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A Detailed theoretical analysis

Proposition 1. For any fixed generator G, and G, the optimal discriminator Dy and D5 of the
game defined by the value function V (G, Gy, D1, D3) is

pw(may)
pe(x,y) + py(m,y)

p(z,y)
p(x,y) + pa(x,y) + py(x,y)’

Di(x,y) =

D3 (z,y) =

Proof. The training criterion for the discriminator D; and D», given any generator GG, and G, is to
maximize the quantity V (G, Gy, D1, D2):

V(GG D1 D) :/w/yp(w’y) IOng(w’y)dwdy+Lme(w7y) log(1 — Di (@, y))dady
+/m/ypm(x,y) 1ogD2($7y)dmdy+/m/ypy(m,y) log(1 — Dy (x,y))dxdy
+/m/ypy(fvay) log(1 — Dy(x,y))dzdy .

Following [I], for any (a,b) € R*\{0,0}, the function y — alogy + blog(1l — y) achieves its
maximum in [0, 1] at 4. This concludes the proof. O

Proposition 2. The equilibrium of V (G, Gy, D1, Ds) is achieved if and only if p(x,y) =

ps(x,y) = py(@,y) with Di(z,y) = £ and D}(x,y) = %, and the optimum value is —3log 3.

Proof. Given the optimal D (x,y) and D} (x, y), the minimax game can be reformulated as:

C(Gy, Gy) = max V(Gy, Gy, D1, Dy) (1)
p(x,y)
= E(m a)on(ma) | 10 )
(@.3)~p( ’y)[ gp(w,y)erz(w,y)ery(w,y)]
Dz, Y)
+ E(z y)pa (@,y) | 1O 3)
(@) p= ’w[ gp(m,ywpm(m,ywpy(m,y)}

py(w7y) }
p(x,y) + pa(x,y) +py(x,9) ]

+ E@,y)~p, (2.9) {IOg “4)
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Note that

C(Gy,G3) = —310g3+KL(p Hp z,y) +pz(x3 ,Y) + py (e, y)> .
+KL(pz(w’y)Hp z,y) +px(ﬂgy)+py( ,y)> "
JrKL(py(m y)HP(w,y) +pz(ﬂ§y) +py(:1:,y)>' o

Therefore,
C(G1,Ga) = ~3log3+3 - JSD (p(,y), pu(@, y),py (2,) ) = ~3log3, ®)

where JSDyr, . = (p1,p2,...,Pn) = H(Z?Zl 7ripl> — > miH(p;) is the Jensen-Shannon

divergence. 7y, ..., T, are weights that are selected for the probability distribution p1, p2, ..., Pn,
and H (p) is the entropy for distribution p. In the three-distribution case described above, we set

n:3and7r1:7r2:7r3:§.

For p(z,y) = p.(x,y) = py(x,y), we have D (x,y) = %, Dj(x,y) = % and C(G,,G,) =
—3log 3. Since the Jensen-Shannon divergence is always non-negative, and zero iff they are equal,
we have shown that C* = —3log 3 is the global minimum of C'(G,, G,,) and that the only solution is
p(x,y) = pe(x,y) = py(x,y), i.e., the generative models perfectly replicating the data distribution.

O
B A-GAN training procedure
Algorithm 1 A-GAN training procedure.
0,0, < initialize network parameters
repeat
(mz(,l), yz(;l)), (méM), yéM)) ~ p(xz,y) > Get M paired data samples
w&l), , a:ELM) ~ p(x) > Get M unpaired data samples
(1) (M)

> Sample from the conditionals

> Compute discriminator predictions
p1i2 < Di(z g)ﬂy&))’pgg%Dl(wgi)a:gg)% i=1....M

p§1)<—Dz( 5}),y&)) pé?HDz(wii),@Sf)% i=1...,M

La, M Sy log ot — 4 Y3l log(1 — i) — 3 YL log(1 — p{Y))

La, M El | log pgl) - = jj\il log(1 — p(QJ;) > Compute discriminator loss
Ly + — M ZZ | log p(l 1 M log(1 — pgjl)) > Compute generator loss
Lo, < =31 Zz 1 log p(l) 1 j= 1 log Péz)

04 04—V, Ly, + £d2) > Gradient update on discriminator networks
0,0, —Vo,(Ly +Ly,) > Gradient update on generator networks

until convergence

C Additional experimental results



Input:

Output:

Input ’ i
images | ’ o

Attractive, Bags Under Blond Hair, Attractive, Attracti Brown Hair,
Smiling, High Eyes, No Mouth Slightly | Black Hair, Blorzz g:i’r No Bushy
Predicted | Cheekbones, Open, Rosy Beard, Young, | Beard, Pointy | Open, Narrow | Male,No X Eyebrows,

Beard, Pointy
Nose, Smiling,
Straight Hair

High
Cheekbones,
Young

No Beard, Cheeks, Wearing Nose, Smiling, | Eyes, No Beard, Pointy
Oval Face, Wearing Lipstick Wearing Beard, Straight | Nose, Straight
Lipstick Lipstick Hair, Young Hair

attributes

Generated
images

1st row + wearing hat = 2nd row

Figure 3: Additional results on the image editing experiment.
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Figure 4: Additional results on the image-to-attribute-to-image experiment.



Figure 5: Attribute-conditional image generation on the COCO dataset. Input attributes are omited for brevity.

Table 1: Results of P@5 and nDCG@5 for attribute predicting on CelebA and COCO.

Dataset CelebA | COCO

Method 1% 10% 100 % ‘ 10% 50% 100 %
Triple GAN  49.35/52.73  73.68/74.55 80.89/78.58 | 38.98/41.00 41.08/43.50 43.18/46.00
A-GAN 59.55/60.53 74.06/75.49  80.39/79.41 | 41.51/43.55 44.42/46.40 47.32/49.24

Table 2: Results of P@3 and nDCG@3 for attribute predicting on CelebA and COCO.

Dataset CelebA | COCO

Method 1% 10% 100 % ‘ 10% 50% 100 %
Triple GAN  55.30/56.87  76.09/75.44  83.54/84.74 | 42.23/43.60 45.35/46.85 48.47/50.10
A-GAN 62.62/62.72  76.04/76.27 84.81/86.85 | 45.45/46.56  48.19/49.29  50.92/52.02

D Evaluation metrics for multi-label classification

Precision@k  Precision at k is a popular evaluation metric for multi-label classification problems.
Given the ground truth label vector y € {0, 1} and the prediction ¢ € [0, 1]¥, PQk is defined as

1
— § 0}

leranky ()

Precision at k£ performs evaluation that counts the fraction of correct predictions in the top k scoring
labels.

nDCG@Fk normalized Discounted Cumulative Gain (nDCG) at rank k£ is a family of ranking
measures widely used in multi-label learning. DCG is the total gain accumulated at a particular rank
p, which is defined as

Y0

D = —_—.
caak Z log(l +1)

leranky ()
Then normalizing DCG by the value at rank k of the ideal ranking gives

DCGQak

Emiﬂ(’c,llyHO) 1
=1 log(i+1)

NQk =



E Detailed network architectures

For the CIFAR10 dataset, we use the same network architecture as used in Triple GAN [2]. For the
edges2shoes dataset, we use the same network architecture as used in the pix2pix paper [3l]. For other

datasets, we provide the detailed network architectures below.

Table 3: Architecture of the models for A-GAN on MNIST. BN denotes batch normalization.

Generator A to B

| Generator B to A

Discriminator

Input 28 x 28 Gray Image

| Input 28 x 28 Gray Image

Input two 28 x 28 Gray Image

5 x 5 conv. 32 ReLU, stride 2, BN
5 x 5 conv. 64 ReLU, stride 2, BN
5 x 5 conv. 128 ReLU, stride 2, BN

Dropout: 0.1
MLP output 28 x 28, sigmoid

5 x 5 conv. 32 ReLU, stride 2, BN
5 x 5 conv. 64 ReLU, stride 2, BN
5 x b5 conv. 128 ReLU, stride 2, BN
Dropout: 0.1
MLP output 28 x 28, sigmoid

5 x 5 conv. 32 ReLU, stride 2, BN
5 x 5 conv. 64 ReLU, stride 2, BN
5 x 5 conv. 128 ReLU, stride 2, BN

Dropout: 0.1
MLP output 1, sigmoid

Table 4: Architecture of the models for A-GAN on CelebA. BN denotes batch normalization. IReLU denotes
Leaky ReL.U.

Generator A to B

Input 64 x 64 x 3 Image

| Generator B to A

Discriminator

4 x 4 conv. 32 IReLLU, stride 2, BN

‘ Input 1 x 40 attributes, 1 x 100 noise ‘ Input 64 x 64 Image and 1 x 40 attributes

4 x 4 conv. 64 1ReLU, stride 2, BN
4 x 4 conv. 128 IReLU, stride 2, BN
4 x 4 conv. 256 IReLU, stride 2, BN
4 x 4 conv. 512 IReLU, stride 2, BN

MLP output 512, IReLU
MLP output 40, sigmoid

concat input
MLP output 1024, IReLU, BN
MP output 8192, IReLU, BN
concat attributes
5 x 5 deconv. 256 ReL.U, stride 2, BN
5 x 5 deconv. 128 ReLU, stride 2, BN
5 x 5 deconv. 64 ReLU, stride 2, BN

concat two inputs
5 x 5 conv. 64 ReLU, stride 2, BN
5 x 5 conv. 128 ReLU, stride 2, BN

5 x 5 conv. 256 ReLU, stride 2, B
5 x 5 conv. 512 ReLLU, stride 2, BN

5 x 5 deconv. 3 tanh, stride 2, BN MLP output 1, sigmoid

Table 5: Architecture of the models for A-GAN on COCO. BN denotes batch normalization. IReLU denotes
Leaky ReLU. Dim denotes the number of attributes.

Generator A to B |
Input 64 x 64 x 3 Image

4 x 4 conv. 32 IReLU, stride 2, BN
4 x 4 conv. 64 1ReLU, stride 2, BN
4 x 4 conv. 128 IReLU, stride 2, BN
4 x 4 conv. 256 IReLU, stride 2, BN
4 x 4 conv. 512 IReLU, stride 2, BN

Generator B to A ‘ Discriminator
\ Input 1 x 40 attributes, 1 x 100 noise \ Input 64 x 64 Image and 1 X Dim attributes
concat inputs
MLP output 16384, BN
ResNet Block
4 x 4 deconv. 512, stride 2
3 x 3 conv. 512, stride 1, BN
ResNet Block
4 x 4 deconv. 256, stride 2
3 x 3 conv. 256, stride 1, BN
4 x 4 deconv. 128 ReLLU, stride 2
3 X 3 conv. 128 ReLLU, stride 1, BN
4 x 4 deconv. Dim, stride 2
3 X 3 conv. Dim tanh, stride 1

concat conditional inputs

5 X 5 conv. 64 ReLU, stride 2, BN

5 X 5 conv. 128 ReL.U, stride 2, BN
ResNet Block

5 x 5 conv. 256 Rel .U, stride 2, BN
1 x 1 conv. 512 IReLU, stride 1, BN

5 x 5 conv. 512 ReLl.U, stride 2, BN
4 x 4 conv. Dim sigmoid, stride 4

MLP output 1, sigmoid
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