2) we have
MajJla, (V) = max Mig (V) + Maa—y).ja (vV2) (11)

Proof: a) This is simply follows from the definition of proximal operator.
b) We can simply show that

el = gnax, (vllarfl2 + (1= )za]2)
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then its Moreau envelop is
1 , 1 )
Mg, (v)(v) = min 5[z = vifz + S22 = val2

+A nax, (Ylz1llz + (1 = )lz2ll2)

1 2
frm— 1 - - A
0?3%(11211112“% vilz + Ayl

o1
+ min — ||z — VQH% + (1= y)A[[22l2
z2 2

T oh2 My g2 (V1) + Maa -y (v2)

|
Proof: [Theorem 2] The Moreau envelope of R.(v) is
: 1 2 1 2
Mg, (v)(v) = min S|z — vil3 + S[lz2 — v2[[3
T1,T2 2 2
+ )\Ogljgl (Ylz1ll2 + (1 = l222) + viRi(vi) + v2Ra(va)
o1
= jnax min Sl =v1 15 + Ayllzll2 + v Ra(v1)
1
+min o f|z2 — vall3 + (1 =) A[z2l2 + v2Ra(va)
T2
= 02X My lates 82 (V1) + Maa—a)| o402 Ro (V2)
(12)

Let hq(v1) := My||vill2 + v1R1(v1) and ha(v) := A(1 — 7)||va|l2 + v2R2(v2). From (Haeffele
et al.,|2014, Theorem 3), we know that prox;, (vi) = prox, |, (prox,, g, (v1)) and prox,, (vs) =

ProX, (1 _+)|.|, (Prox,,, g, (v2)), and so

Mhl (Vl) = MA’yH-H'z (proxulRl (Vl))

M (v2) = M- |15 (ProX,, g, (V2)) (13)
Then based on and (13)), we obtain

Mp.w)(V) = max Myy i, (prox,, g, (v1))
+ M=y (ProX,, g, (V2)) (14)
Finally, based on above equation and (TTJ), we conclude the following composition rule for
Mg, () (V) = My, ([Prox,, g, (v1); prox,, g, (v2)])

and according to Lemma 1 the proximal operator is

proxp, (V) = proxy i, ([prox,, g, (v1); prox,, g, (v2)))-
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Table 3: Synthetic time series

Bernoulli d=5 , k=3|Bernoulli d=8 , k=6|Bernoulli d=16 , k=9 Poisson d=5 ,k=3 | Poisson d=8 , k=6
GOF, [Time| GOFy |Time| GOFy | Time | GOF, |Time| GOF, |Time
LDS-MYV |[0.66+0.01| 3.03 [0.59+0.01| 2.40 |0.51+0.01] 2.52 [0.59+0.02( 0.61 [0.51+0.02| 1.70
N4SID [0.77+0.01| 1.01 [0.82+0.01| 1.68 |0.75+0.01| 4.63 [1.40+021|0.36 |1.59+033|0.49
EM 0.75+001| 2.46 [0.67+0.01| 4.61 |0.63+0.01| 24.17 |1.60+0.34| 1.83 |2.53+0.60| 2.48

The first column of each dataset is the average goodness-of-fit (GOF) for one step prediction with standard error
and the second column is the algorithm runtime in CPU seconds. The best GOF according to pairwise #-test with
significance level of 5% is highlighted.

B Experimental results for discrete value time series

One of the major advantages of formulation (@) is its natural flexibility to encompass any convex
loss function such as the Bregman divergences that associate with exponential family distributions
and can express a broad range of data property with non-linear transfers. An application that gains
benefits from the aforementioned property is to model the count data process with generalized LDS
model and consequently adopting the two view formulation to identify the model parameters. An
integer-valued stochastic process, that explains the number of occurrence of one phenomenon, can
be properly modeled by Poisson distribution (Macke et al., 2015). Therefore, the LDS with Poisson
distributed observation can be expressed as:

bi41 = A + 1
Zy = f(C¢t)

Blxialzie) = £ (80 exp(-x) (s)
where f(0) = exp(@). The exponential mapping is not only a natural choice in applications
such as neural spike-rate modeling, as explained in (Macke et al.,|[2015), it also matches with the
transfer function associated with the Poisson distribution. Therefore, the negative log-likelihood
loss for this model can be characterized by the Bregman divergence, defined as Dp (z|z) :=
F(z) — F(z) — f(z)" (2 — z) where F/(8) = 1T exp(0) (f(8) = exp(0)) is potential (transfer)
function corresponding to Poisson distribution.

In Table 3, we compare the performance of the LDS-DV method against the standard N4SID and EM
for synthetic time series setting.

For boolean setting, data are sampled from Bernoulli distribution whose mean is changed according
to non-linear transfer function of the LDS model where sigmoid transfer function £(8) = (1 +
exp(—0))~" is used (Banerjee et al., [2005). Each test case is averaged over 100 data sequences
where data are generated similar to synthetic setting S1 of section|5. For Poisson setting, data are
sampled based on model where the final results averaged over 30 data sequences.

Goodness-of-fit for the Bernoulli distribution is the misclassification error: GOF;, = ﬁ tT;Cft ly: #

9(z¢)|l1 » 9(0) = Ig>0.5. And for the Poisson distribution, we define goodness-of-fit as GOF,, =
L S lys = h(24) |1 s h(2) = mode(P(2)) = max, p(z|p = 2).

Td £at=1
This results are just some primitive results to show the capability of the proposed method in modeling
generalized-LDS models.
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