
A Proof of Theorems 1 and 2

Proof: [Theorem 1] Let x = [x1;x2] y = [v1;v2] then the proximal operator of f(x) =
�max(kx1k2, kx2k2) can be expressed as

u = proxf(v) = argmin
x

1

2
kx� yk22 + f(x)

= arg min
x1,x2

1

2
kx1 � v1k22 +

1

2
kx2 � v2k22

+ �max(kx1k2, kx2k2). (6)
Now, splitting the search space into two subspace S1 = {x|kx1k2 � kx2k2} and its complement
space S2 = {x|kx2k2 � kx1k2}. If we confine our search to subspace S1 the optimization problem
(6) can be reformulated as the following convex constraint problem

min
x1,x2

1

2
kx1 � v1k22 +

1

2
kx2 � v2k22 + �kx1k2.

subject to kx1k2 � kx2k2 (7)

According to KKT optimality conditions for convex problem (Boyd and Vandenberghe, 2004), a point
x
⇤ = [x⇤

1;x
⇤
2] is optimal point of this optimization problem if the following conditions are satisfied:

(x⇤
2 � v2) + ⌫x

⇤
2/kx⇤

2k2 = 0

(x⇤
1 � v1) + �x

⇤
1/kx⇤

1k2 � ⌫x
⇤
1/kx⇤

1k2 = 0

kx⇤
1k2 � kx⇤

2k2 � 0

⌫(kx⇤
1k2 � kx⇤

2k2) = 0

⌫ � 0 (8)
where ⌫ is the Lagrange multiplier for the inequality constraint. Solving (8) for x⇤

1, x
⇤
2 and ⌫ one can

readily obtain
"
x
⇤
1 = v1 ⇤max{1� ⌫

kv1k , 0}
x
⇤
2 = v2 ⇤max{1� ��⌫

kv2k , 0}

#
(9)

According to the slackness condition () if kx⇤
1k2 � kx⇤

2k2 � 0 then ⌫ = 0 or if ⌫ > 0 then
kx⇤

1k2 = kx⇤
2k2. Therefore the optimal ⌫ can be obtained as

(
⌫ = 0 if kv1k+ � < kv2k
⌫ = .5(kv1k � kv2k+ �) if kv1k  kv2k  kv1k+ �

Hence, the optimum solution under S1 is
8
>>>><

>>>>:

"
x
⇤
1 = v1

x
⇤
2 = v2 ⇤max{1� �

kv2k , 0}

#
if kv1k+ � < kv2k

"
x
⇤
1 = v1 ⇤max{1� ⌫

kv1k , 0}
x
⇤
2 = v2 ⇤max{1� ��⌫

kv2k , 0}

#
if kv1k  kv2k  kv1k+ �

(10)

We can repeat the same approach to obtain the optimal solution for the complement subspace S2. ⌅

Lemma 2 Let G�f (x, v) :=
1
2kx� vk22 + �f(x) therefore the Moreau envelope of function �f is

defined as M�f (v) := minx G�f (x, v) (Parikh and Boyd, 2013).
a) M�f (v) = G�f (prox�f(v), v)
b) If f(x) = kxk2v = max(kx1k2, kx2k2) we have

M�k.k2v
(v) = max

0�1
M��k.k2

(v1) +M�(1��)k.k2
(v2) (11)

Proof: a) This is simply follows from the definition of proximal operator.
b) We can simply show that

kxk2v = max
0�1

(�kx1k2 + (1� �)kx2k2)
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then its Moreau envelop is

MRc(v)(v) = min
x1,x2

1

2
kx1 � v1k22 +

1

2
kx2 � v2k22

+� max
0�1

(�kx1k2 + (1� �)kx2k2)

= max
0�1

min
x1

1

2
kx1 � v1k22 + ��kx1k2

+min
x2

1

2
kx2 � v2k22 + (1� �)�kx2k2

= max
0�1

M��k.k2
(v1) +M�(1��)k.k2

(v2)

⌅
Proof: [Theorem 2] The Moreau envelope of Rc(v) is

MRc(v)(v) = min
x1,x2

1

2
kx1 � v1k22 +

1

2
kx2 � v2k22

+ � max
0�1

(�kx1k2 + (1� �)kx2k2) + ⌫1R1(v1) + ⌫2R2(v2)

= max
0�1

min
x1

1

2
kx1 � v1k22 + ��kx1k2 + ⌫1R1(v1)

+ min
x2

1

2
kx2 � v2k22 + (1� �)�kx2k2 + ⌫2R2(v2)

= max
0�1

M��k.k2+⌫1R1
(v1) +M�(1��)k.k2+⌫2R2

(v2)

(12)

Let h1(v1) := ��kv1k2 + ⌫1R1(v1) and h2(v) := �(1 � �)kv2k2 + ⌫2R2(v2). From (Haeffele
et al., 2014, Theorem 3), we know that proxh1

(v1) = prox��k.k2
(prox⌫1R1

(v1)) and proxh2
(v2) =

prox�(1��)k.k2
(prox⌫2R2

(v2)), and so

Mh1(v1) = M��k.k2
(prox⌫1R1

(v1))

Mh2(v2) = M�(1��)k.k2
(prox⌫2R2

(v2)) (13)

Then based on (12) and (13), we obtain

MRc(v)(v) = max
0�1

M��k.k2
(prox⌫1R1

(v1))

+M�(1��)k.k2
(prox⌫2R2

(v2)) (14)

Finally, based on above equation and (11), we conclude the following composition rule for

MRc(v)(v) = M�k.k2v
([prox⌫1R1

(v1); prox⌫2R2
(v2)])

and according to Lemma 1 the proximal operator is

proxRc
(v) = prox�k.k2v

([prox⌫1R1
(v1); prox⌫2R2

(v2)]).

⌅
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Table 3: Synthetic time series

Bernoulli d=5 , k=3 Bernoulli d=8 , k=6 Bernoulli d=16 , k=9 Poisson d=5 ,k=3 Poisson d=8 , k=6
GOFb Time GOFb Time GOFb Time GOFp Time GOFp Time

LDS-MV 0.66±0.01 3.03 0.59±0.01 2.40 0.51±0.01 2.52 0.59±0.02 0.61 0.51±0.02 1.70
N4SID 0.77±0.01 1.01 0.82±0.01 1.68 0.75±0.01 4.63 1.40±0.21 0.36 1.59±0.33 0.49
EM 0.75±0.01 2.46 0.67±0.01 4.61 0.63±0.01 24.17 1.60±0.34 1.83 2.53±0.60 2.48

The first column of each dataset is the average goodness-of-fit (GOF) for one step prediction with standard error
and the second column is the algorithm runtime in CPU seconds. The best GOF according to pairwise t-test with
significance level of 5% is highlighted.

B Experimental results for discrete value time series

One of the major advantages of formulation (4) is its natural flexibility to encompass any convex
loss function such as the Bregman divergences that associate with exponential family distributions
and can express a broad range of data property with non-linear transfers. An application that gains
benefits from the aforementioned property is to model the count data process with generalized LDS
model and consequently adopting the two view formulation to identify the model parameters. An
integer-valued stochastic process, that explains the number of occurrence of one phenomenon, can
be properly modeled by Poisson distribution (Macke et al., 2015). Therefore, the LDS with Poisson
distributed observation can be expressed as:

�t+1 = A�t + ⌘t

zt = f(C�t)

P(xi,t|zi,t) =
1

xi,t!
(zi,t)

xi,t exp(�xi,t) (15)

where f(✓) = exp(✓). The exponential mapping is not only a natural choice in applications
such as neural spike-rate modeling, as explained in (Macke et al., 2015), it also matches with the
transfer function associated with the Poisson distribution. Therefore, the negative log-likelihood
loss for this model can be characterized by the Bregman divergence, defined as DF (ẑkz) :=
F (ẑ) � F (z) � f(z)>(ẑ � z) where F (✓) = 1> exp(✓) (f(✓) = exp(✓)) is potential (transfer)
function corresponding to Poisson distribution.

In Table 3, we compare the performance of the LDS-DV method against the standard N4SID and EM
for synthetic time series setting.

For boolean setting, data are sampled from Bernoulli distribution whose mean is changed according
to non-linear transfer function of the LDS model where sigmoid transfer function f(✓) = (1 +
exp(�✓))�1 is used (Banerjee et al., 2005). Each test case is averaged over 100 data sequences
where data are generated similar to synthetic setting S1 of section 5. For Poisson setting, data are
sampled based on model (15) where the final results averaged over 30 data sequences.

Goodness-of-fit for the Bernoulli distribution is the misclassification error: GOFb =
1
Td

PTtest

t=1 kyt 6=
g(ẑt)k1 , g(✓) = I✓�0.5. And for the Poisson distribution, we define goodness-of-fit as GOFp =
1
Td

PTtest

t=1 kyt � h(ẑt)k1 , h(ẑ) = mode(P (ẑ)) = maxx p(x|µ = ẑ).

This results are just some primitive results to show the capability of the proposed method in modeling
generalized-LDS models.
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