
Supplementary Material

Proofs of Theorem 1 and Theorem 2

Organization of Proofs

We first prove Theorem 2 in Section 1, which gives us a sufficient condition for top-K ranking. We then prove Theorem 1
in Section 4, which gives us a necessary condition for top-K ranking.

To prove Theorem 2, we establish two additional theorems. One theorem (Theorem 3 in Section 2) describes an
`∞ estimation error bound, and the other (Theorem 4 in Section 3) describes an `2 estimation error bound. To begin
with, we show that Theorem 3 implies Theorem 2, and make the proof of Theorem 2 boil down to proving Theorem 3.

The proof of Theorem 3 is, as emphasized in the paper, where we make our theoretical contribution; we sharply
link the `2 error bound (derived in Theorem 4) to the `∞ error bound, leading them to be on the same order. Lemma 3
plays a key role in establishing the link. It applies Janson’s inequality (Janson 2002) stated in Lemma 4 to describe
the concentration behavior of sums of dependent random variables.

In the proof of Theorem 4, we derive the `2 error bound that we use in proving Theorem 3. It adopts a similar
line of steps to that taken in (Negahban, Oh and Shah 2016). The key difference is that we perform more involved
calculations, as we consider a more general model.

To prove Theorem 1, we make use of the generalized Fano’s inequality due to (Han and Verdú 1994). The line of
steps we follow is similar to that taken in the proof of Theorem 2 in (Chen and Suh 2015). However, the details of the
steps are more involved including combinatorial calculations, as we consider a more general model.

We note that, to help enhance readability for proofs that involve many steps and sub-proofs, we provide a brief
outline at the beginning of each proof.

1 Proof of Theorem 2

Theorem 2. Given an M -wise comparison graph G = ([n], E(M)) and p ≥ c1(M − 1)
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then Rank Centrality correctly identifies the top-K ranked items with high probability, where c1 is some numerical
constant.

Proof: To distinguish the top-K items from the rest, the pointwise error of each item becomes a fundamental bottleneck
for top-K ranking. It will be impossible to separate the Kth and (K + 1)th ranked items unless their score separation
exceeds the aggregate error of the score estimates for the two items. Based on this observation, we figure out an upper
bound of the maximal pointwise error ‖ŵ − w‖∞, where w is the ground-truth preference score vector and ŵ is an
estimate of w, in Theorem 3. We will soon show that Theorem 3 implies Theorem 2.

Theorem 3. `∞ norm estimation errors can be upper-bounded by

‖ŵ −w‖∞
‖w‖∞

.

√
n log n(
n
M

)
pL

√
1

M
, (2)

1



with high probability, where p ≥ c1(M − 1)

√
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, and c1 is some numerical constant.

Let us first show that Theorem 3 implies Theorem 2. Later, we will provide the proof of Theorem 3 in detail. Let

‖w‖∞ = wmax = 1 for ease of representation. Suppose ∆K = wK − wK+1 &
√

logn

(nM)pL

√
1
M , then

ŵi − ŵj ≥ wi − wj − |ŵi − wi| − |ŵj − wj | ≥ wK − wK+1 − 2‖ŵ −w‖∞ > 0, (3)

for all 1 ≤ i ≤ K and j ≥ K + 1, indicating that the algorithm outputs the top-K items as desired. Hence, as long as
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M . This shows that Theorem 3 implies Theorem 2.

Due to the lack of analytical tools for obtaining `∞ errors, we first characterize an upper bound of `2 errors with
well-known tools. We show that the pointwise error is bounded, in an order-wise manner, by the same bound of the
`2 errors in some restricted regime. See (3) and (4). That is, we obtain the upper bound of `2 errors described in
Theorem 4 and tightly link it to the bound of `∞ errors we derive in Theorem 3.

Theorem 4. `2 norm estimation errors can be upper-bounded by
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with high probability, where L ≥
⌈
c3

logn

(n−1
M−1)p

⌉
, p > c4

logn
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and c3 and c4 are some numerical constants.

Now, let us provide the proof of Theorem 3 assuming for the time being that Theorem 4 is true. We will provide
the proof of Theorem 4 in Section 3 once we prove Theorem 3 in Section 2.

2 Proof of Theorem 3

Outline: The proof of Theorem 3 consists of Lemmas 1, 2 and 3. Lemmas 1 and 2 are straightforward to obtain by
applying Hoeffding’s inequality stated in Appendix 5.3. Lemma 3, as emphasized, is key; it plays an important role in
tightly linking `2 and `∞ error bounds. In proving it, we use Janson’s inequality (stated in Lemma 4) which describes
the concentration behavior of sums of dependent random variables, and the `2 error bound derived in Theorem 4.

Proof dependencies:
Theorem 3 ←− Lemma 1, Lemma 2, Lemma 3

Lemma 1 ←− Hoeffding’s equality (Appendix 5.3)
Lemma 2 ←− Hoeffding’s equality
Lemma 3 ←− Janson’s equality (Lemma 4), Theorem 4 (Section 3)

Lemma 1. Suppose L ≥ 25(1 + b)2 logn

(n−1
M−1)p

, where b := wmax

wmin
. Then,

P̂ii < 1 (5)

with probability at least 1− 2n−2.

Lemma 2. For a comparison graph G =
(
[n], E(M)

)
,∣∣∣∣∣∣

∑
j:j 6=i

(wi + wj)
(
P̂ji − Pji

)∣∣∣∣∣∣ ≤ 4wmax
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with probability at least 1− 2n−2.
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Lemma 3. Suppose p ≥ c1(M − 1)
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and M ≥ 3. Then, in the regime where n is sufficiently large,

∑
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|ŵj − wj | P̂ij ≤ c5wmax
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with probability at least 1− 2n−3c21/50, where c1 and c5 are some constants.

We first assume that these lemmas hold, and proceed to prove Theorem 3. We provide the proofs of these lemmas
afterward. Now, let us begin to prove Theorem 3.
Proof: To find an upper bound of `∞ errors, we first derive an upper bound, which we will prove very soon, on the
pointwise error between the score estimate of item i and the true score, which consists of three terms:

|ŵi − wi| ≤ |ŵi − wi| P̂ii +
∑
j:j 6=i

|ŵj − wj | P̂ij +

∣∣∣∣∣∣
∑
j:j 6=i

(wi + wj)
(
P̂ji − Pji

)∣∣∣∣∣∣ . (8)

Then, we use the three lemmas stated above, which we prove soon. We consider the regime where n is sufficiently

large. For L ≥
⌈
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⌉
, applying Lemmas 1, 2 and 3 to (8) and solving it, we get
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where c6 is a constant. This completes the proof of (2).

Proof of (8): Since ŵ is the stationary distribution of matrix P̂ , ŵ = P̂ ŵ holds. Thus, for fixed i, we get

ŵi = ŵiP̂ii +
∑
j:j 6=i

ŵjP̂ij . (10)

Using the fact that random walks on an ideal version of matrix P̂ (matrix P ) are reversible, we get

wi = wi

1−
∑
j:j 6=i

Pji

+ wi
∑
j:j 6=i

Pji = wi

1−
∑
j:j 6=i

Pji

+
∑
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=

{
wiP̂ii +
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(
P̂ji − Pji

)}
+

{ ∑
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wjP̂ij −
∑
j:j 6=i

wj

(
P̂ij − Pij

)}
. (11)

Using (10) and (11), we get

ŵi − wi = (ŵi − wi) P̂ii −
∑
j:j 6=i

wi

(
P̂ji − Pji

)
+
∑
j:j 6=i

(ŵj − wj) P̂ij +
∑
j:j 6=i

wj

(
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)
. (12)

We note that P̂ji = 1
2dmax

∑
I:i,j∈I I

[
I ∈ E(M)

]
−P̂ij from yji = 1−yij . Similarly, Pji = 1

2dmax

∑
I:i,j∈I I

[
I ∈ E(M)

]
−

Pij . Thus, P̂ji − Pji = −
(
P̂ij − Pij

)
. Applying this equality and the triangle inequality to (12), we get the relation

(8).

2.1 Proof of Lemma 1

First, by using Hoeffding’s inequality in Appendix 5.3, we get∣∣∣∣∣∣
∑
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(
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with probability at least 1 − 2n−2. To show this, we represent
∣∣∣∑j:j 6=i

(
P̂ji − Pji

)∣∣∣ as a sum of random variables as

follows.∑
j:j 6=i

(
Pji − P̂ji

)
=
∑
j:j 6=i

∑
I:{i,j}∈φ(I)

L∑
`=1

1

2Ldmax

(
wj

wi + wj
− y(`)

ji,I

)
=

1
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∑
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`=1

(
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ji,I +
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)
.

(14)

Let X :=
∑
I:i∈I

∑L
`=1

∑
m:{i,m}∈φ(I)

(
y

(`)
mi,I −

wm
wm+wi

)
. Applying Hoeffding’s inequality to X, we get
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∣∣∣E(M)
] (a)
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(
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`=1 22

)
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(
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4diL

)
, (15)

where (a) follows by the fact that
∑
m:{i,m}∈φ(I) y

(`)
mi,I varies from 0 to 2; the rest follows by straightforward computa-

tion. Finally, choosing t = 2
√

2Ldi log n, we can show that
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(
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)∣∣∣ ≤ √ 2 logn
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least 1−2n−4. This leads to
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(
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2

(
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)
p holds with probability

at least 1− 2n−2 by Lemma 7 for sufficiently large p, which is the regime in which we are interested.
Using (13), we get

P̂ii = 1−
∑
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P̂ji ≤ 1−
∑
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Pji + 2

√
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We let b = wmax

wmin
. From the definition of Pji,∑

j:j 6=i

Pji =
∑
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1

2dmax

∑
I:{i,j}∈φ(I)

1

1 +
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≥ 1

2dmax

∑
j:j 6=i

∑
I:{i,j}∈φ(I)

1

1 + b
(17)

=
1

2dmax

∑
I:i∈I

∑
j:{i,j}∈φ(I)

1

1 + b
=

1

2dmax

∑
I:i∈I

2

1 + b
≥ dmin

dmax

1

1 + b
≥ 1

3(1 + b)
. (18)

Putting (17) into (16), we get

P̂ii ≤ 1− 1

3(1 + b)
+ 2

√
log n(
n−1
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)
pL

. (19)

Choosing L ≥ 25(1 + b)2 logn

(n−1
M−1)p

, we complete the proof of Lemma 1.

2.2 Proof of Lemma 2

By using a slightly modified Hoeffding’s inequality used to show (13), we get∣∣∣∣∣∣
∑
j:j 6=i

(wi + wj)
(
P̂ji − Pji

)∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

2Ldmax

∑
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∑
I:{i,j}∈φ(I)

L∑
`=1

[
(wi + wj)

(
−y(`)

ji,I +
wj

wi + wj

)]∣∣∣∣∣∣ ≤ 4wmax

√
log n(
n−1
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)
pL

(20)

with probability at least 1 − 2n−2. We can see that each random variable
(
−y(`)

ji,I +
wj

wi+wj

)
in (14) is replaced by

(wi + wj)
(
−y(`)

ji,I +
wj

wi+wj

)
. Thus, the range of each random variable is extended by at most 2wmax. Applying a

similar line of steps in (15), we get (20).

4



2.3 Proof of Lemma 3

Outline: As mentioned at the beginning, Lemma 3 plays a key role in linking the `2 error bound in Theorem 4 to the
`∞ error bound in Theorem 3, leading them to be on the same order. In doing so, we have sums of dependent random
variables to handle, thus we make use of Janson’s inequality (Janson 2002) stated in Lemma 4.
Proof: First, let us define B as follows.

B :=
∑
j:j 6=i

|ŵj − wj | P̂ij . (21)

By Lemma 2, with probability at least 1− 2n−2,∣∣∣∣∣∣
∑
j:j 6=i

(wi + wj)
(
P̂ji − Pji

)∣∣∣∣∣∣ ≤ 4wmax

√
log n(
n−1
M−1

)
pL

. (22)

Putting (8) with (22) into (21), we get

B ≤
∑
j:j 6=i

|ŵj − wj | P̂jjP̂ij + 4wmax

√
log n(
n−1
M−1

)
pL

∑
j:j 6=i

P̂ij +
∑
j:j 6=i

∑
k:k 6=j

|ŵk − wk| P̂jkP̂ij . (23)

We simplify the last two terms. The first of the two is straightforward. The definition of P̂ij gives
∑
j:j 6=i P̂ij ≤ 1.

The last term needs some extra efforts. For the time being, we state the following, whose proof which makes use of
Janson’s inequality stated in Lemma 4 will soon be provided.

∑
j:j 6=i

∑
k:k 6=j

|ŵk − wk| P̂jkP̂ij ≤ c7 ‖ŵ −w‖2

√
1

n
. (24)

Putting
∑
j:j 6=i P̂ij ≤ 1 and (24) into (23), we get

B ≤
∑
j:j 6=i

|ŵj − wj | P̂jjP̂ij + 4wmax

√
log n(
n−1
M−1

)
pL

+ c7

√
1

n
‖ŵ −w‖2 . (25)

By Lemma 1, we can find a constant β such that P̂jj ≤ β < 1 for all j. Using such β, we get

B ≤ βB + 4wmax

√
log n(
n−1
M−1

)
pL

+ c7

√
1

n
‖ŵ −w‖2 . (26)

Here, we use an upper bound on
‖ŵ−w‖2
‖w‖2 derived by Theorem 4. Theorem 4 states that when L ≥ c3 logn

(n−1
M−1)p

, for a

constants c8,

‖ŵ −w‖2
‖w‖2

≤ c8

√
log n(
n−1
M−1

)
pL

. (27)

Using ‖w‖2 ≤
√
n ‖w‖∞ =

√
nwmax, we get

‖ŵ −w‖2 ≤
√
nwmaxc8

√
log n(
n−1
M−1

)
pL

. (28)
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Putting (28) into (26) and solving it, we get

B ≤ 1

1− β
wmax (c7c8 + 4)

√
log n(
n−1
M−1

)
pL

= c5wmax

√
log n(
n−1
M−1

)
pL

. (29)

From the definition of B, we complete the proof of Lemma 3.
Proof of (24): By changing the order of the summations and the Cauchy-Schwarz inequality, we get

∑
j:j 6=i

∑
k:k 6=j

|ŵk − wk| P̂jkP̂ij =
∑
k

|ŵk − wk|
∑

j:j /∈{i,k}

P̂jkP̂ij ≤ ‖ŵ −w‖2

√√√√√∑
k

 ∑
j:j /∈{i,k}

P̂jkP̂ij

2

. (30)

When we show that
∑
j:j /∈{i,k} P̂jkP̂ij ≤

c7
n holds, we can finally conclude that

∑
j:j 6=i

∑
k:k 6=j |ŵk − wk| P̂jkP̂ij ≤ c7

√
1
n .

Now, let us prove that
∑
j:j /∈{i,k} P̂jkP̂ij ≤

c7
n holds. From the definitions of P̂jk and P̂ij , we can bound the term∑

j:j 6=i,k P̂jkP̂ij as follows. First, we can expand
∑
j:j 6=i,k P̂ijP̂jk and bound it as follows.

∑
j:j 6=i,k

P̂ijP̂jk =
1

4d2
max

∑
j:j 6=i,k

 ∑
I1:{i,j}∈φ(I1)

yij,I1

 ∑
I2:{k,j}∈φ(I2)

yjk,I2

 (31)

≤ 1

4d2
max

∑
j:j 6=i,k

 ∑
I1:i,j∈I1

I [{i, j} ∈ φ(I1)]

 ∑
I2:j,k∈I2

I [{j, k} ∈ φ(I2)]

 (32)

=
1

4d2
max

∑
j:j 6=i,k

∑
I1:i,j∈I1

∑
I2:j,k∈I2

I [{i, j} ∈ φ(I1)] I [{j, k} ∈ φ(I2)] =
1

4d2
max

∑
j:j 6=i,k

∑
I1:i,j∈I1

∑
I2:j,k∈I2

XI1I2 ,

(33)

where XI1I2 ∼ Bern
(

p2

(M−1)2

)
when I1 6= I2 and XI1I2 ∼ Bern

(
p

M−1

)
when I1 = I2. It follows by the fact that

hyper-edge I1 is chosen with probability p and a partial pairwise comparison between i and j is chosen with probability
1

M−1 . See (101) for details.
Note that XI1I2 and XI1I3 , concerning the same hyper-edge I1, are dependent random variables. Computing the

expectation of this sum of dependent random variables, we get

E

 ∑
j:j 6=i,k

P̂ijP̂jk

 =
1

4d2
max

∑
j:j 6=i,k

∑
I1:i,j∈I1

∑
I2:j,k∈I2

E [XI1I2 ] (34)

=
1

4d2
max

(
(# of r.v’s : I1 6= I2)

(
p

M − 1

)2

+ (# of r.v’s : I1 = I2)
p

M − 1

)
(35)

(a)

≤ 1

4d2
max

(
(n− 1)

(
n− 2

M − 2

)2(
p

M − 1

)2

+ (n− 1)

(
n− 2

M − 2

)
p

M − 1

)
(b)

≤ 2

4d2
max

(n− 1)
1

(n− 1)2

(
n− 1

M − 1

)2

p2
(c)

≤ 3

n
,

(36)

where (a) follows by the facts that one can bound the number of cases where I1 6= I2 by (n− 1)
(
n−2
M−2

)2
, and that one

can bound the number of cases where I1 = I2 by (n− 1)
(
n−2
M−2

)
; (b)1 follows by the fact that (n− 1)

(
n−2
M−2

)2 p2

(M−1)2 ≥

1The provided steps are tailored for M > 2 where our algorithm that features sample breaking can be employed, but do not hold for
M = 2 where sample breaking does not come into the picture. However, following a similar line of steps with some simple modifications,
one can show that an upper bound on the expectation is also on the order of n−1, as in (Chen and Suh 2015).
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(n− 1)
(
n−2
M−2

)
p

M−1 for M > 2 and p ≥ c3(M − 1)

√
logn

(n−1
M−1)

; (c) follows by the fact that dmax ≥ 1
2

(
n−1
M−1

)
p, which can be

shown by Lemma 7 that describes the concentration behavior of sums of independent random variables. This bound
tells us that once

∑
j:j 6=i,k P̂ijP̂jk concentrates to its expectation, we can prove (24).

To show that
∑
j:j 6=i,k P̂ijP̂jk concentrates to its expectation, we apply the concentration inequality for a sum of

dependent random variables, called Janson’s inequality (Janson 2002). Here we provide the statement of Janson’s
inequality.

Lemma 4 (Janson’s inequality (Janson 2002)). Suppose that X̃ =
∑N
i=1 X̃i with

∣∣∣X̃i − E
[
X̃i

]∣∣∣ ≤ C for some C > 0

and all i. Then, for t ≥ 0,

Pr
[∣∣∣X̃ − E

[
X̃
]∣∣∣ ≥ t] ≤ 2 exp

− 8t2

25d
(∑N

i=1 Var
[
X̃i

]
+ Ct/3

)
 , (37)

where d is the maximum number of random variables dependent of X̃i over i.

To get an upper bound of 1
4d2max

∑
j:j 6=i,k

∑
I1:i,j∈I1

∑
I2:j,k∈I2 XI1I2 in (33) by applying Janson’s inequality, let us

define X̃ as follows.

X̃ :=
∑

j:j 6=i,k

∑
I1:i,j∈I1

∑
I2:j,k∈I2

XI1I2 . (38)

Once we show that
∣∣∣X̃ − E

[
X̃
]∣∣∣ ≤ (n − 2)

(
n−2
M−2

)2
p2 holds with high probability by using Janson’s inequality, we

can conclude that
∑
j:j 6=i,k P̂ijP̂jk ≤

c7
n holds with high probability.

Pr
[∣∣∣X̃ − E

[
X̃
]∣∣∣ ≥ t] ≤ 2 exp

− 8t2

25d
(∑

j:j 6=i,k
∑
I1:i,j∈I1

∑
I2:j,k∈I2 Var [XI1I2 ] + Ct/3

)
 (39)

(a)

≤ 2 exp

(
− 8t2

25d(
∑
j:j 6=i,k

∑
I1:i,j∈I1

∑
I2:j,k∈I2 E [XI1I2 ] + Ct/3)

)
(40)

(b)

≤ 2 exp

− 8t2

50(M − 1)
(
n−2
M−2

) (∑
j:j 6=i,k

∑
I1:i,j∈I1

∑
I2:j,k∈I2 E [XI1I2 ] + t/3

)
 (41)

(c)

≤ 2 exp

− 8t2

50(M − 1)
(
n−2
M−2

) (
1
n

(
n−1
M−1

)2
p2 + t/3

)
 (d)

≤ 2 exp

− 8
(

1
n

(
n−1
M−1

)2
p2
)2

100(M − 1)
(
n−2
M−2

) (
1
n

(
n−1
M−1

)2
p2 + 1

3n

(
n−1
M−1

)2
p2
)


(42)

(e)

≤ 2 exp

(
−

3
(
n−1
M−1

)
p2

50(M − 1)2

)
≤ 2n−

3c21
50 (43)

where (a) follows by the fact that Var [XI1I2 ] =
(

p
M−1

)2
(

1−
(

p
M−1

)2
)
≤
(

p
M−1

)2

= E [XI1I2 ]; (b) follows by the

fact that d ≤ 2(M − 1)
(
n−2
M−2

)
. Let us further elaborate this step. Suppose we have i and k given. Let us fix I1 and

choose j 6= i. Then for chosen j, there are
(
n−2
M−2

)
distinct I2’s since we can choose M − 2 items and combine them

with j and given k to form I2. Also, there are M − 1 ways to pick j 6= i to form the previously fixed I1 since j can
be the items in I1 except given i. These two facts amount to (M − 1)

(
n−2
M−2

)
. Changing the roles of I1 and I2, we get

d ≤ 2(M−1)
(
n−2
M−2

)
; (c) follows by the fact we can bound E

[
X̃
]

as in (36); (d) follows by choosing t = (n−2)
(
n−2
M−2

)2
p2;

(e) follows by the fact that p > c1(M − 1)

√
logn

(n−1
M−1)

.
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3 Proof of Theorem 4

Outline: The line of steps we follow to prove Theorem 4 is similar to that taken in (Negahban, Oh and Shah 2016). To
be more specific, the base inequality from which we build on to derive an upper bound of `2 errors (48) is derived in the
proof of Lemma 2 in (Negahban, Oh and Shah 2016). To prove Theorem 4, we introduce two lemmas: Lemmas 5 and 6.
Lemma 5 corresponds to Lemmas 3 and 5 in (Negahban, Oh and Shah 2016), and Lemma 6 corresponds to Lemma 4
therein. The difference largely comes from the fact that required calculations to derive our lemmas need to be more
involved, as we consider a more general model. Aside from this difference, the proof of Theorem 4 mostly adopts an
existing technique that derives `2 error bounds.

Proof dependencies:
Theorem 4 ←− Lemma 5, Lemma 6

Lemma 5 ←− Equation (56), Equation (62)
Equation (56) ←− Hoeffding’s inequality (Appendix 5.3)
Equation (62) ←− Matrix Bernstein inequality (Appendix 5.5)

Lemma 6 ←− Equation (79), Equation (80)
Equation (79)
Equation (80) ←− Equation (88), Equation (89), Equation (90)

Equation (88) ←− Hölder’s inequality (Appendix 5.4)
Equation (89) ←− Hölder’s inequality
Equation (90) ←− Matrix Bernstein inequality

Lemma 5. Suppose that p ≥ c4 logn

(n−1
M−1)

, where c4 is sufficiently large. Then,

‖∆‖2 ≤ 10

√
log n(
n−1
M−1

)
pL

(44)

with probability at least 1− 2n−3/5.

Lemma 6. Suppose that L ≥ c3 logn

(n−1
M−1)p

. Then,

h(P ) ≥ 1

270b2
(45)

with probability at least 1− 2n−1/15, where c3 is some numerical constant.

We first assume that these lemmas hold, and proceed to prove Theorem 4. We provide the proofs of these lemmas
afterward. Now, let us begin to prove Theorem 4.
Proof: From the definition of P in Section 2 and the algorithm description in Section 3.1 in the main paper, we get

w = Pw, ŵ = P̂ ŵ. (46)

Using two balance equations in (46), we get

ŵ −w = P̂ ŵ − Pw = P̂ (ŵ −w) +
(
P̂ − P

)
w. (47)

From (47), we can get the `2 error of estimate ŵ as follows.

‖ŵ −w‖2 ≤
(

1− h(P ) +
√
b ‖∆‖2

)√
b ‖ŵ −w‖2 +

√
b ‖∆‖2 ‖w‖2 , (48)

where h(P ) is the spectral gap of matrix P , and the equality follows by letting ∆ := P̂ − P . The proof of (48) is
derived in the proof of Lemma 2 in (Negahban, Oh and Shah 2016).
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We can see that, for (48) to get a proper upper bound of ‖ŵ −w‖2, the term 1− h(P ) +
√
b ‖∆‖2 needs to be less

than one. To safely guarantee it, we can impose the following condition:

√
b ‖∆‖2 ≤

h(P )

2
. (49)

We can obtain an upper bound on ‖∆‖2 that holds with high probability and a lower bound on h(P ). The first
corresponds to Lemma 5 and the second corresponds to Lemma 6. We will soon provide their proofs.

From (49) and (44), we get

10
√
b

√
log n(
n−1
M−1

)
pL
≤ h(P )

2
⇐⇒ L ≥ 400b

h(P )2

log n(
n−1
M−1

)
p
, (50)

and from (45) and (50), we get

L ≥

⌈
c3

log n(
n−1
M−1

)
p

⌉
, (51)

where c3 := 29160000b5.
Solving the equation (48) and replacing

√
b ‖∆‖2 and ‖∆‖2 by (49) and (44) respectively, we get

‖ŵ −w‖2
‖w‖2

≤ 1

h(P )/2

√
b

(
10

√
log n(
n−1
M−1

)
pL

)
. (52)

Replacing h(P ) with the lower bound in (45) and by direct computation, we get

‖ŵ −w‖2
‖w‖2

≤ 1350b3/2
√

log n(
n−1
M−1

)
pL

= 1350b3/2

√
n log n

M
(
n
M

)
pL

.

√
n log n(
n
M

)
pL

√
1

M
, (53)

where p > c4 logn

(n−1
M−1)

and L ≥
⌈
c3

logn

(n−1
M−1)p

⌉
. This provides an upper bound on `2 errors.

3.1 Proof of Lemma 5

Outline: Applying the triangle inequality, we get ‖∆‖2 ≤ ‖∆D‖2 + ‖∆O‖2, where ∆ := ∆D + ∆O and ∆D is the
matrix whose diagonal entries are equal to those of ∆ while the other entries are zero. (Hence, we refer to ∆D as the
diagonal matrix of ∆, and ∆O as the off-diagonal matrix of ∆.) To show that (44) holds, we will bound ‖∆D‖2 and
‖∆O‖2 separately.

Firstly, bounding the diagonal matrix ‖∆D‖2 in (56) is straightforward by Hoeffding’s inequality.
On the other hand, bounding the off-diagonal matrix ‖∆O‖2 in (62) needs some extra efforts. We primarily apply

the matrix Bernstein inequality stated in Appendix 5.5 to bound ‖∆O‖2. To apply it, we need to obtain an equality
and an inequality, (59) and (60) respectively, which are needed as parameters in the matrix Bernstein inequality. To
prove (59), we use the Courant-Fischer theorem stated in Appendix 5.6. To prove (60), we use the matrix version of
Hölder’s inequality stated in Appendix 5.4 in addition to the Courant-Fischer theorem.

Proof dependencies:
Lemma 5 ←− Equation (56), Equation (62)

Equation (56) ←− Hoeffding’s inequality (Appendix 5.3)
Equation (62) ←− Matrix Bernstein inequality (Appendix 5.5)

Matrix Bernstein inequality ←− Parameters (59) and (60)
Parameter (59) ←− Courant-Fischer theorem (Appendix 5.6)
Parameter (60) ←− Courant-Fischer theorem, Hölder inequality (Appendix 5.4)
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3.1.1 Bound on ‖∆D‖2:

By the definition of ∆D, we begin with the following equality:

‖∆D‖2 = max
i

∣∣∣P̂ii − Pii∣∣∣ . (54)

Modifying P̂ii − Pii, we get P̂ii − Pii =
∑
j:j 6=i

(
Pji − P̂ji

)
. Applying Hoeffding’s inequality used in (13), we get

∣∣∣P̂ii − Pii∣∣∣ =

∣∣∣∣∣∣
∑
j:j 6=i

(
Pji − P̂ji

)∣∣∣∣∣∣ ≤ 2

√
log n(
n−1
M−1

)
pL

(55)

with probability at least 1− 2n−2.
Therefore,

‖∆D‖2 ≤ 2

√
log n(
n−1
M−1

)
pL

. (56)

3.1.2 Bound on ‖∆O‖2
To obtain a bound on ‖∆O‖2, we use the matrix Bernstein inequality (Tropp 2011) in Appendix 5.5.

To apply the matrix Bernstein inequality above to ‖∆O‖2, we first need to decompose ‖∆O‖2 into the sum of

independent, random and self-adjoint matrices. To meet the independence condition, we define ∆
(`)
I as follows.

∆
(`)
I :=

∑
{i,j}∈φ(I)

(
eie

T
j − ejeTi

)( 1

2dmax
y

(`)
ij,I −

1

2dmax

wi
wi + wj

)
for I ∈ E(M). (57)

Then, ∆O =
∑
I∈E(M)

∑L
`=1 ∆

(`)
I holds, where all ∆

(`)
I ’s are mutually independent. Furthermore, to meet the

self-adjoint condition, we define ∆̃
(`)
I as follows.

∆̃
(`)
I :=

 0 ∆
(`)
I(

∆
(`)
I

)T
0

 . (58)

Note that ‖∆O‖2 =
∥∥∥∑I∈E(M)

∑L
`=1 ∆

(`)
I

∥∥∥
2

=
∥∥∥∑I∈E(M)

∑L
`=1 ∆̃

(`)
I

∥∥∥
2
. Now, to get an upper bound on ‖∆O‖2, we

need to compute the two parameters R and σ2 that appear in (188) in Appendix 5.5. For now, let us assume that the
following holds, of which we will provide proofs soon.

R =
1

Ldmax
, (59)

σ2 ≤ 6

Ldmax
. (60)

Then, we get

Pr [‖∆O‖2 ≥ t] ≤ 2n exp

(
−t2/2

(6/Ldmax) + (t/Ldmax)

)
(a)
= 2n exp

 −16 log n

6 + 4
√

logn
Ldmax

 (b)

≤ 2n exp

−16 log n

6 + 4
√

2
3

 ≤ 2n−3/5,

(61)
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where (a) follows by choosing t = 4
√

logn
Ldmax

; (b) follows by the fact that L ≥ 1 and dmax ≥ 1
2

(
n−1
M−1

)
p ≥ 3

2 log n holds

by Lemma 7. Therefore, we get ‖∆O‖2 ≤ 4
√

logn
Ldmax

with probability at least 1− 2n−3/5.

Using the fact that dmax ≥ 1
2

(
n−1
M−1

)
p by Lemma 7,

‖∆O‖2 ≤ 4

√
2 log n(
n−1
M−1

)
pL

(62)

with probability at least 1− 2n−3/5. This bound on ‖∆O‖2, together with the bound on ‖∆D‖2 shown earlier, we can
get the desired bound on ‖∆‖2.

As previously mentioned, we now provide the proofs of (59) and (60).
Proof of (59): Using the Courant-Fischer theorem in Appendix 5.6,∥∥∥∆̃

(`)
I

∥∥∥
2

= max
‖v‖2=1

∣∣∣vT ∆̃
(`)
I v
∣∣∣ , (63)

where v ∈ R2n. Let us assume that vT =
[
xT , yT

]
where x, y ∈ Rn. To get an upper bound on

∥∥∥∆̃
(`)
I

∥∥∥
2
, we will first

derive an upper bound on
∣∣∣vT ∆̃

(`)
I v
∣∣∣ as follows:

∣∣∣vT ∆̃
(`)
I v
∣∣∣ =

∣∣∣∣∣∣[xT yT ]
 0 ∆

(`)
I(

∆
(`)
I

)T
0

[x
y

]∣∣∣∣∣∣=
∣∣∣∣yT (∆

(`)
I

)T
x+ xT∆

(`)
I y

∣∣∣∣ (a)
= 2

n∑
i=1

n∑
j=1

∣∣∣∣(∆
(`)
I

)
ij

∣∣∣∣xiyj (64)

(b)

≤
n∑
i=1

n∑
j=1

∣∣∣∣(∆
(`)
I

)
ij

∣∣∣∣ (x2
i + y2

j

) (c)

≤
n∑
i=1

n∑
j=1

1

2dmaxL
I [{i, j} ∈ φ(I)]

(
x2
i + y2

j

) (d)
=

1

2dmaxL
2

∑
i:i∈I

x2
i +

∑
j:j∈I

y2
j

 ≤ 1

dmaxL
‖v‖2 ,

(65)

where (a) follows by the fact that yT
(

∆
(`)
I

)T
x =

(
xT∆

(`)
I y
)T

; (b) follows by the inequality of arithmetic and geo-

metric means; (c) follows by the definition of ∆
(`)
I and the fact that

∣∣∣yij,I − wi
wi+wj

∣∣∣ ≤ 1; (d) follows by the fact that in

a formed circular permutation, an item is adjacent to two items. Therefore, by the Courant-Fischer theorem, we can

get the desired bound
∥∥∥∆̃

(`)
I

∥∥∥
2
≤ 1

dmaxL
=: R.

Proof of (60): By the definition of σ2 :=

∥∥∥∥∑I∈E(M)

∑L
`=1 E

[(
∆̃

(`)
I

)2
]∥∥∥∥

2

, we get

σ2 (a)
= max
‖u‖22+‖v‖22=1

∣∣∣∣∣∣∣∣
[
uT vT

] 
∑
I∈E(M)

∑L
`=1 E

[
∆

(`)
I

(
∆

(`)
I

)T]
0

0
∑
I∈E(M)

∑L
`=1 E

[(
∆

(`)
I

)T
∆

(`)
I

]
[uv

]∣∣∣∣∣∣∣∣ (66)

(b)
= max
‖u‖22+‖v‖22=1

∥∥∥∥∥∥
∑
I∈E(M)

L∑
`=1

E
[
∆

(`)
I

(
∆

(`)
I

)T]∥∥∥∥∥∥
2

‖u‖22 +

∥∥∥∥∥∥
∑
I∈E(M)

L∑
`=1

E
[(

∆
(`)
I

)T
∆

(`)
I

]∥∥∥∥∥∥
2

‖v‖22 (67)

= max


∥∥∥∥∥∥
∑
I∈E(M)

L∑
`=1

E
[
∆

(`)
I

(
∆

(`)
I

)T]∥∥∥∥∥∥
2

,

∥∥∥∥∥∥
∑
I∈E(M)

L∑
`=1

E
[(

∆
(`)
I

)T
∆

(`)
I

]∥∥∥∥∥∥
2

 , (68)

where (a) follows by the Courant-Fischer theorem where u, v ∈ Rn; (b) follows by the definition of ‖ · ‖2.
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Using the matrix version of Hölder’s inequality in Appendix 5.4, we get∥∥∥∥∥∥
∑
I∈E(M)

L∑
`=1

E
[
∆

(`)
I

(
∆

(`)
I

)T]∥∥∥∥∥∥
2

≤

√√√√√
∥∥∥∥∥∥
∑
I∈E(M)

L∑
`=1

E
[
∆

(`)
I

(
∆

(`)
I

)T]∥∥∥∥∥∥
1

∥∥∥∥∥∥
∑
I∈E(M)

L∑
`=1

E
[
∆

(`)
I

(
∆

(`)
I

)T]∥∥∥∥∥∥
∞

(69)

(a)
=

√√√√√ max
1≤i≤n

 n∑
j=1

∣∣∣∣∣∣
∑
I∈E(M)

L∑
`=1

E
[
∆

(`)
I

(
∆

(`)
I

)T]∣∣∣∣∣∣
ij

 max
1≤j≤n

 n∑
i=1

∣∣∣∣∣∣
∑
I∈E(M)

L∑
`=1

E
[
∆

(`)
I

(
∆

(`)
I

)T]∣∣∣∣∣∣
ij

 (70)

≤

√√√√√
 ∑
I∈E(M)

L∑
`=1

max
1≤i≤n

 n∑
j=1

∣∣∣∣E [∆(`)
I

(
∆

(`)
I

)T]∣∣∣∣
ij

 ∑
I∈E(M)

L∑
`=1

max
1≤j≤n

(
n∑
i=1

∣∣∣∣E [∆(`)
I

(
∆

(`)
I

)T]∣∣∣∣
ij

) (71)

(b)

≤ 3dmaxLmax
i,j

∣∣∣∣E [(∆
(`)
I

)
(∆

(`)
I )T )

]
ij

∣∣∣∣ , (72)

where (a) follows by the definitions of ‖·‖1 and ‖·‖∞; (b) follows by the fact that for each row in E
[
∆

(`)
I

(
∆

(`)
I

)T]
, there

are only three non-zero entries. The (i, j)-entry of matrix E
[
∆

(`)
I

(
∆

(`)
I

)T]
is the expectation of the inner product of

the ith and jth rows of ∆
(`)
I . For each i, the (i, j)-entry is non-zero for j such that j = i or the ith element of the jth

row of ∆
(`)
I is non-zero. Also, there are two rows of ∆

(`)
I whose ith entry is non-zero because for {i, j} ∈ φ(I), the ith

element of the jth row of E
[
∆

(`)
I

(
∆

(`)
I

)T]
is non-zero, and there are two j’s such that {i, j} ∈ φ(I) for each i.

Let us further obtain a bound of (72). For {i, j} ∈ φ(I), by the definition of ∆
(`)
I , we get∣∣∣∣E [(∆

(`)
I (∆

(`)
I

)T
)ij

]∣∣∣∣ ≤∑
k

∣∣∣∣E [(∆
(`)
I )ik(∆

(`)
I

)
jk

]∣∣∣∣
=

1

4L2d2
max

∑
k

∣∣∣∣E [(yik,I − wi
wi + wk

)(
yjk,I −

wj
wj + wk

)]∣∣∣∣ I [{i, k}, {j, k} ∈ φ(I)] (73)

(a)
=

1

4L2d2
max

∑
k

∣∣∣∣E [(yki,I − wk
wi + wk

)(
ykj,I −

wk
wj + wk

)]∣∣∣∣ I [{i, k}, {j, k} ∈ φ(I)] (74)

=
1

4L2d2
max

∑
k

∣∣∣∣E [yki,Iykj,I − wk
wi + wk

ykj,I −
wk

wj + wk
yki,I +

wk
wi + wk

wk
wj + wk

]∣∣∣∣ I [{i, k}, {j, k} ∈ φ(I)] (75)

(b)

≤ 4

4L2d2
max

∑
k

I [{i, k}, {j, k} ∈ φ(I)]
(c)

≤ 8

4L2d2
max

≤ 2

L2d2
max

, (76)

where (a) follows by the assumption that yik,I = 1 − yki,I ; (b) follows by the fact that |yki,I | ≤ 1 and |ykj,I | ≤ 1;
(c) follows by the fact for i 6= j, there is only one item adjacent to both items i and j, and for i = j, there are two.

Applying (76) to (72), we get the bound

∥∥∥∥∑I∈E(M)

∑L
`=1 E

[
∆

(`)
I

(
∆

(`)
I

)T]∥∥∥∥ ≤ 6
dmaxL

.

Similarly, we can show that

∥∥∥∥∑I∈E(M)

∑L
`=1 E

[(
∆

(`)
I

)T
∆

(`)
I

]∥∥∥∥ is also bounded by 6
dmaxL

. Therefore, we get the

desired bound σ2 ≤ 6
Ldmax

from (68).

3.2 Proof of Lemma 6

Outline: To obtain a lower bound of the spectral gap h(P ) of reversible matrix P , we perform two tasks.
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First, we introduce another reversible matrix Q and establish a relation between h(P ) and h(Q) in (77). We
construct Q so as to make it have certain conditions, which help us compute its spectral gap h(Q) easily. The relation
(77) shows that h(P ) is lowered-bounded by the multiplication of h(Q) and some scaling factor. The derivation follows
the proof of Lemma 6 in (Negahban, Oh and Shah 2016).

Second, we compute lower bounds for the scaling factor and h(Q) in (79) and (80) respectively. To obtain a lower
bound for the scaling in (79) is straightforward. To obtain a lower bound for h(Q) needs some extra efforts. The
spectral gap h(Q) is defined as 1 − λmax(Q). Thus, an upper bound of λmax(Q) can lead to a lower bound of h(Q).
We show that λmax(Q) can be decomposed into three terms ((88), (89) and (90)) for each of which we derive an upper
bound. To obtain (88) and (89), we use the matrix version of Hölder’s inequality, and to obtain (90), we use the matrix
Bernstein inequality. As in Lemma 5, to apply the matrix Bernstein inequality, we first compute two parameters in
(97) and (98) and use them in obtaining (90).

Proof dependencies:
Lemma 6 ←− Equation (79), Equation (80)

Equation (79)
Equation (80) ←− Equation (88), Equation (89), Equation (90)

Equation (88) ←− Hölder’s inequality (Appendix 5.4)
Equation (89) ←− Hölder’s inequality
Equation (90) ←− Matrix Bernstein inequality (Appendix 5.5)

Matrix Bernstein inequality ←− Parameters (97) and (98)
Parameter (97) ←− Hölder’s inequality
Parameter (98) ←− Hölder’s inequality

Proof: Referring to Lemma 6 in (Negahban, Oh and Shah 2016), we can obtain the following lower bound on h(P )
using another reversible matrix Q:

h(P ) ≥ h(Q)
α

β
, (77)

where α := min(i,j)

(
wiPji
uiQji

)
, β := maxi

(
wi
ui

)
, and u is the first eigenvector of Q. To obtain a lower bound on h(P ),

we need to find h(Q), α, and β.
First, let us specify Q. Q is the reversible transition matrix of random walks, which is defined as

Qij :=
1

2dj

∑
I:I∈E(M)

I [{i, j} ∈ φ(I)] =
dij
2dj

, (78)

where dij is defined by the number of hyper-edges that have both item i and item j.
From the reversible Markov chain Q, we can obtain the first eigenvector u of Q by solving detailed balance equations:

ujQij = uiQji. One can verify that ui = di∑n
m=1 dm

where
∑n
m=1 dm.

To find a lower bound of h(P ) applying (77), let us assume that the following holds for now, of which we will
provide proofs soon.

α

β
≥ 1

4b2
dmin

dmax
, (79)

h(Q) ≥ 4

90
. (80)

Since 1
2davg < di <

3
2davg holds with high probability by Lemma 7, we get

h(P ) ≥ 1

270b2
. (81)

This finishes the proof of (45).
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3.2.1 Bound on α/β

We obtain a lower bound of α
β by getting a lower bound of α and an upper bound of β. First, by the definition of α,

we get

α = min
(i,j)

(
wiPji
uiQji

)
(a)
= min

(i,j)

wi dij
2dmax

wi
wi+wj

di∑n
m=1 dm

dij
2di

 (b)

≥ w2
min

2wmax

∑
m dm
dmax

, (82)

where (a) follows by the definitions of P and Q; (b) follows by the fact that wi
wi+wj

≥ wmin

2wmax
, and wi ≥ wmin.

Now, an upper bound of β ends the proof. By the definition of β, we get

β = max
i

(
wi
ui

)
(a)

≤ wmax

dmin

2
∑
m dm

=
2wmax

∑
m dm

dmin
, (83)

where (a) follows by the fact that wi ≤ wmax and the fact that di ≥ dmin.
Using (82) and (83), we finally obtain

α

β
≥ 1

4b2
dmin

dmax
. (84)

where the last inequality follows by the fact that di concentrates around those expectation with high probability.
Specifically, 1

2

(
n−1
M−1

)
p ≤ di ≤ 3

2

(
n−1
M−1

)
p can be proved by Lemma 7.

3.2.2 Bound on h(Q)

The spectral gap of matrix Q is defined as h(Q) = 1 − λmax(Q) where λmax(Q) is the second largest eigenvalue of
Q. If matrix Q is symmetric, we can obtain the spectral gap by subtracting the rank-1 projection matrix of the first
eigenvector of Q from original matrix Q, and getting the first eigenvalue of the subtracted matrix. However, Q is
neither symmetric nor easy to deal with.

Fortunately, we can find a symmetric matrix S whose eigenvalues are the same as those of Q. The symmetric
matrix can be expressed as

S = U−1/2QU1/2, (85)

where U is a diagonal matrix such that Uii = ui (
∑
m dm) = di.

As mentioned, we can compute λmax(Q), the second largest eigenvalue of Q in an alternative way: subtract the
rank-1 projection matrix of S from S and get the first eigenvalue of the subtracted matrix. One can verify that the

first eigenvector of S is u1/2 =
(
u

1/2
1 , u

1/2
2 , · · · , u1/2

n

)T
. Before computing λmax(Q), we define a matrix A such that

Aij = dij for simplicity of analysis that will follow. Notice that Q = 1
2AU

−1 holds. Now, let us begin to compute
λmax(Q).

λmax(Q) = λmax(S) =

∥∥∥∥U−1/2QU1/2 − u1/2
1

(
u

1/2
1

)T∥∥∥∥
2

=

∥∥∥∥1

2
U−1/2AU−1/2 − u1/2

1

(
u

1/2
1

)T∥∥∥∥
2

(86)

≤
∥∥∥∥1

2
U−1/2AU−1/2 − 1

2davg
A

∥∥∥∥
2

+

∥∥∥∥ 1

2davg
A− E

[
1

2davg
A

]∥∥∥∥
2

+

∥∥∥∥E [ 1

2davg
A

]
− u1/2

1

(
u

1/2
1

)T∥∥∥∥
2

, (87)

where davg := E [di]. Since h(Q) = 1−λmax(Q), upper bounds of the three terms lead to a lower bound of h(Q). Soon,
we will show that the following three bounds for some range of p.∥∥∥∥1

2
U−1/2AU−1/2 − 1

2davg
A

∥∥∥∥
2

≤ 11

90
, (88)
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∥∥∥∥E [ 1

2davg
A

]
− u1/2

1

(
u

1/2
1

)T∥∥∥∥
2

≤ 13

18
, (89)∥∥∥∥ 1

2davg
A− E

[
1

2davg
A

]∥∥∥∥
2

≤ 1

9
. (90)

Then all these bounds give us that h(Q) ≥ 2
45 . Now, let us provide the proofs of (88), (89) and (90).

Proof of (88): Using the matrix version of Hölder’s inequality, we get

1

2

∥∥∥∥U−1/2AU−1/2 − A

davg

∥∥∥∥
2

≤ 1

2

∥∥∥∥U−1/2AU−1/2 − A

davg

∥∥∥∥
1

∥∥∥∥U−1/2AU−1/2 − A

davg

∥∥∥∥
∞

(a)

≤ 1

2
max
i

∑
j

∣∣∣∣∣ dij√
didj

− dij
davg

∣∣∣∣∣


(91)

(b)

≤ 1

2
max
i

∑
j

dij max

{∣∣∣∣ 1

dmin
− 1

davg

∣∣∣∣ , ∣∣∣∣ 1

dmax
− 1

davg

∣∣∣∣}
 =

1

2
max
i

{
2di max

{∣∣∣∣ 1

dmin
− 1

davg

∣∣∣∣ , ∣∣∣∣ 1

dmax
− 1

davg

∣∣∣∣}}
(92)

≤ dmax ·max

{∣∣∣∣ 1

dmin
− 1

davg

∣∣∣∣ , ∣∣∣∣ 1

dmax
− 1

davg

∣∣∣∣} (c)

≤ 11

90
, (93)

where (a) follows by the definitions of ‖ · ‖1 and ‖ · ‖∞, and by the fact that
(
U−1/2AU−1/2

)
ij

= dij/
√
didj and

Aij = dij ; (b) follows by the fact that 1
dmax

≤ 1√
didj
≤ 1

dmin
; (c) follows by Lemma 7 which states 9

10davg ≤ di ≤ 11
10davg

with high probability.
Proof of (89): Similarly, using the matrix version of Hölder’s inequality and the definitions of ‖ · ‖1 and ‖ · ‖∞, we
get

∥∥∥∥E [ 1

2davg
A

]
− u1/2

1

(
u

1/2
1

)T∥∥∥∥
2

≤ max
i

∑
j

∣∣∣∣∣E [dij ]

2davg
−
√
didj∑
m dm

∣∣∣∣∣
 (a)

= max
i

∑
j

∣∣∣∣∣ 1

2davg

(
n− 2

M − 2

)
p

M − 1
−
√
didj∑
m dm

∣∣∣∣∣


(94)

(b)
= max

i

∑
j

∣∣∣∣∣ 1

2(n− 1)
−
√
didj∑
m dm

∣∣∣∣∣
 ≤ n ·max

{∣∣∣∣ 1

2(n− 1)
− dmin

ndmax

∣∣∣∣ , ∣∣∣∣ 1

2(n− 1)
− dmax

ndmin

∣∣∣∣} (c)

≤ 13

18
, (95)

where (a) follows by the fact that E [dij ] =
∑
I:i,j∈I E

[
(AI)ij

]
=
(
n−2
M−2

)
p

M−1 ; (b) follows by the facts that
(
n−2
M−2

)
=(

n−1
M−1

)
M−1
n−1 and

(
n−1
M−1

)
p = davg; (c) follows by Lemma 7 which states 9

10davg ≤ di ≤ 11
10davg with high probability.

Proof of (90): We prove (90) applying the matrix Bernstein inequality. First, let us express A as the summation of
independent random matrices.

A =
∑
I
AI , (AI)ij := I

[
I ∈ E(M), {i, j} ∈ φ(I)

]
= I

[
I ∈ E(M)

]
I [{i, j} ∈ φ(I)] , (96)

where I is a hyper-edge of the set [n].
Using the matrix Bernstein inequality, when we assume the following two conditions hold,

R = ‖AI − E [AI ]‖2 ≤ 3, (97)

σ2 =

∥∥∥∥∥∑
I

E
[
(AI − E [AI ])

2
]∥∥∥∥∥

2

≤ 3davg, (98)
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then we can show that

Pr [‖A− E [A]‖2 ≥ t] ≤ 2n exp

(
−t2/2
σ2 +Rt

)
≤ 2n exp

(
−t2/2

3davg + 3t

)
(a)
= 2n exp

 −16 log n

3 + 12
√

logn
davg

 ≤ 2n−1/15, (99)

where (a) follows by setting t = 4
√
davg log n. From this, we get

∥∥∥ 1
2davg

A− E
[

1
2davg

A
]∥∥∥

2
≤ 2

√
logn
davg

. Also, for

p > 324 logn

(n−1
M−1)

, since davg =
(
n−1
M−1

)
p = 324 log n holds, we finished the proof of (90). Now, we provide the proofs of (97)

and (98).
Proof of (97): R can be bounded as follows.

R
(a)

≤ ‖AI − E [AI ]‖1 ‖AI − E [AI ]‖∞
(b)

≤ max
i

∑
j

∣∣∣(AI − E [AI ])ij

∣∣∣
 (c)

≤ 2

∣∣∣∣1− p

M − 1

∣∣∣∣+ (M − 2)
p

M − 1
≤ 3, (100)

where (a) follows by the matrix version of Hölder’s inequality; (b) follows by the definitions of ‖ · ‖1 and ‖ · ‖∞; (c)
follows by the fact that since there are two adjacent items for each item, (AI)ij = 1 at two elements for each row, and

E
[
(AI)ij

]
= p

M−1 by the fact that (AI)ij ∼ Bern
(

p
M−1

)
. We can derive the distribution (AI)ij ∼ Bern

(
p

M−1

)
as

follows.
By the definition of (96), we see that (AI)ij = I

[
I ∈ E(M)

]
I [{i, j} ∈ φ(I)]. We know that I

[
I ∈ E(M)

]
∼ Bern(p)

by the assumption that every hyper-edge is chosen independently with probability p. Also, since a circular permutation
for each I is chosen uniformly at random, we can compute Pr [{i, j} ∈ φ(I)] as follows.

Pr [{i, j} ∈ φ(I)] =
# of circular permutations in which items i and j are adjacent

# of circular permutations
=

(M − 2)!

(M − 1)!
=

1

M − 1
. (101)

Hence, we get (AI)ij ∼ Bern
(

p
M−1

)
for i, j ∈ I. This ends the proof of (97).

Proof of (98): For notational simplicity, we let A∗ :=
∑
I E
[
(AI − E [AI ])

2
]
. Similarly, using the matrix version

of Hölder’s inequality and the definitions of ‖ · ‖1 and ‖ · ‖∞, we get

σ2 ≤ max
i

∑
j

∣∣A∗ij∣∣
 . (102)

Now let us obtain an upper bound of A∗ij . First, for the case of i 6= j,

∣∣A∗ij∣∣ =

∣∣∣∣∣∣
∑
I:i,j∈I

∑
k 6=i,j

E
[
(AI − E [AI ])ik (AI − E [AI ])kj

]∣∣∣∣∣∣ ≤
∑
I:i,j∈I

∑
k 6=i,j

∣∣∣E [(AI)ik (AI)kj

]
− E [(AI)ik]E

[
(AI)kj

]∣∣∣
(103)

(a)
=

∑
I:i,j∈I

∑
k 6=i,j

∣∣∣∣ p

(M − 1)(M − 2)
− p

(M − 1)2

∣∣∣∣ =

(
n− 2

M − 2

)
(M − 2)

∣∣∣∣ p

(M − 1)(M − 2)
− p

(M − 1)2

∣∣∣∣ (104)

=

(
n− 1

M − 1

)
M − 1

n− 1
(M − 2)

p

(M − 1)2(M − 2)
≤ 2

n− 1

(
n− 1

M − 1

)
p =

2

n− 1
davg, (105)

where (a) follows by the fact that (AI)ik (AI)kj ∼ Bern
(

p
(M−1)(M−2)

)
. (AI)ik (AI)kj is equal to 1, when we have

i − k − j in the formed circular permutation. As previously shown, we can derive the distribution (AI)ik (AI)kj = 1
as follows.

Pr
[
(AI)ik (AI)kj = 1

]
=

# of circular permutations in which items i and j are adjacent to item k

# of circular permutations
(106)
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=
(M − 3)!

(M − 1)!
=

1

(M − 1)(M − 2)
. (107)

For the case of i = j, we get

|A∗ii| =

∣∣∣∣∣∣
∑
I:i∈I

∑
k 6=i

E [(AI − E [AI ])ik (AI − E [AI ])ki]

∣∣∣∣∣∣ ≤
∑
I:i∈I

∑
k 6=i

∣∣∣E [(AI)
2
ik

]
− E [(AI)ik]

2
∣∣∣ (108)

=

(
n− 1

M − 1

)
(M − 1)

∣∣∣∣ p

M − 1
− p2

(M − 1)2

∣∣∣∣ ≤ ( n− 1

M − 1

)
p = davg. (109)

Applying (109) and (105) to (102) ends the proof of (98).

σ2 ≤ 3davg. (110)

4 Proof of Theorem 1

Theorem 1. Fix ε ∈ (0, 1
2 ). Given an M-wise comparison graph G = ([n], E(M)), if(

n

M

)
pL . (1− ε)n log n

∆2
K

1

M
, (111)

then for any ranking scheme ψ, there exists a preference score vector w with seperation measure ∆K such that Pe(ψ) ≥ ε.

Outline: Overall, the proof to be presented follows the line of steps in the proof of Theorem 2 in (Chen and Suh
2015). Similarly as in (Chen and Suh 2015), we intend to bound the minimax probability of error to characterize
the conditions under which the probability cannot be made arbitrarily close to zero, using a generalized version of
Fano’s inequality (Han and Verdú 1994). However, the details of the steps are more involved including combinatorial
calculations, as we consider a more general model.

We first construct a set of hypotheses, and impose a uniform distribution over them. We then apply the generalized
Fano’s inequality to obtain a lower bound on the probability of error. This lets us able to identify conditions under
which the probability of error cannot be made arbitrarily zero.

At the end of the process, we obtain a sum of Kullback-Leibler (KL) divergences in (122). Computing its upper
bound provides a lower bound of the probability of error, and it ends the proof. Depending on the hypotheses, the
summand can be computed in four different ways. We divide-and-conquer and compute (122) in Cases 1—4 and denote
it by D1, D2, D3 and D4 respectively.

Finally, we show D4 = 0, obtain an upper bound of D1 +D2 in (134) and that of D3 in (135), and end the proof.

Proof dependencies:
Theorem 4 ←− Equation (122)

Weighted sum of KL divergences D1, D2, D3 and D4 (Equation (122)) ←− Equation (134), Equation (135)
D4 = 0 (Equation (132))
Bound of D1 +D2 (Equation (134)) ←− Equation (139), Equation (140)
Bound of D3 (Equation (135)) ←− Equation (162), Equation (163)

Proof: We construct a finite set of hypotheses H and carry out an analysis based on classical Fano-type arguments.
Each hypothesis is represented by a permutation σh ∈ H over [n] and we denote by σh(i) and σh([K]) the index of the
ith ranked item and the index set of all top-K items respectively.

We choose a set of hypotheses and some prior to be imposed on them. Suppose that the values of w are fixed up
to permutation in such a way that

∀σh ∈ H, wσh(i) =

{
wK if 1 ≤ i ≤ K
wK+1 if K < i ≤ n, (112)
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where we abuse the notation wK , wK+1 to represent any two values satisfying

wK − wK+1

wmax
= ∆K > 0. (113)

Additionally, we impose a uniform prior over a collection H of |H| = max(K,n−K) + 1 hypotheses regarding the
permutation: if K < n

2 , then

∀σh ∈ H, P [σh] =
1

|H|
, σh ([K]) = Kh, for Kh = {2, ...,K} ∪ {h}, (h = 1,K + 1, ..., n), (114)

and if K ≥ n
2 , then

∀σh ∈ H, P [σh] =
1

|H|
, σh ([K]) = Kh, for Kh = {1, ...,K + 1}\{h}, (h = 1, ...,K + 1). (115)

Note that |H| ≥ n
2 .

In words, each alternative hypothesis is made by interchanging two indices of the hypothesis complying to σh([K]) =
[K]. Denoting by Pe,H the average probability of error with respect to the constructed prior, one can verify the minimax
probability of error Pe to be at least Pe,H.

Let us begin our proof that modifies the arguments in (Chen and Suh 2015) for the model of our interest. To take

partial M -wise observations into account, we introduce an erased version of sI := (s
(1)
I , s

(2)
I , . . . , s

(L)
I ) such that

zI =

{
sI w.p. p;
erasure otherwise.

, (116)

where we denote by Z := {zI : for all possible I’s} the collection of observed samples.
Then, applying the generalized Fano’s inequality (Han and Verdu 1994), we get

Pe ≥ 1− 1

log |H|

 1

|H|2
∑

σa,σb∈H
D(PZ|σ=σa ||PZ|σ=σb) + log 2

 (117)

(a)
= 1− 1

log |H|

 1

|H|2
∑

σa,σb∈H

∑
I
D(PzI |σ=σa ||PzI |σ=σb) + log 2

 (118)

(b)
= 1− 1

log |H|

 p

|H|2
∑

σa,σb∈H

∑
I
D(PsI |σ=σa ||PsI |σ=σb) + log 2

 (119)

(c)
= 1− 1

log |H|

 pL

|H|2
∑

σa,σb∈H

∑
I
D(P

s
(1)
I |σ=σa

||P
s
(1)
I |σ=σb

) + log 2

 (120)

(d)
= 1− 1

log |H|

{
pL
∑
I
D(P

s
(1)
I |σ=σ1

||P
s
(1)
I |σ=σK+1

) + log 2

}
, (121)

where (a) follows by the independence between two hyper-edges; (b) follows by the distribution of zI ; (c) follows by

the independence of s
(`)
I over `; (d) follows by the fact that for any pair of hypotheses they differ by one item and this

leads the summation over all possible I’s to the same KL divergence.
To identify conditions under which Pe cannot be made arbitrarily close to zero, meaning top-K ranking is infeasible,

we seek to obtain a lower bound on Pe. To that end, we derive an upper bound on
∑
I
D(P

s
(1)
I |σ=σ1

||P
s
(1)
I |σ=σK+1

). It

turns out that
∑
I
D(P

s
(1)
I |σ=σ1

||P
s
(1)
I |σ=σK+1

) is upper-bounded by

∑
I
D(P

s
(1)
I |σ=σ1

||P
s
(1)
I |σ=σK+1

) ≤
(
n

M

)
M

n
c0∆2

K , (122)
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where c0 is a numerical constant.
We will soon prove (122) in detail. For the time being, let us proceed to characterize a necessary condition for

reliable top-K ranking. Applying (122) to (121), we get

Pe ≥ 1− 1

log |H|

{
pL

((
n

M

)
M

n
c0∆2

K

)
+ log 2

}
= 1− 1

log |H|

{
c0

(
n

M

)
pL

M

n
∆2
K + log 2

}
. (123)

Fix ε ∈ (0, 1
2 ). Then, Pe > ε if c0

(
n
M

)
pLMn ∆2

K < (1− ε) log |H| − log 2. From this, we can obtain a necessary condition
for reliable top-K ranking:

c0

(
n

M

)
pL

M

n
∆2
K ≥ log |H| − log 2 ⇐⇒

(
n

M

)
pL ≥ n(log(n/2)− log 2)

M∆2
K

1

c0
⇐⇒

(
n

M

)
pL &

n log n

M∆2
K

. (124)

We can see that this gives us the claimed result of (111). As shown above, a key step to identifying the necessary
condition is to show (122).

4.1 Bound on
∑

I D(P
s
(1)
I |σ=σ1

||P
s
(1)
I |σ=σK+1

): Proof of (122)

Here, we will upper-bound a sum of the Kullback-Leibler (KL) divergences
∑
I D(P

s
(1)
I |σ=σ1

||P
s
(1)
I |σ=σK+1

). Notice

that σ1 = {1, 2, ...,K} and σK+1 = {2, ...,K,K + 1}. To show this, we consider four different cases, for each of which
an observation set I of M items includes certain items as follows.

• Case 1: I includes item 1 and does not include item K+1; the number of such I is
(
n−2
M−1

)
.

• Case 2: I includes item K+1 and does not include item 1; the number of such I is also
(
n−2
M−1

)
.

• Case 3: I includes both items 1 and K+1; the number of such I is
(
n−2
M−2

)
.

• Case 4: I includes neither item 1 nor item K+1; the number of such I is
(
n−2
M

)
.

Note that the four exclusive cases form a partition of the set of all possible I. Now, let us compute the KL divergence
for each case.
Case 1 : 1 ∈ I and K + 1 /∈ I:

Let R be the rank of item 1 within the permutation s
(1)
I . Given σ = σ1, we can obtain the probability of

s
(1)
I = (i1, i2, . . . , iR = 1, . . . , iM ), which we denote by p

s
(1)
I |σ1

, according to the PL model as follows.

p
s
(1)
I |σ1

=

M∏
r=1

wir∑M
m=r wim

=

(
R−1∏
r=1

wir
wK +

∑
m∈[r,M ]\{R} wim

)
wK

wK +
∑M
m=R+1 wim

(
M∏

r=R+1

wir∑M
m=r wim

)
. (125)

Given σ = σK+1 , we can obtain the probability of s
(1)
I = (i1, i2, . . . , iR = 1, . . . , iM ) by substituting wK with

wK+1, as item 1 is not among the top-K ranked in σK+1.

p
s
(1)
I |σK+1

=

(
R−1∏
r=1

wir
wK+1 +

∑
m:m∈[r,M ]\{R} wim

)
wK+1

wK+1 +
∑M
m=R+1 wim

(
M∏

r=R+1

wir∑M
m=r wim

)
(126)

Computing the KL divergence for this case, which we will denote by D1, we get

D1 = D(P
s
(1)
I |σ=σ1

||P
s
(1)
I |σ=σK+1

) =
M∑
R=1

∑
s
(1)
I :iR=1

p
s
(1)
I |σ1

log
p
s
(1)
I |σ1

p
s
(1)
I |σK+1

. (127)

Case 2 : K + 1 ∈ I and 1 /∈ I:

19



This case is similar to Case 1 except that the roles of items 1 and K+1 are swapped. Thus, the probability of s
(1)
I =

(i1, i2, . . . , iR = K + 1, . . . , iM ) given σ = σ1 is equivalent to (126), and that of s
(1)
I = (i1, i2, . . . , iR = K + 1, . . . , iM )

given σ = σK+1 is equivalent to (125).
Computing the KL divergence for this case, which we will denote by D2, we get

D2 = D(P
s
(1)
I |σ=σ1

||P
s
(1)
I |σ=σK+1

) =

M∑
R=1

∑
s
(1)
I :iR=1

p
s
(1)
I |σK+1

log
p
s
(1)
I |σK+1

p
s
(1)
I |σ1

. (128)

Case 3 : 1 ∈ I and K + 1 ∈ I:
Let R1 and RK+1 be the ranks of items 1 and K + 1 respectively within the permutation s

(1)
I . Given σ = σ1, we

obtain the probability of s
(1)
I = (i1, i2, . . . , iR1−1, iR1 = 1, . . . , iRK+1−1, iRK+1

= K + 1, . . . , iM ) as follows.

p
s
(1)
I |σ1

=

(
R1−1∏
r=1

wir
wK + wK+1 +

∑
m:m∈[r,M ]\{R1,RK+1} wim

)(
wK

wK + wK+1

∑
m:m∈[R1+1,M ]\{RK+1} wim

)

×

RK+1−1∏
r=R1+1

wir
wK+1

∑
m:m∈[r,M ]\{RK+1} wim

( wK+1

wK+1 +
∑M
m=RK+1+1 wim

) M∏
r=RK+1+1

wir∑M
m=r wim

 .

(129)

Similarly, given σ = σK+1, we get

p
s
(1)
I |σK+1

=

(
R1−1∏
r=1

wir
wK+1 + wK +

∑
m:m∈[r,M ]\{R1,RK+1} wim

)(
wK+1

wK+1 + wK +
∑
m:m∈[R1+1,M ]\{RK+1} wim

)

×

RK+1−1∏
r=R1+1

wir
wK

∑
m:m∈[r,M ]\{RK+1} wim

( wK

wK +
∑M
m=RK+1+1 wim

) M∏
r=RK+1+1

wir∑M
m=r wim

 . (130)

In (129) and (130), we consider the case where item 1 is ranked higher than item K + 1 is, namely R1 < RK+1.
Let us consider the symmetric case by assuming RK+1 is the rank of item 1 and R1 is the rank of item K + 1, where
R1 < RK+1. In this case, we can simply swap wK and wK+1 in (129) and (130). Thus, we can obtain the probability of

s̃
(1)
I = (i1, i2, . . . , iR1−1, iR1

= K + 1, . . . , iRK+1−1, iRK+1
= 1, . . . , iM ) as p

s̃
(1)
I |σ1

= p
s
(1)
I |σK+1

and p
s̃
(1)
I |σK+1

= p
s
(1)
I |σ1

.

Using these facts, we can simplify the computation of the KL divergence for this case, which we denote by D3, as
follows.

D3 =
∑

R1<RK+1

∑
s
(1)
I :iR1

=1,iRK+1
=K+1

p
s
(1)
I |σ1

log
p
s
(1)
I |σ1

p
s
(1)
I |σK+1

+
∑

R1>RK+1

∑
s
(1)
I :iR1

=1,iRK+1
=K+1

p
s
(1)
I |σ1

log
p
s
(1)
I |σ1

p
s
(1)
I |σK+1

=
∑

R1<RK+1

∑
s
(1)
I :iR1

=1,iRK+1
=K+1

p
s
(1)
I |σ1

log
p
s
(1)
I |σ1

p
s
(1)
I |σK+1

+
∑

R1<RK+1

∑
s
(1)
I :iR1

=K+1,iRK+1
=1

p
s
(1)
I |σ1

log
p
s
(1)
I |σ1

p
s
(1)
I |σK+1

=
∑

R1<RK+1

∑
s
(1)
I :iR1

=1,iRK+1
=K+1

p
s
(1)
I |σ1

log
p
s
(1)
I |σ1

p
s
(1)
I |σK+1

+
∑

R1<RK+1

∑
s
(1)
I :iR1

=1,iRK+1
=K+1

p
s
(1)
I |σK+1

log
p
s
(1)
I |σK+1

p
s
(1)
I |σ1

=
∑

R1<RK+1

∑
s
(1)
I :iR1

=1,iRK+1
=K+1

(
p
s
(1)
I |σ1

− p
s
(1)
I |σK+1

)
log

p
s
(1)
I |σ1

p
s
(1)
I |σK+1

. (131)

Case 4 : 1 /∈ I and K + 1 /∈ I:
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The scores of items for any given I are unchanged given either σ = σ1 or σ = σK+1. Computing the KL divergence,
which we will denote by D4, we get

D4 = D(P
s
(1)
I |σ=σ1

||P
s
(1)
I |σ=σK+1

) = 0. (132)

Putting altogether, we can express
∑
I D(P

s
(1)
I |σ=σ1

||P
s
(1)
I |σ=σK+1

) as follows.

∑
I
D(P

s
(1)
I |σ=σ1

||P
s
(1)
I |σ=σK+1

) =

(
n− 2

M − 1

)
(D1 +D2) +

(
n− 2

M − 2

)
D3. (133)

Soon, we will show that

D1 +D2 ≤ c0∆2
K , (134)

D3 ≤ c0∆2
K , (135)

where c0 is a numerical constant.
Applying (134) and (135) to (133), we get the claimed bound (122):∑
I
D(P

s
(1)
I |σ=σ1

||P
s
(1)
I |σ=σK+1

) =

(
n− 2

M − 1

)
(D1 +D2) +

(
n− 2

M − 2

)
D3 ≤

(
n− 2

M − 1

)
c0∆2

K +

(
n− 2

M − 2

)
c0∆2

K (136)

≤
(
n

M

)
M(n−M)

n(n− 1)
c0∆2

K +

(
n

M

)
M(M − 1)

n(n− 1)
c0∆2

K ≤
(
n

M

)
M

n
c0∆2

K . (137)

Now, let us provide the proofs of (134) and (135).

4.1.1 Bound on D1 +D2: Proof of (134)

From (127) and (128), we get

D1 +D2 =

M∑
R=1

∑
s
(1)
I :iR=1

(
p
s
(1)
I |σ1

− p
s
(1)
I |σK+1

)
log

p
s
(1)
I |σ1

p
s
(1)
I |σK+1

=

M∑
R=1

∑
s
(1)
I :iR=1

p
s
(1)
I |σK+1

(
p
s
(1)
I |σ1

p
s
(1)
I |σK+1

− 1

)
log

p
s
(1)
I |σ1

p
s
(1)
I |σK+1

.

(138)

To obtain an upper bound of D1 +D2, we will show that for s
(1)
I = (i1, i2, . . . , iR = 1, . . . , iM ), where R is the rank

of item 1 within the permutation s
(1)
I , we have(

p
s
(1)
I |σ1

p
s
(1)
I |σK+1

− 1

)
log

p
s
(1)
I |σ1

p
s
(1)
I |σK+1

≤ b2∆2
K + b2∆2

K

(
1

M −R+ 1
+ log

M

M −R+ 1

)2

, (139)

∑
s
(1)
I :iR=1

p
s
(1)
I |σK+1

≤
(

3M−1/b
)( 1

M −R+ 1

)1−1/b

, (140)

where b := wmax

wmin
. We provide the proofs of (139) and (140) in detail soon. For the time being, let us show that D1 +D2

attains the claimed bound of (134).
Applying (139) to (138), we get

D1 +D2 ≤
M∑
R=1

∑
s
(1)
I :iR=1

p
s
(1)
I |σK+1

b2∆2
K +

M∑
R=1

∑
s
(1)
I :iR=1

p
s
(1)
I |σK+1

b2∆2
K

(
1

M −R+ 1
+ log

M

M −R+ 1

)2

(141)
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(a)
= b2∆2

K + b2∆2
K

M∑
R=1

∑
s
(1)
I :iR=1

p
s
(1)
I |σK+1

(
1

M −R+ 1
+ log

M

M −R+ 1

)2

(142)

= b2∆2
K + b2∆2

K

M∑
R=1

( 1

M −R+ 1
+ log

M

M −R+ 1

)2 ∑
s
(1)
I :iR=1

p
s
(1)
I |σK+1

 , (143)

where (a) follows by the fact that the sum of the probabilities of all possible permutations is 1. Then, applying (140)
to (143), we get

D1 +D2 ≤ b2∆2
K

(
1 +

(
3M−1/b

) M∑
R=1

(
1

M −R+ 1

)1−1/b(
1

M −R+ 1
+ log

M

M −R+ 1

)2
)
≤ c0∆2

K , (144)

where (144) follows by the fact that
∑M
R=1

(
1

M−R+1

)1−1/b (
1

M−R+1 + log M
M−R+1

)2

≤ cM1/b as shown in Appendix

5.2. This ends the proof of (134).
Now, we provide the proofs of (139) and (140).

Proof of (139): For s
(1)
I = (i1, i2, . . . , iR = 1, . . . , iM ), we can obtain an upper bound of

(
p
s
(1)
I |σ1

p
s
(1)
I |σK+1

− 1

)
log

p
s
(1)
I |σ1

p
s
(1)
I |σK+1

as follows.(
p
s
(1)
I |σ1

p
s
(1)
I |σK+1

− 1

)
log

p
s
(1)
I |σ1

p
s
(1)
I |σK+1

=

(
wK
wK+1

R∏
r=1

wK+1 +
∑
m:m∈[r,M ]\{R} wim

wK +
∑
m:m∈[r,M ]\{R} wim

− 1

)
log

(
wK
wK+1

R∏
r=1

wK+1 +
∑
m:m∈[r,M ]\{R} wim

wK +
∑
m:m∈[r,M ]\{R} wim

)
(145)

=

(
wK
wK+1

R∏
r=1

wK+1 +
∑
m:m∈[r,M ]\{R} wim

wK +
∑
m:m∈[r,M ]\{R} wim

− 1

)
log

(
wK
wK+1

)
(146)

+

(
1− wK

wK+1

R∏
r=1

wK+1 +
∑
m:m∈[r,M ]\{R} wim

wK +
∑
m:m∈[r,M ]\{R} wim

)
log

(
R∏
r=1

wK +
∑
m:m∈[r,M ]\{R} wim

wK+1 +
∑
m:m∈[r,M ]\{R} wim

)
(147)

(a)
<

(
wK − wK+1

wK+1

)
log

(
wK
wK+1

)
+

1− 1∏R
r=1

(
1 + wK−wK+1

wK+1+
∑
m:m∈[r,M]\{R} wim

)
 log

R∏
r=1

(
1 +

wK − wK+1

wK+1 +
∑
m:m∈[r,M ]\{R} wim

)
(148)

(b)

≤
(
wK − wK+1

wK+1

)
log

(
wK
wK+1

)
+

1− 1∏R
r=1

(
1 + wK−wK+1

(M−r+1)wK+1

)
 log

R∏
r=1

(
1 +

wK − wK+1

(M − r + 1)wK+1

)
(149)

(c)

≤
(
wK − wK+1

wK+1

)
log

(
1 +

wK − wK+1

wK+1

)
+

(
R∑
r=1

log

(
1 +

wK − wK+1

(M − r + 1)wK+1

))2

(150)

(d)

≤
(
wK − wK+1

wK+1

)2

+

(
wK − wK+1

wK+1

R∑
r=1

1

M − r + 1

)2

(151)

(e)

≤
(
wK − wK+1

wK+1

)2
[

1 +

(
1

M −R+ 1
+ log

M

M −R+ 1

)2
]

(f)

≤ b2∆2
K

[
1 +

(
1

M −R+ 1
+ log

M

M −R+ 1

)2
]
,

(152)

where (a) follows by the fact that
∏R
r=1

wK+1+
∑R−1
m=r wim+

∑M
m=R+1 wim

wK+
∑R−1
m=r wim+

∑M
m=R+1 wim

< 1 since wK > wK+1; (b) follows by replacing

wim with wK+1; (c) follows by applying 1 − e−x ≤ x; (d) follows by applying log(1 + x) ≤ x; (e) follows by the
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fact that
∑R
r=1

1
M−r+1 ≤

1
M−R+1 + log M

M−R+1 as shown in Appendix 5.1; (f) follows by b = wmax

wmin
= wK

wK+1
and

∆K = wK−wK+1

wmax
= wK−wK+1

wK
.

Proof of (140): Now, we provide an upper bound of p
s
(1)
I |σK+1

.

∑
s
(1)
I :iR=1

p
s
(1)
I |σK+1

=
∑

s
(1)
I :iR=1

(
R−1∏
r=1

wir
wK+1 +

∑
m:m∈[r,M ]\{R} wim

)(
M∏

r=R+1

wir∑M
m=r wim

)
wK+1

wK+1 +
∑M
m=R+1 wim

(153)

(a)
=

∑
s
(1)
I :iR=1

(
R−1∏
r=1

wir∑
m:m∈[r,M ]\{R} wim

)(
R−1∏
r=1

∑
m:m∈[r,M ]\{R} wim

wK+1 +
∑
m:m∈[r,M ]\{R} wim

)(
M∏

r=R+1

wir∑M
m=r wim

)
wK+1

wK+1 +
∑M
m=R+1 wim

(154)

=
∑

s
(1)
I :iR=1

(
R−1∏
r=1

wir∑
m:m∈[r,M ]\{R} wim

)(
M∏

r=R+1

wir∑M
m=r wim

)(
R−1∏
r=1

∑
m:m∈[r,M ]\{R} wim

wK+1 +
∑
m:m∈[r,M ]\{R} wim

)
wK+1

wK+1 +
∑M
m=R+1 wim

(155)

(b)

≤
∑

s
(1)
I :iR=1

(
R−1∏
r=1

wir∑
m:m∈[r,M ]\{R} wim

)(
M∏

r=R+1

wir∑M
m=r wim

)(
R−1∏
r=1

(M − r)wK
wK+1 + (M − r)wK

)
wK+1

(M −R+ 1)wK+1
(156)

(c)
=

(
R−1∏
r=1

(M − r)wK
wK+1 + (M − r)wK

)
wK+1

(M −R+ 1)wK+1
=

(
R−1∏
r=1

wK + (M − r)wK
wK+1 + (M − r)wK

)
1

M
≤

(
R−1∏
r=1

1 +
wK − wK+1

(M − r)wK

)
1

M

(157)

(d)

≤ exp

(
wK − wK+1

wK

R−1∑
r=1

1

M − r

)
1

M

(e)

≤ exp

(
wK − wK+1

wK

(
1

M −R+ 1
+ log

M − 1

M −R+ 1

))
1

M
(158)

(f)

≤ 3

(
M − 1

M −R+ 1

)wK−wK+1
wK 1

M

(g)

≤
(

3M−1/b
)( 1

M −R+ 1

)1−1/b

, (159)

where (a) follows by splitting the first product in parentheses into two; (b) follows by replacing wim with wK or wK+1

properly; (c) follows by the fact that
∑
s
(1)
I :iR=1

(∏R−1
r=1

wir∑
m:m∈[r,M]\{R} wim

)(∏M
r=R+1

wir∑M
m=r wim

)
= 1 holds according

to the PL model; (d) follows by applying 1 + x ≤ ex; (e) follows by the fact that
∑R−1
r=1

1
M−r ≤

1
M−R+1 + log M−1

M−R+1

as shown in Appendix 5.1; (f) follows by the fact that exp
(
wK−wK+1

wK
1

M−R+1

)
≤ e ≤ 3 for any R; (g) follows by the

fact that wK+1

wK
≤ 1

b . Note that b = Θ(1).

4.1.2 Bound on D3: Proof of (135)

Following a similar line of steps toward the bound of D1 +D2, we can also obtain an upper bound of D3. From (131),
we get

D3 =
∑

R1<RK+1

∑
s
(1)
I :iR1

=1,iRK+1
=K+1

(
p
s
(1)
I |σ1

− p
s
(1)
I |σK+1

)
log

p
s
(1)
I |σ1

p
s
(1)
I |σK+1

(160)

=
∑

R1<RK+1

∑
s
(1)
I :iR1

=1,iRK+1
=K+1

p
s
(1)
I |σK+1

(
p
s
(1)
I |σ1

p
s
(1)
I |σK+1

− 1

)
log

p
s
(1)
I |σ1

p
s
(1)
I |σK+1

. (161)

Similarly, we will show that for s
(1)
I = (i1, i2, . . . , iR1

= 1, . . . , iRK+1
= K + 1, . . . , iM ), where R1 is the rank of item
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1 and RK+1 is the rank of item K + 1 respectively within the permutation s
(1)
I , we have(

p
s
(1)
I |σ1

p
s
(1)
I |σK+1

− 1

)
log

p
s
(1)
I |σ1

p
s
(1)
I |σK+1

≤ b2∆2
K

(
1

M −RK+1 + 1
+ log

M

M −RK+1 + 1

)2

, (162)

∑
s
(1)
I :iR1

=1,iRK+1
=K+1

p
s
(1)
I |σK+1

≤ b

M − 1

(
3M−1/b

)( 1

M −RK+1 + 1

)1−1/b

. (163)

Applying (162) and (163) to (161), we get

D3

(a)

≤
∑

R1<RK+1

∑
s
(1)
I :iR1

=1,iRK+1
=K+1

p
s
(1)
I |σK+1

b2∆2
K

(
1

M −RK+1 + 1
+ log

M

M −RK+1 + 1

)2

(164)

=
∑

R1<RK+1

b2∆2
K

(
1

M −RK+1 + 1
+ log

M

M −RK+1 + 1

)2 ∑
s
(1)
I :iR1

=1,iRK+1
=K+1

p
s
(1)
I |σK+1

(165)

(b)
=

∑
R1<RK+1

b

M − 1

(
3M−1/b

)( 1

M −RK+1 + 1

)1−1/b

b2∆2
K

(
1

M −RK+1 + 1
+ log

M

M −RK+1 + 1

)2

(166)

(c)

≤
M∑

RK+1=1

(M − 1)
b

M − 1

(
3M−1/b

)( 1

M −RK+1 + 1

)1−1/b

b2∆2
K

(
1

M −RK+1 + 1
+ log

M

M −RK+1 + 1

)2

(167)

≤ 3b3∆2
KM

−1/b
M∑

RK+1=1

(
1

M −RK+1 + 1

)1−1/b(
1

M −RK+1 + 1
+ log

M

M −RK+1 + 1

)2 (d)

≤ c0∆2
K , (168)

where (a) follows by (162); (b) follows by (163); (c) follows by the fact that we can have at most (M−1) different pairs of

(R1, RK+1) for fixed RK+1; (d) follows by the fact that
∑M
RK+1=1

(
1

M−RK+1+1

)1−1/b (
1

M−RK+1+1 + log M
M−RK+1+1

)2

≤
cM1/b as shown in Appendix 5.2. This ends the proof of (135).

Now, we provide proofs of (162) and (163).

Proof of (162): We can obtain an upper bound of

(
p
s
(1)
I |σ1

p
s
(1)
I |σK+1

− 1

)
log

p
s
(1)
I |σ1

p
s
(1)
I |σK+1

by applying a similar line of steps

from (148) to (152).(
p
s
(1)
I |σ1

p
s
(1)
I |σK+1

− 1

)
log

p
s
(1)
I |σ1

p
s
(1)
I |σK+1

=

1−

 RK+1∏
r=R1+1

wK +
∑
m:m∈[r,M ]\{R} wim

wK+1 +
∑
m:m∈[r,M ]\{R} wim

−1
 log

RK+1∏
r=R1+1

wK +
∑
m:m∈[r,M ]\{R} wim

wK+1 +
∑
m:m∈[r,M ]\{R} wim

(169)

≤ b2∆2
K

(
1

M −RK+1 + 1
+ log

M

M −RK+1 + 1

)2

. (170)

Proof of (163): Now, we provide the upper bound of
∑
s
(1)
I :iR1

=1,iRK+1
=K+1

p
s
(1)
I |σK+1

.∑
s
(1)
I :iR1

=1,iRK+1
=K+1

p
s
(1)
I |σK+1

(a)
=

∑
s
(1)
I :iR1

=1,iRK+1
=K+1

(
R1−1∏
r=1

wir∑
m:m∈[r,M ]\{R1,RK+1} wim

)RK+1−1∏
r=R1+1

wir∑
m:m∈[r,M ]\{RK+1} wim

 M∏
r=RK+1+1

wir∑M
m=r wim


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×

(
wK+1

wK+1 + wK +
∑
m:m∈[R1,M ]\{R1,RK+1} wim

)(
wK

wK +
∑M
m=RK+1+1 wim

)

×

(
R1−1∏
r=1

∑
m:m∈[r,M ]\{R1,RK+1} wim

wK+1 + wK +
∑
m:m∈[r,M ]\{R1,RK+1} wim

)RK+1−1∏
r=R1+1

∑
m:m∈[r,M ]\{RK+1} wim

wK +
∑
m:m∈[r,M ]\{RK+1} wim

 (171)

(b)

≤
(

wK+1

(M −R1 + 1)wK+1

)(
wK

(M −RK+1 + 1)wK+1

)(R1−1∏
r=1

(M − r)wK
wK+1 + (M − r)wK

)RK+1−1∏
r=R1+1

(M − r)wK
(M − r + 1)wK


(172)

×

[ ∑
s
(1)
I :iR1

=1,iRK+1
=K+1

(
R1−1∏
r=1

wir∑
m:m∈[r,M ]\{R1,RK+1} wim

)RK+1−1∏
r=R1+1

wir∑
m:m∈[r,M ]\{RK+1} wim

 M∏
r=RK+1+1

wir∑M
m=r wim

]
(173)

(c)
=

(
wK+1

(M −R1 + 1)wK+1

)(
wK

(M −RK+1 + 1)wK+1

)(R1−1∏
r=1

(M − r)wK
wK+1 + (M − r)wK

)RK+1−1∏
r=R1+1

(M − r)wK
(M − r + 1)wK


(174)

(d)

≤ b

M − 1

R1−1∏
r=1

(
1 +

wK − wK+1

wK+1 + (M − r)wK

)
1

M
≤ b

M − 1

R1−1∏
r=1

(
1 +

wK − wK+1

(M − r)wK

)
1

M
(175)

(e)

≤ b

M − 1

RK+1−1∏
r=1

(
1 +

wK − wK+1

(M − r)wK

)
1

M

(g)

≤ b

M − 1

(
3M−1/b

)( 1

M −RK+1 + 1

)1−1/b

, (176)

where (a) follows by applying a similar line of step from (153) to (155); (b) follows by replacing wim with wK or wK+1

properly; (c) follows by the fact that the term in brackets is equal to 1 according to the PL model; (e) follows by
applying a similar line of steps in(157); (d) follows by the fact that R1 < RK+1; (e) follows by applying a similar line
of steps from (158) to (159).

5 Appendix

5.1 Bound of Summation 1

For all α, β > 0,

β∑
m=α

1

m
≤ 1

α
+ log

β

α
. (177)

Proof. 1
m ≤

∫m
m−1

1
xdx = logm− log(m− 1) holds since 1

x is a decreasing function for x ∈ (0,∞).

5.2 Bound of Summation 2

For all γ such that 0 < γ ≤ 1 and γ = Θ(1),

M∑
R=1

(
1

M −R+ 1

)1−γ (
1

M −R+ 1
+ log

M

M −R+ 1

)2

≤ cMγ , (178)

where c is a numerical constant.
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Proof. We can rewrite (178) as

M∑
m=1

(
1

m

)1−γ (
1

m
+ log

M

m

)2

≤ cMγ . (179)

Since
(

1
x

)1−γ ( 1
x + log M

x

)2
is a decreasing function for x ∈ [1,M ], we can see that(

1

m

)1−γ (
1

m
+ log

M

m

)2

≤
∫ m

m−1

(
1

x

)1−γ (
1

x
+ log

M

x

)2

dx. (180)

Thus, for 0 < γ < 1, we get

M∑
m=1

(
1

m

)1−γ (
1

m
+ log

M

m

)2

≤ (1 + logM)2 +

∫ M

1

(
1

x

)1−γ (
1

x
+ log

M

x

)2

dx (181)

≤ (1 + logM)2 +Mγ

(
1

M2(−2 + γ)
+

2

M(−1 + γ)2
+

2

γ3

)
+ c

(logM)2

γ
≤ c′Mγ ,

(182)

where c and c′ are some numerical constants. For γ = 1, we get

M∑
m=1

(
1

m
+ log

M

m

)2

≤ (1 + logM)2 +

∫ M

1

(
1

x
+ log

M

x

)2

dx = 2M + (logM)2 − 1

M
≤ 3M. (183)

5.3 Hoeffding’s Inequality

Throughout the provided proofs, we often use Hoeffding’s inequality stated as follows.
Hoeffding’s inequality Let Xi be independent random variables bounded by the interval [ai, bi] : ai ≤ Xi ≤ bi. Then,

Pr

[∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E [Xi]

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
− 2t2∑n

i=1 (bi − ai)2

)
. (184)

5.4 Hölder’s Inequality

Throughout the provided proofs, we often use the matrix version of Hölder’s inequality stated as follows.
Hölder’s inequality For a matrix Q ∈ Rm×n, the following inequality holds.

‖Q‖2 ≤
√
‖Q‖1 ‖Q‖∞. (185)

Using the definitions of ‖Q‖1 and ‖Q‖∞, we can further derive that

‖Q‖2 ≤

√√√√√(max
j

m∑
i=1

|Qij |

)max
i

n∑
j=1

|Qij |

. (186)
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5.5 Matrix Bernstein Inequality

Throughout the provided proofs, we often use the matrix Bernstein inequality stated as follows.
Matrix Bernstein Inequality (Tropp 2011) Consider a finite sequence {Qi} of independent, random, self-adjoint
n× n matrices. Assume that

E [Qi] = 0 and ‖Qi‖2 ≤ R almost surely. (187)

Then, for all t ≥ 0,

Pr

[∥∥∥∥∥∑
i

Qi

∥∥∥∥∥
2

≥ t

]
≤ 2n exp

(
−t2/2
σ2 +Rt

)
, (188)

where σ2 :=
∥∥∑

i E
[
Q2
i

]∥∥
2
.

5.6 Courant-Fischer Theorem

Throughout the provided proofs, we often use a special case of the Courant-Fischer theorem stated as follows.
Courant-Fischer Theorem Consider a symmetric matrix Q ∈ Rn×n and its eigenvalue {λi}ni=1. Then,

max
i
|λi| = max

‖x‖=1

∣∣xTQx∣∣ . (189)

One can show this by representing x using the eigenvectors of Q. From the definition of ‖Q‖2, we can further derive
that

‖Q‖2 = max
i
|λi| = max

‖x‖=1

∣∣xTQx∣∣ . (190)

5.7 Concentration Inequality

Throughout the provided proofs, we often use the a concentration inequality stated as follows.

Lemma 7. Suppose independent and identically distributed (i.i.d.) random variables Xi follow Bernoulli(q) and

q > c logn
n . Then, with probability at least 1− 2n−

3r2

2(r+3)
c,

(1− r)nq ≤
n∑
i=1

Xi ≤ (1 + r)nq. (191)

Proof. Applying the Bernstein inequality, we get

P

[∣∣∣∣∣
n∑
i=1

Xi − nq

∣∣∣∣∣ > t

]
≤ 2 exp

(
−

1
2 t

2

nq + 1
3 t

)
. (192)

Then we choose t = rnq and use q > c logn
n , to get the following tail probability, which completes the proof.

P

[∣∣∣∣∣
n∑
i=1

Xi − nq

∣∣∣∣∣ > rnq

]
≤ 2n−

3r2

2(r+3)
nq

logn < 2n−
3r2

2(r+3)
c. (193)

We can see that a sum of random variables concentrates to the order of its expectation with high probability when
c and r are constant.
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