Supplementary Material
Proofs of Theorem 1 and Theorem 2

Organization of Proofs

We first prove Theorem 2 in Section 1, which gives us a sufficient condition for top- K ranking. We then prove Theorem 1
in Section 4, which gives us a necessary condition for top-K ranking.

To prove Theorem 2, we establish two additional theorems. One theorem (Theorem 3 in Section 2) describes an
{5 estimation error bound, and the other (Theorem 4 in Section 3) describes an f2 estimation error bound. To begin
with, we show that Theorem 3 implies Theorem 2, and make the proof of Theorem 2 boil down to proving Theorem 3.

The proof of Theorem 3 is, as emphasized in the paper, where we make our theoretical contribution; we sharply
link the ¢5 error bound (derived in Theorem 4) to the £, error bound, leading them to be on the same order. Lemma 3
plays a key role in establishing the link. It applies Janson’s inequality (Janson 2002) stated in Lemma 4 to describe
the concentration behavior of sums of dependent random variables.

In the proof of Theorem 4, we derive the ¢5 error bound that we use in proving Theorem 3. It adopts a similar
line of steps to that taken in (Negahban, Oh and Shah 2016). The key difference is that we perform more involved
calculations, as we consider a more general model.

To prove Theorem 1, we make use of the generalized Fano’s inequality due to (Han and Verdd 1994). The line of
steps we follow is similar to that taken in the proof of Theorem 2 in (Chen and Suh 2015). However, the details of the
steps are more involved including combinatorial calculations, as we consider a more general model.

We note that, to help enhance readability for proofs that involve many steps and sub-proofs, we provide a brief
outline at the beginning of each proof.

1 Proof of Theorem 2

Theorem 2. Given an M-wise comparison graph G = ([n], €M) and p > ¢1(M — 1) logn_ if
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then Rank Centrality correctly identifies the top-K ranked items with high probability, where ci is some numerical
constant.

Proof: To distinguish the top-K items from the rest, the pointwise error of each item becomes a fundamental bottleneck
for top-K ranking. It will be impossible to separate the K" and (K + 1)* ranked items unless their score separation
exceeds the aggregate error of the score estimates for the two items. Based on this observation, we figure out an upper
bound of the maximal pointwise error || — w||o, where w is the ground-truth preference score vector and w is an
estimate of w, in Theorem 3. We will soon show that Theorem 3 implies Theorem 2.

Theorem 3. /., norm estimation errors can be upper-bounded by

||ﬁ;—'wHoo< nlogn
lwllee ™\ (37)pL




with high probability, where p > c1(M — 1) (12‘5?), and c1 is some numerical constant.
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Let us first show that Theorem 3 implies Theorem 2. Later, we will provide the proof of Theorem 3 in detail. Let

[lw]|co = Wmax = 1 for ease of representation. Suppose A = wx — Wi 2 (l,?% "L ﬁ, then
M )P

UAJi 7’[2)3' Z w; — Wy — |1I)1 7wi| — |1Z)] 7’LUJ'| 2 WK — WK +1 72”’&)7’11)”00 > 0, (3)

forall 1 <i< K and j > K + 1, indicating that the algorithm outputs the top-K items as desired. Hence, as long as

Ak 2 log;L \/ 77> in other words, (3})pL = "log" < holds, reliable top-K ranking is guaranteed with the sample
IV]

size (y,)pL 2 "log" <. This shows that Theorem 3 implies Theorem 2.

Due to the lack of analytical tools for obtaining /., errors, we first characterize an upper bound of /5 errors with
well-known tools. We show that the pointwise error is bounded, in an order-wise manner, by the same bound of the
¢y errors in some restricted regime. See (3) and (4). That is, we obtain the upper bound of /5 errors described in
Theorem 4 and tightly link it to the bound of ¢, errors we derive in Theorem 3.

Theorem 4. ¢ norm estimation errors can be upper-bounded by

|l — w||2 nlogn @)
[[wll a)PL

with high probability, where L > [03 <}l°g1")p—‘ p > C4(n ?) and c3 and c4 are some numerical constants.
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Now, let us provide the proof of Theorem 3 assuming for the time being that Theorem 4 is true. We will provide
the proof of Theorem 4 in Section 3 once we prove Theorem 3 in Section 2.

2 Proof of Theorem 3

Outline: The proof of Theorem 3 consists of Lemmas 1, 2 and 3. Lemmas 1 and 2 are straightforward to obtain by
applying Hoeffding’s inequality stated in Appendix 5.3. Lemma 3, as emphasized, is key; it plays an important role in
tightly linking ¢5 and ¢, error bounds. In proving it, we use Janson’s inequality (stated in Lemma 4) which describes
the concentration behavior of sums of dependent random variables, and the £5 error bound derived in Theorem 4.

Proof dependencies:
Theorem 3 +— Lemma 1, Lemma 2, Lemma 3
Lemma 1 +— Hoeffding’s equality (Appendix 5.3)
Lemma 2 +— Hoeffding’s equality
Lemma 3 +— Janson’s equality (Lemma 4), Theorem 4 (Section 3)

Lemma 1. Suppose L > 25(1 + b)? (Lo_gln)p, where b := “mex - Then,
[ min

with probability at least 1 — 2n—2
Lemma 2. For a comparison graph G = ([n},S(M)),

. logn
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with probability at least 1 — 2n =2



logn

Lemma 3. Suppose p > c¢1(M —1) ) and M > 3. Then, in the regime where n is sufficiently large,

M—1

A . logn
Z |wj - ’LU]‘| -Pij S C5Wmax 1 I (7)
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with probability at least 1 — 2n’3c§/50, where ¢1 and c5 are some constants.

We first assume that these lemmas hold, and proceed to prove Theorem 3. We provide the proofs of these lemmas
afterward. Now, let us begin to prove Theorem 3.
Proof: To find an upper bound of ¢, errors, we first derive an upper bound, which we will prove very soon, on the
pointwise error between the score estimate of item ¢ and the true score, which consists of three terms:

i — wi < |y — wi| P+ Y iy —wi| Py + | Y (w; +wy) (Pji - Pj') : (8)
Jiii Jiii

Then, we use the three lemmas stated above, which we prove soon. We consider the regime where n is sufficiently

large. For L > [25(1 +b)? (}f’gf‘)p-‘ , applying Lemmas 1, 2 and 3 to (8) and solving it, we get

M—1

logn nlogn
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[; — w;| <
where ¢g is a constant. This completes the proof of (2).
Proof of (8): Since w is the stationary distribution of matrix P, @ = P holds. Thus, for fixed i, we get

i =i Py + Y w; Py (10)

J:g#i

Using the fact that random walks on an ideal version of matrix P (matrix P) are reversible, we get

wi=w |1= ) P | +w Y Pi=wi 1= Pu|+ ) wP;

i jiji jiji jiii
= {wzpu + Z w; (sz - Pji) } + { Z wjpij - Z wj (pz *R") } (11)
JgFi J:g#i J:j#i

Using (10) and (11), we get
If]i — w; = (’UA)l — wl) Pii — Z w; (Pﬂ — Pj') + Z (’lf)] — wj) Pij + Z wj (]31 — Pij) . (12)
jii i jiii
We note that Pji = ﬁ ZI:meI]I [I S E(M)] —]52-]- from y;; = 1—y;;. Similarly, Pj; = # ZI:meI]I [I S E(M)] —

max

P;;. Thus, Pji - P =— (Pw — R-j). Applying this equality and the triangle inequality to (12), we get the relation

(8).
2.1 Proof of Lemma 1

First, by using Hoeffding’s inequality in Appendix 5.3, we get

3 (Pji—Pji) <2 (nk’%;pL (13)

Guii M-1



with probability at least 1 — 2n~2. To show this, we represent ’Z it (]5]1 - Pji> as a sum of random variables as

follows.
Wi 0 1 Y
S(rr)=T ¥ S (G )t m B X S (e i)
i JiiFiL{i,jed(T) (=1 J:Fi i, ed(T) £=1
(14)
Let X :=) 7. cr Zle Zm:{z’,m}eqs(z) (yiﬁg,z - w;”rw% ) Applying Hoeffding’s inequality to X, we get
(a) 2t2 2t2
Pr [|X| > t‘E(M)} < 2exp (—tL> < 2exp (— t ) , (15)
dogier 2=y 2 4d; L

where (a) follows by the fact that ) {i;m}ed(T) yfgz varies from 0 to 2; the rest follows by straightforward computa-
tion. Finally, choosing ¢ = 2v/2Ld; log n, we can show that |>_. ., (Pji — Pﬁ) < 210# holds with probability at

<2, /=% glp - since 5 L(i)p < di < 3(3,)))p holds with probability

(1\/1—1

41914 ig . .. _ p..
least 1—2n~*. This leads to ‘Zj:j# (PjZ Pﬂ>

at least 1 — 2n~2 by Lemma 7 for sufficiently large p, which is the regime in which we are interested.
Using (13), we get

DD B RN (16)

Jig#i JijF#i (M 1)pL
We let b = ﬁ‘“dx From the definition of Pj;,

1 1 1 1
DL L D DS we il e DD BRI e "

i Jia#i U T ed(T) wi J:i#T{i,5}€H(T)
1 1 1 2 dmin 1 1
- X Y T i e sy (18
2d max TaeT ji i ST ed (@) 1+b  2dmax s 140  dpax 1+b 7 3(1+0)

Putting (17) into (16), we get

N 1 logn
Pi<l— o 42, [ (19)
3(1+10) (ar— 1)pL

Choosing L > 25(1 + b)? ( 1°g"p we complete the proof of Lemma, 1.

-1)p]

2.2 Proof of Lemma 2
By using a slightly modified Hoeflding’s inequality used to show (13), we get

) ) L ) 1
S b (B ) =g 5 3 S [ (il e )| < o [

jiii §:#i T:{i,j }ep(T) £=1

2

with probability at least 1 — 2n~

(w; + wy) <_yj(‘: )I + 5 +w ) Thus, the range of each random variable is extended by at most 2wyax. Applying a

w; +u1

. We can see that each random variable ( yj(f)z + ) in (14) is replaced by

similar line of steps in (15), we get (20).



2.3 Proof of Lemma 3

Outline: As mentioned at the beginning, Lemma 3 plays a key role in linking the ¢ error bound in Theorem 4 to the
{+ error bound in Theorem 3, leading them to be on the same order. In doing so, we have sums of dependent random
variables to handle, thus we make use of Janson’s inequality (Janson 2002) stated in Lemma 4.

Proof: First, let us define B as follows.

Bi= Y i —w;| Py (21)
Jigi

By Lemma 2, with probability at least 1 — 2n=2,

logn

Z (w; + w,) <pj1, — Pji) < Awmaxy | 75 (22)
i (Mfl)pL
Putting (8) with (22) into (21), we get
. PN logn
B < Y iy —wy| PPy + dwmax, [ (L Z i+ D Y lik —wi| PPy (23)
JijFi (M 1 J J#i Juj#i kik#j

We simplify the last two terms. The first of the two is straightforward. The definition of Pij gives Zj:j £i Pl] <1.
The last term needs some extra efforts. For the time being, we state the following, whose proof which makes use of
Janson’s inequality stated in Lemma 4 will soon be provided.

1
S5 i~ Py < e o — (24)
JijFikik#j
Putting >, P;j <1 and (24) into (23), we get
A .. 10 n
B< 3l =yl PPy + v [ g —tenyf i = wll (25)
Jij#i

By Lemma 1, we can find a constant 8 such that ij < B < 1 for all j. Using such 3, we get

1
B < BB + dwpnax %” +wJ|m wl,. (26)

Here, we use an upper bound on lhﬁwﬁ;‘b derived by Theorem 4. Theorem 4 states that when L > c3 (log ")p for a
M—1

constants cg,

w—w 1
= 0ly ¢ gy | 28R (21)
||’LU||2 (M_l)pL
Using [lw|[, < Vrllw|,, = vVnwmax, we get
. logn
||w — w||2 § \/ﬁwmaXCg f[/ (28)
(M71)p



Putting (28) into (26) and solving it, we get

1 1 1
B < ——wmax (c7cg +4) % = C5Wmax #. (29)

<13

From the definition of B, we complete the proof of Lemma 3.
Proof of (24): By changing the order of the summations and the Cauchy-Schwarz inequality, we get

D73 ik — wi| PPy = Z|wk—wk| Yo PuPy<lo-wly || D Puby| - (30)

Jiii kekt Jiig{ik} ko \jug{ik}

When we show that ZJ Jelik) JkPU < “Z holds, we can finally conclude that ZJ i Yok Kot |1y — wg] ﬁjkﬁij < 07\/I

Now, let us prove that Zj:jg{i7k} ijPij < % holds. From the definitions of ij and P”, we can bound the term

. P:p P as follows. First, we can expan . PP and bound it as follows.
jjik Pinlij as follows. F d 35215 Pij Pir and bound it as foll
PN 1
> Pubu= 4d2 > Y. win Y Yk (31)

J:g#sk max giy#ik | \Zi:{ij}ed(Th) Zy:{k,j}ed(Z2)

Sfd; > > I[{i g} € 6(T))] > I{).k} € 6(Tn)] (32)

max ik | \Zii,j€h Tp:j, k€T,
= Z Z Z {Z ]} € (b(Il)] [{]7 k} € ¢(I2 4d2 Z Z Z XI1127
max jij#ik Ty:i,€T To:5,k€Ty MaX it kT4, €T1 Toij, kE€To

(33)

where X7,7, ~ Bern (ﬁ) when 7; # 7, and Xz,7, ~ Bern (ﬁ) when Z; = Z,. It follows by the fact that

hyper—edge 7, is chosen with probability p and a partial pairwise comparison between ¢ and j is chosen with probability
77— See (101) for details.

Note that X7,7, and X7,7,, concerning the same hyper-edge 7;, are dependent random variables. Computing the
expectation of this sum of dependent random variables, we get

E| > PP 74d2 > > Y ElXzg)] (34)

jij#ik max j.jtik I1:4,j€T1 L2:5,k€L2
1 r p
4dr2nax ((# of rv's: Iy #Ig)(M1> + (# ofr.V’s:Ilzfg)M1> (35)
@ 1 n—2\*( p \ n—-2\ p \® 2 1 n—1\>,© 3
S A2 <(”_1)(M—2) (M—l) +(n_1)(M—2>M—1> = 4d?nax(n_1)(n—l)2(M—1) e
(36)

where (a) follows by the facts that one can bound the number of cases where 7y # T, by (n — 1)( ]@_722)2, and that one

2

can bound the number of cases where 7y = 7 by (n — 1)(]\72122); (b)* follows by the fact that (n — 1)(17\2122)QMT)2 >

1The provided steps are tailored for M > 2 where our algorithm that features sample breaking can be employed, but do not hold for
M = 2 where sample breaking does not come into the picture. However, following a similar line of steps with some simple modifications,
one can show that an upper bound on the expectation is also on the order of n~!, as in (Chen and Suh 2015).



(n— 1)(&‘_2)% for M >2and p>c3(M —1),/ (Z%ZI)’ (c) follows by the fact that dpax > %(]7\14—_11)1), which can be

shown by Lemma 7 that describes the concentration behavior of sums of independent random variables. This bound
tells us that once >, ., . Pi;j P concentrates to its expectation, we can prove (24).

To show that ik ﬁij]f?jk concentrates to its expectation, we apply the concentration inequality for a sum of
dependent random variables, called Janson’s inequality (Janson 2002). Here we provide the statement of Janson’s
inequality.

Lemma 4 (Janson’s inequality (Janson 2002)). Suppose that X = Zfil X; with ’XZ —-E [XZ} < C for some C > 0

and all i. Then, fort >0,

8t?
25d (L)L, Var [ %] + Ct/3)

PIHX—IE[XHZIS} <2exp | —

(37)

where d is the mazimum number of random variables dependent of X; over i.

To get an upper bound of 4(1% Zj:ﬁéi’k ZL:i,jeL ZIM,,%IQ X7,7, in (33) by applying Janson’s inequality, let us

define X as follows.
=Y Y Y X @
JijFik Ihii, g €Ty Iaij, k€L

(n—2) ( ]&__22) 2p2 holds with high probability by using Janson’s inequality, we
holds with high probability.

IA

Once we show that ‘X’ ) [X}
can conclude that >°,..; PPy, <

s

_ 2
X—]E{X”Et}SQeXp — 8

25d (Zj:j;éi,k 2 oTiiijer: 2Tyjker, Var [(Xz,z,] + Ct/3)

|

(39)

(a)
< 2exp

8t
- (40)
25d(2 ik 2otisijets 2otasjhers EIXTT] + Ct/3)>

(2 2exp (— 8t (41)

5O(M - 1)(1\714122> (Zj:j;éi,k ZIlzi,jell ZIQ:j,k;eIg E [XIII2] + t/3>

(¢) ]¢2 (d) 8 (%(M—ll) p2)
< 2exp | — n—ay (1 (n-1\2 o < 2exp | — n—2\ (1(n-1\2 o | 1 (n-1\2 9
50(M —1)(1,5) (E(Mq) p +t/3) 100(M — 1) (3, 3) (E(M—l) P+ 5 ()P )
(42)
© 3(a_)P” _sd
S 2€Xp (-50(]\4_1)2 S 2n~ 50 (43)

2 2 2
where (a) follows by the fact that Var [Xz,7,] = (M’:1> (1 — (M’:1> ) < (ﬁ) = E[Xz,1,]; (b) follows by the

fact that d < 2(M — 1) (;’[_22). Let us further elaborate this step. Suppose we have ¢ and k given. Let us fix Z; and
choose j # i. Then for chosen j, there are ( &7_22) distinct Zy’s since we can choose M — 2 items and combine them
with j and given k to form Zs. Also, there are M — 1 ways to pick j # i to form the previously fixed Z; since j can

be the items in Z; except given ¢. These two facts amount to (M — 1)(1\72:22) Changing the roles of 7; and Z,, we get

d < 2(M—1)(;:2); (c) follows by the fact we can bound E [f(} as in (36); (d) follows by choosing t = (n—2)(},_%) 2102;

(e) follows by the fact that p > ¢ (M — 1), [ A2&n

n—1Y)"
M-—1



3 Proof of Theorem 4

Outline: The line of steps we follow to prove Theorem 4 is similar to that taken in (Negahban, Oh and Shah 2016). To
be more specific, the base inequality from which we build on to derive an upper bound of ¢ errors (48) is derived in the
proof of Lemma 2 in (Negahban, Oh and Shah 2016). To prove Theorem 4, we introduce two lemmas: Lemmas 5 and 6.
Lemma 5 corresponds to Lemmas 3 and 5 in (Negahban, Oh and Shah 2016), and Lemma 6 corresponds to Lemma 4
therein. The difference largely comes from the fact that required calculations to derive our lemmas need to be more
involved, as we consider a more general model. Aside from this difference, the proof of Theorem 4 mostly adopts an
existing technique that derives {5 error bounds.

Proof dependencies:
Theorem 4 «— Lemma 5, Lemma 6
Lemma 5 +— Equation (56), Equation (62)
Equation (56) +— Hoeflding’s inequality (Appendix 5.3)
Equation (62) «+— Matrix Bernstein inequality (Appendix 5.5)
Lemma 6 +— Equation (79), Equation (80)

Equation (79)

Equation (80) «— Equation (88), Equation (89), Equation (90)
Equation (88) «— Hélder’s inequality (Appendix 5.4)
Equation (89) +— Holder’s inequality
Equation (90) <— Matrix Bernstein inequality

Lemma 5. Suppose that p > ¢4 (lﬁ'f?) , where ¢y is sufficiently large. Then,
M-—1
logn
[All, <104 [ (44)
(M—l)pL
with probability at least 1 — 2n=3/5.
Lemma 6. Suppose that L > 03(1?51”) . Then,
M-—1
1
h(P) > 27002 (45)

with probability at least 1 — 2n='/1 where c5 is some numerical constant.

We first assume that these lemmas hold, and proceed to prove Theorem 4. We provide the proofs of these lemmas
afterward. Now, let us begin to prove Theorem 4.
Proof: From the definition of P in Section 2 and the algorithm description in Section 3.1 in the main paper, we get

w = Pw, w=Pw. (46)
Using two balance equations in (46), we get
w—wzﬁw—szﬁ(w—w)+(P—P)w. (47)
From (47), we can get the {5 error of estimate w as follows.
i —wll, < (1= h(P) +VBlIAlL) VBl —wl, + VBIIAlL ], (48)

where h(P) is the spectral gap of matrix P, and the equality follows by letting A := P — P. The proof of (48) is
derived in the proof of Lemma 2 in (Negahban, Oh and Shah 2016).



We can see that, for (48) to get a proper upper bound of || — w||,, the term 1 — h(P) 4+ v/ ||Al|, needs to be less
than one. To safely guarantee it, we can impose the following condition:

h(P)
vojal, < “. (49)
We can obtain an upper bound on ||Al], that holds with high probability and a lower bound on h(P). The first
corresponds to Lemma 5 and the second corresponds to Lemma 6. We will soon provide their proofs.
From (49) and (44), we get

1 P 4 1
10vB ogn <h() 00b logn

— < — L > s (50)
(oL~ 2 h(P)? (3,0)p
and from (45) and (50), we get
L 2 ’703 Lo,gln “ ) (51)
(yr_)p

where ¢ := 291600000°.
Solving the equation (48) and replacing v/ |A||, and [|A||, by (49) and (44) respectively, we get

lio—wl, _ 1 \/5<10 log ) (52)

[wlly = h(P)/2 (1)L

Replacing h(P) with the lower bound in (45) and by direct computation, we get

I =20lly 502, | 108 _ ygsqpez, | logR "iog”\/T, (53)
|wl[, ( )PL M(M)pL (M)pL M

M-1

where p > 187 angq [ > |c3428% | This provides an upper bound on fs errors.
(M—l) (I\/I—l)p

3.1 Proof of Lemma 5

Outline: Applying the triangle inequality, we get ||All, < ||Apll, + |Ao]l,, where A := Ap + Ap and Ap is the
matrix whose diagonal entries are equal to those of A while the other entries are zero. (Hence, we refer to Ap as the
diagonal matrix of A, and Ao as the off-diagonal matrix of A.) To show that (44) holds, we will bound ||Ap]|, and
|Ao ||, separately.

Firstly, bounding the diagonal matrix ||Apl|, in (56) is straightforward by Hoeffding’s inequality.

On the other hand, bounding the off-diagonal matrix |Ap||, in (62) needs some extra efforts. We primarily apply
the matrix Bernstein inequality stated in Appendix 5.5 to bound [[Ap||,. To apply it, we need to obtain an equality
and an inequality, (59) and (60) respectively, which are needed as parameters in the matrix Bernstein inequality. To
prove (59), we use the Courant-Fischer theorem stated in Appendix 5.6. To prove (60), we use the matrix version of
Holder’s inequality stated in Appendix 5.4 in addition to the Courant-Fischer theorem.

Proof dependencies:
Lemma 5 «— Equation (56), Equation (62)
Equation (56) «— Hoeffding’s inequality (Appendix 5.3)
Equation (62) «+— Matrix Bernstein inequality (Appendix 5.5)
Matrix Bernstein inequality <— Parameters (59) and (60)
Parameter (59) «— Courant-Fischer theorem (Appendix 5.6)
Parameter (60) «— Courant-Fischer theorem, Holder inequality (Appendix 5.4)




3.1.1 Bound on |Ap],:

By the definition of Ap, we begin with the following equality:

Py — Py|.

|Ap]l; = max (54)

Modifying P;; — Py, we get Py — Py = Zj:j# (Pji — I:’ﬂ> Applying Hoeffding’s inequality used in (13), we get

A logn
Py — Py;| = Z(Pj'_Pji) <2 % (55)
Giji (Mfl)pL
with probability at least 1 — 2n~2.
Therefore,
logn
[Aplly <2/ 5y - (56)
(ar_1)pL

3.1.2 Bound on ||Ao]|,

To obtain a bound on [[Ap||,, we use the matrix Bernstein inequality (Tropp 2011) in Appendix 5.5.
To apply the matrix Bernstein inequality above to ||Apll,, we first need to decompose ||Ap]||, into the sum of

independent, random and self-adjoint matrices. To meet the independence condition, we define A(IZ ) as follows.

0 1 () 1 W; M
A(I) = g (eiejT —eje;) (2d ¥ for 7 € €M), (57)
{i.i}ed(T) e e

Then, Ao = > 7ceomn EZLZI A(IZ ) holds, where all A(IZ Vs are mutually independent. Furthermore, to meet the

self-adjoint condition, we define A(IZ ) as follows.

0 AW
AW . r Z 58
T (A(ze)) 0 (58)

Note that [|Aol|, = HZIEE(M) Zszl A(IE)HQ = HZIES(M) Zszl A(IZ)HQ' Now, to get an upper bound on ||[Apl|,, we

need to compute the two parameters R and o2 that appear in (188) in Appendix 5.5. For now, let us assume that the
following holds, of which we will provide proofs soon.

1

R= , 59

Ldmax ( )

o2 < 0 (60)

o Ldmax .
Then, we get
—t2/2 a —161 ® —161
Pr[||Aoll, > t] §2nexp((6/Ld )—l—/(t/Ld )> @ 2n exp 670?71 < 2nexp —16logn < on~3/°,
max max ogn 2
(61)
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where (a) follows by choosing t = 4,/ 5 log" ; (b) follows by the fact that L > 1 and dmax > 3(72_")p > 3logn holds

log" with probability at least 1 — 2n=3/5.

by Lemma 7. Therefore, we get || Ao, < 4
Using the fact that dpax > 5 (M 1)p by Lemma 7,

2logn

(1\714:11)1’[‘

[Aoll, <4 (62)

with probability at least 1 —2n~3/%. This bound on ||Ao||,, together with the bound on ||Ap||, shown earlier, we can
get the desired bound on ||Al],.

As previously mentioned, we now provide the proofs of (59) and (60).
Proof of (59): Using the Courant-Fischer theorem in Appendix 5.6,

|AY]| = max [T AL
2 vll=1

(63)

where v € R?™, Let us assume that v = [ T T] we will first

where x,y € R™. To get an upper bound on HA( ’

derive an upper bound on )UTA(IZ )v‘ as follows:

" oAb oo
UTA%E)U‘ = [xTyT] (A(Z))T OI B] = [yT (A¥)>T:€ + :ZZTA(Ie)y @ QZZ (A¥)>ij TiYj (64)
T i=1 j=1
(b) (c)
S ZZ <A(Z))2 m + yj < ZZ 2dm {l j} < ¢( )] (I * yj) (7 maX Z i * Z y] S maxL
i=1j=1 i=1 j=1 i:i€L JijET
(65)

T T
where (a) follows by the fact that y” (A(Ze )) x = (JJTA(IZ )y) ; (b) follows by the inequality of arithmetic and geo-

Uiz — ‘ < 1; (d) follows by the fact that in
a formed circular permutation, an item is adjacent to two items. Therefore, by the Courant-Fischer theorem, we can
get the desired bound HA Z)H < di =: R.

max

metric means; (¢) follows by the definition of A(IZ ) and the fact that

2
Proof of (60): By the definition of o2 := HZIEEU‘/” ZZL:IE [(Ag)) } , we get
2
L CYINON
L (@ o | Zzeson D B AT (Az) 0 u
o” = max [u” "] T L}] (66)
lull3-+leliz=1 0 S reen zj_lE[(Ag_”) A(;)]
(b) e f 0
2 s |5 3w [a0 (a0)]| i+ 5 Sr[(a0) 20| g (67)
lull3+]vlI53= TegM) ¢=1 9 TZeEM) (=1 9

—max{ (| 3 ZE{A“)( @)] DY XL:E[(A%TA(I‘”] , (68)

TegM) (=1 5 ||zeetn =1 )

where (a) follows by the Courant-Fischer theorem where u,v € R™; (b) follows by the definition of || - ||2.
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Using the matrix version of Hoélder’s inequality in Appendix 5.4, we get

3 iE[Ag) (Agﬂ < IS iE{Ag) (A;“)T] 3 iE[Ag) (Ag))T} (69)

Teg(M) £=1 ) Teg(M) p=1 | [|zegan =1

(@) - - © (AT - © (AO\T
2 o () 3 Soefaf ()] ) e (5] £ Sefar (a8)] L

=1 |ZegM) £=1 i=1 |Zeg(M) (=1
(71)
]

(%) 17
, (72)

oo

L

n
< E max g
1<i<n .

Jj=1

Teg(M) ¢=1 "= =

E[(a?) @)

L n

E[A® (A® T} ( E{Aw AO T]
[ : ( I) ij I;:M>Z:1lglja§xn Z : ( I>
®)

< 3dmax L max
2,7

ij
T
where (a) follows by the definitions of ||-||; and || ||oo; (b) follows by the fact that for each row in E {A(Ig) (A(IZ)) ] , there

T
are only three non-zero entries. The (4, j)-entry of matrix E {A(IZ ) (A(Ie )) ] is the expectation of the inner product of

0

the " and j* rows of A( For each i, the (i, j)-entry is non-zero for j such that j = i or the i*" element of the ;!

-th

row of A( ) is non-zero. Also, there are two rows of A(I whose i*! entry is non-zero because for {i,j} € #(Z), the ith

element of the j* row of E {A(IZ (A(Ig)) ] is non-zero, and there are two j’s such that {i,j} € ¢(Z) for each i.

Let us further obtain a bound of (72). For {7,j} € ¢(Z), by the definition of A(Ig), we get

()] [ <o | (omia) |

= s B (e ) (e ey ) ||t i < o) (73)
QT Z B | oz - o) (o - 0 )| im0 Gk € o) ()
nggn OO NS ﬁym—,z -t 2k Gk D) (1)
< SHE K K] € o2 1S e < (76)

where (a) follows by the assumption that y;xz = 1 — yki,z; (b) follows by the fact that |yxiz| < 1 and |yg,z| < 1;
(c) follows by the fact for ¢ # j, there is only one item adjacent to both items i and j, and for i = j, there are two.

) L @ (A @\T
Applying (76) to (72), we get the bound ||> 7 e Dy E AT (AI )

T
ZIES(M) 25:1 E {(A(IK)) A(IE)]
— from (68).

6
= dmaxL’

is also bounded by Therefore, we get the

6
dmax L’

Similarly, we can show that ‘

desired bound &2 <7

3.2 Proof of Lemma 6

Outline: To obtain a lower bound of the spectral gap h(P) of reversible matrix P, we perform two tasks.

12



First, we introduce another reversible matrix @ and establish a relation between h(P) and h(Q) in (77). We
construct @ so as to make it have certain conditions, which help us compute its spectral gap h(Q) easily. The relation
(77) shows that h(P) is lowered-bounded by the multiplication of h(Q) and some scaling factor. The derivation follows
the proof of Lemma 6 in (Negahban, Oh and Shah 2016).

Second, we compute lower bounds for the scaling factor and h(Q) in (79) and (80) respectively. To obtain a lower
bound for the scaling in (79) is straightforward. To obtain a lower bound for h(Q) needs some extra efforts. The
spectral gap h(Q) is defined as 1 — Apax(Q). Thus, an upper bound of A\pax(Q) can lead to a lower bound of h(Q).
We show that Apax(Q) can be decomposed into three terms ((88), (89) and (90)) for each of which we derive an upper
bound. To obtain (88) and (89), we use the matrix version of Holder’s inequality, and to obtain (90), we use the matrix
Bernstein inequality. As in Lemma 5, to apply the matrix Bernstein inequality, we first compute two parameters in
(97) and (98) and use them in obtaining (90).

Proof dependencies:
Lemma 6 <— Equation (79), Equation (80)

Equation (79)

Equation (80) +— Equation (88), Equation (89), Equation (90)
Equation (88) «— Holder’s inequality (Appendix 5.4)
Equation (89) +— Holder’s inequality
Equation (90) «— Matrix Bernstein inequality (Appendix 5.5)

Matrix Bernstein inequality <— Parameters (97) and (98)
Parameter (97) <— Holder’s inequality
Parameter (98) <— Holder’s inequality

Proof: Referring to Lemma 6 in (Negahban, Oh and Shah 2016), we can obtain the following lower bound on h(P)
using another reversible matrix @Q:

hP) > h(Q) =, (77)

=L

wPJL

where a := min; j (U?Q,,), 8 := max; (‘5—), and wu is the first eigenvector of ). To obtain a lower bound on h(P),

we need to find h(Q), o, and S.
First, let us specify Q. @ is the reversible transition matrix of random walks, which is defined as

Qi = i S Ifij} € 6(@)] = ;ldjj (78)

J I:Ze&M)

where d;; is defined by the number of hyper-edges that have both item ¢ and item j.

From the reversible Markov chain @), we can obtain the first eigenvector u of Q by solving detailed balance equations:
u;Qi; = u;Qj;- One can verify that u; = % where an:l dpm-

To find a lower bound of h(P) applying (77), let us assume that the following holds for now, of which we will
provide proofs soon.

« 1 dmin
&S 79
B o 4b2 dmax7 ( )

4
h > . 80
@2 o (50)
Since %da‘,g <d; < %davg holds with high probability by Lemma 7, we get
1

h(P) > —. 1
(P) = 270062 (81)

This finishes the proof of (45).
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3.2.1 Bound on «/f

We obtain a lower bound of % by getting a lower bound of o and an upper bound of 3. First, by the definition of «,
we get

di;  w
sz a wi - w; l’wn ® 2 d?n
a = min (lv]) e e Zom I, (82)
(,7) ulQ]l (4,5) m 2&]1 2Wmax  dmax
where (a) follows by the definitions of P and Q; (b) follows by the fact that it 2 g and w; > Wiin-
itw; max
Now, an upper bound of 8 ends the proof. By the definition of 3, we get
i (@) max 2 max dm
6 = max (’LU) S ucjl ,a — w y Zm , (83)
g % 25, dm min
where (a) follows by the fact that w; < wmax and the fact that d; > dpin.
Using (82) and (83), we finally obtain
« 1 dmin
Z > . 84
/3 - 4b2 dmax ( )

where the last inequality follows by the fact that d; concentrates around those expectation with high probability.
Specifically, 1 (7" )p < d; < 3(;*_")p can be proved by Lemma 7.

3.2.2 Bound on h(Q)

The spectral gap of matrix @ is defined as h(Q) = 1 — Apax(Q) where Apax(Q) is the second largest eigenvalue of
Q. If matrix @) is symmetric, we can obtain the spectral gap by subtracting the rank-1 projection matrix of the first
eigenvector of ) from original matrix ), and getting the first eigenvalue of the subtracted matrix. However, @ is
neither symmetric nor easy to deal with.

Fortunately, we can find a symmetric matrix S whose eigenvalues are the same as those of (). The symmetric
matrix can be expressed as

S =U-Y2Qu'/?, (85)

where U is a diagonal matrix such that U;; = u; (3, dm) = d;.
As mentioned, we can compute A\pax(Q), the second largest eigenvalue of @) in an alternative way: subtract the
rank-1 projection matrix of S from S and get the first eigenvalue of the subtracted matrix. One can verify that the
T
first eigenvector of S is u!/? = (u}/Q,u;/Q, e ,ui/z) . Before computing Apax(Q), we define a matrix A such that

A;j = d;; for simplicity of analysis that will follow. Notice that @ = %AU ~! holds. Now, let us begin to compute
Amax(Q)'

T 1 T
Amax(@) = Amax(S) = HU1/2QU1/2 _ Ui/Q (u}/z) _ HU1/2AU1/2 _ Ui/Z (Ui/z) (86)
2 2 2
1 1 1 1 1 T
<|zu2AU 2 - ——Aa A-E A E Al —u)? (u)?
= H U AY v Ny T || 20 2y Iy T 2] T (“1 ) ) (87)

where daye 1= E[d;]. Since h(Q) =1 — A\nax(Q), upper bounds of the three terms lead to a lower bound of A(Q). Soon,
we will show that the following three bounds for some range of p.

1 11

Al <=,
, = 90

HlUl/QAUl/2 _
2

o (88)
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1 12 172\ 7 13

HIE {Mang} u)/? (w)?) S (89)
1 1

A—-E A —. 90

it ]| I &

Then all these bounds give us that 7(Q) > 2. Now, let us provide the proofs of (88), (89) and (90).
Proof of (88): Using the matrix version of Holder’s inequality, we get

2 avg |2 -2 avg || 1 avg || 0o - \/ﬁ davg
(91)
® 1 1 1 1 1 1 1 1 1
< - di; - : - =- 2d; - : -
>~ miax ; J max { dnlin davg dmax davg } 2 m;aX { max { dnlin davg dmax davg } }
(92)
1 1 1 1 (0 11
< dmax - s — < —, 93
B e { dmin davg dmax davg } 90 ( )

where (a) follows by the definitions of || - |1 and || - ||, and by the fact that (U~'/2AU~ 1/2) = d;j/+/did; and

A;; = dij; (b) follows by the fact that ﬁ < \/;le < dim; (c) follows by Lemma 7 which states 15 dawg <d; < %édavg
with high probability.
Proof of (89): Similarly, using the matrix version of Hélder’s inequality and the definitions of || - || and || - ||, We
get
E ! Al —uy/? (Ul/Q)T < max Z Eldy) _ y/did; @ nax Z 1 n —
2 pyg ! ! , i ~ | 2avg Yo dm i — | 2dagg \M —=2) M =1 3 dn,
(94)
(b) 1 d;d; 1 dmin 1 Aimax (¢) 13
&) Y <n. - - <2 95
Tmax ZJ: 2n—1) S d| [ =" U200 — D) ndman | 20— 1) ndpm|f © 187 (95)
where (a) follows by the fact that E[di;] = > 7, ;c7 E [(AI)} = (&‘22)%; (b) follows by the facts that (;; %) =

( JCI__ll) ]‘f__l and ( ) P = dayg; (c) follows by Lemma 7 which states 15 % doyg < d; § davg with high probability.

Proof of (90): We prove (90) applying the matrix Bernstein inequality. First, let us express A as the summation of
independent random matrices.

A=Y Ar (4e), =] |7 e (i j} e o(D)] =1[T € €MD) 143, 5} € 6(T)], (96)
where 7 is a hyper-edge of the set [n].
Using the matrix Bernstein inequality, when we assume the following two conditions hold,

R=|Az - E[Ag]|, <3, (97)

(A2 —E[A42])?]|| < 3duve, (98)

2
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then we can show that

—t2/2 —t2/2 a —161
Pr{||A —E[A]|, > t] < 2nexp /2 < 2nexp /2 W, _—16logn <2on 15 (99)
o2 + Rt 3davg + 3t 3412 logn

where (a) follows by setting t = 4,/davglogn. From this, we get #ng -k [ﬁA} H2 < 2 {;’i:. Also, for
p > 3241987 gince daveg = (":ll)p = 3241og n holds, we finished the proof of (90). Now, we provide the proofs of (97)

(M 1)
and (98).

Proof of (97): R can be bounded as follows.

(a) (®) () p p
R < [|Az = E[A{]]l, [[Az — E[Az][|, < max %:’(AIE[AI])M‘ < 21 = g | + (M = 2)57— <3, (100)
where (a) follows by the matrix version of Holder’s inequality; (b) follows by the definitions of || - |1 and || - ||co; (¢)

follows by the fact that since there are two adjacent items for each item, (Az);; =1 at two elements for each row, and

E [(Az)ij} = g7=7 by the fact that (Az),; ~ Bern ( ) We can derive the distribution (Az);; ~ Bern (ﬁ) as
follows.

By the definition of (96), we see that (Az),; =1 (Z € EM)1[{i,j} € ¢(T)]. We know that I [T € EM)] ~ Bern(p)
by the assumption that every hyper-edge is chosen independently with probability p. Also, since a circular permutation
for each Z is chosen uniformly at random, we can compute Pr [{7, j} € ¢(Z)] as follows.

D
M—-1

. # of circular permutations in which items ¢ and j are adjacent (M — 2)! 1
P 7)) = = = . 101
rlti, g} € o)) # of circular permutations (M-1)! M-1 (101)

Hence, we get (Az),; ~ Bern (ﬁ) for i,5 € Z. This ends the proof of (97).

Proof of (98): For notational simplicity, we let A* := 3 ,E [(AI —E [AI])2] Similarly, using the matrix version
of Holder’s inequality and the definitions of || - ||; and || - ||, We get

0% < max Z |A2‘j| . (102)

Now let us obtain an upper bound of A7;. First, for the case of i # j,

A5l=| Y Y E[Ar-ElA, Az -Eldz)) ][ < Y Y B[40y (4] El(42)y] B[(42)y] |

T:i,j€L k#i,j T:4,j€T k#i,j
(103)
=S Z T —(n_2)(M—2)‘ P S (104)
_ —_1)2| _ _ _ _1)2
T el htig 2) (M-1) M -2 (M —-1)(M—-2) (M-1)
n—1\M-1 p 2 n—1 2
(M—l) 1M 2)(M—1)2(M—2) - n_1<M_1>p 1 daves (105)

where (a) follows by the fact that (Az);, (Az),; ~ Bern ((M_l)’m) (Az);x (A1), is equal to 1, when we have

i —k — j in the formed circular permutation. As previously shown, we can derive the distribution (Az),, (Az),; =1
as follows.

Pr [(AI)HC (Az)y; =1

} __ # of circular permutations in which items ¢ and j are adjacent to item k (106)
N # of circular permutations
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(M =3) 1
(M- (M —-1)(M-2) (107)

For the case of i = j, we get

45 = | 3 B[4z~ E[Az)y (Az ~ E[Az))) < 30 3 [E [(40)3%] ~ El(AD),) (108)

THeT k#i €T k#i

2 n—1
< = daye-
= (M _ 1)]? davg (109)

(J\n4_—11>(M_ 2 ’Mp—l a (Mp— 1)2

Applying (109) and (105) to (102) ends the proof of (98).

02 § 3davg~ (110)

4 Proof of Theorem 1

Theorem 1. Fiz e € (0,3). Given an M-wise comparison graph G = ([n], ™)), if

n nlogn 1
L <(1- — 111
(3r)pE <0 -0 3E . (111)

then for any ranking scheme 1, there exists a preference score vector w with seperation measure A such that P.(¢) > €.

Outline: Overall, the proof to be presented follows the line of steps in the proof of Theorem 2 in (Chen and Suh
2015). Similarly as in (Chen and Suh 2015), we intend to bound the minimax probability of error to characterize
the conditions under which the probability cannot be made arbitrarily close to zero, using a generalized version of
Fano’s inequality (Han and Verdd 1994). However, the details of the steps are more involved including combinatorial
calculations, as we consider a more general model.

We first construct a set of hypotheses, and impose a uniform distribution over them. We then apply the generalized
Fano’s inequality to obtain a lower bound on the probability of error. This lets us able to identify conditions under
which the probability of error cannot be made arbitrarily zero.

At the end of the process, we obtain a sum of Kullback-Leibler (KL) divergences in (122). Computing its upper
bound provides a lower bound of the probability of error, and it ends the proof. Depending on the hypotheses, the
summand can be computed in four different ways. We divide-and-conquer and compute (122) in Cases 1—/ and denote
it by Dy, Dy, D3 and D, respectively.

Finally, we show D4 = 0, obtain an upper bound of D; + D5 in (134) and that of D3 in (135), and end the proof.

Proof dependencies:
Theorem 4 +— Equation (122)
Weighted sum of KL divergences Dy, Do, D3 and D4 (Equation (122)) +— Equation (134), Equation (135)

D4 =0 (Equation (132))

Bound of D; + Dy (Equation (134)) «— Equation (139), Equation (140)

Bound of D3 (Equation (135)) «— Equation (162), Equation (163)
Proof: We construct a finite set of hypotheses H and carry out an analysis based on classical Fano-type arguments.
Each hypothesis is represented by a permutation oy, € H over [n] and we denote by o, (i) and o, ([K]) the index of the
it" ranked item and the index set of all top-K items respectively.

We choose a set of hypotheses and some prior to be imposed on them. Suppose that the values of w are fixed up
to permutation in such a way that

if1<i<
Von € H, wah(i):{ we Ml SIS R (112)

w41 K <i<mn,
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where we abuse the notation wg, w1 to represent any two values satisfying

WK ZWEAL _ AL > 0. (113)

wmax

Additionally, we impose a uniform prior over a collection H of |H| = max(K,n — K) + 1 hypotheses regarding the
permutation: if K < 7, then

1
Vo € H, Ploy] = m, on ([K]) = Ky, for Ky, ={2,...., K}U{h}, (h=1,K+1,....,n), (114)
and if K > &, then
1
Vop € H, Plop] = w, op ([K]) = Ky, for K, ={1,..., K +1}\{hr}, (h=1,..,K+1). (115)

Note that |H| > F.

In words, each alternative hypothesis is made by interchanging two indices of the hypothesis complying to oy ([K]) =
[K]. Denoting by P, 3; the average probability of error with respect to the constructed prior, one can verify the minimax
probability of error P, to be at least P, .

Let us begin our proof that modifies the arguments in (Chen and Suh 2015) for the model of our interest. To take

partial M-wise observations into account, we introduce an erased version of sz := (s(Il), 8(12)7 R s(IL)) such that
ST w.p. p;
= . 11
7z { erasure otherwise. ’ (116)

where we denote by Z := {2z : for all possible Z’s} the collection of observed samples.
Then, applying the generalized Fano’s inequality (Han and Verdu 1994), we get

Pozl- mlP%;MD<PZ|U_%|PZ|J_%> +log?2 (117)
@, log1|7-l| # %;M EI:D(PZZ‘U:%||PZI|U:%) +log?2 (118)
B0 o | T, 3 2 DPetome. Pt + o2 (119
@y _ 1og1|7—t| @L'Q > Y DPw, IPo,,) +log2 (120)

04, 0pEH T
@, _ 1og1\H\ {pLzI:D(PSg)lg_UIHPS(;)U_UKH) + logZ} , (121)

where (a) follows by the independence between two hyper-edges; (b) follows by the distribution of zz; (c¢) follows by
the independence of s(Ie ) over ¢; (d) follows by the fact that for any pair of hypotheses they differ by one item and this
leads the summation over all possible Z’s to the same KL divergence.

To identify conditions under which P, cannot be made arbitrarily close to zero, meaning top-K ranking is infeasible,

we seek to obtain a lower bound on P,. To that end, we derive an upper bound on D(Pgm‘”f 1\|P9(1>| _ K+1)' It
I STt =0 St o=0

turns out that XZ:D(PS(IUIJZM ||PS<11)|U:JK+1) is upper-bounded by

n\M 9
;D(PS(Il)IU:(Tl|‘PS(11)|O':O'K+1) S <M) ZCOAKH (122)
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where cp is a numerical constant.
We will soon prove (122) in detail. For the time being, let us proceed to characterize a necessary condition for
reliable top-K ranking. Applying (122) to (121), we get

1 n\M 4 1 n M .,
>1—-— il =1-— ink )
P.>1 Tog [7] {pL (< ) - COAK> +log2} 1 Tog | H| {co< )pL - A% +log2} (123)

Fix € € (0,2). Then, P. > € if co(}})pL2L A% < (1 —¢€)log |H| — log 2. From this, we can obtain a necessary condition
for reliable top-K ranking:

n M n n(log(n/2) —log2) 1 n nlogn
L—A% >1 —log2 L> — L2 —2. 124
o gy )P A = log ] —log2 > (1 Jot > MECIRED L (M) 2 TER

We can see that this gives us the claimed result of (111). As shown above, a key step to identifying the necessary
condition is to show (122).

4.1 Boundon )  D(Pu, _ ||[Puw, _ ) Proof of (122)
sy’ |o=01 sy’ lo=0K 11

Here, we will upper-bound a sum of the Kullback-Leibler (KL) divergences ZID(PS(1)|0'*O'1HPS(1)|0*0K+1)' Notice
T - e -

that oy ={1,2,..., K} and o1 = {2,..., K, K + 1}. To show this, we consider four different cases, for each of which
an observation set Z of M items includes certain items as follows.

e (Case 1: T includes item 1 and does not include item K+1; the number of such Z is ( A"[j).

e (Case 2: T includes item K+1 and does not include item 1; the number of such 7 is also ( ]3[7_21)

e (Case 3 7 includes both items 1 and K+1; the number of such 7 is (1\72_—22)

e Case 4: T includes neither item 1 nor item K+1; the number of such Z is ("1;[2)

Note that the four exclusive cases form a partition of the set of all possible Z. Now, let us compute the KL divergence
for each case.
Case1:1€Zand K+1¢71:

Let R be the rank of item 1 within the permutation s(Il). Given ¢ = o1, we can obtain the probability of
s(Il) = (i1,42,...,4r = 1,...,ipr), which we denote by Py, according to the PL model as follows.
e

M . R—1 w;, wie M w;,
ps<11)|(71 = H m = H H ﬁ . (125)

. M
r=1 =1 WK + Z:me[nf\/ﬂ\{R} Win, | Wi + Zm:RH Wiy, \r=R+1

Given ¢ = ok4+1 , we can obtain the probability of s(Il) = (41,42,...,ig = 1,...,4p7) by substituting wgx with

Wk 1, as item 1 is not among the top-K ranked in o 1.

R—-1 w w M w
. ir K+1 ir
p3(11)|01<+1 B (H > ( H EM w; ) (126)

. M
1 WK T Dmimer MV (RY Win ) Wit + 3 om_ g1 Win \poRp

Computing the KL divergence for this case, which we will denote by D1, we get

ps(zl) |0_1

M
Dy =D(P,_, IPw g, ) =D D P, log (127)

R=1,005 Ps®lores

Case 2: K+1€Zand1¢71:

19



This case is similar to Case I except that the roles of items 1 and K +1 are swapped. Thus, the probability of 5(11) =

(i1,i9,...,ir = K +1,...,ip) given o = o7 is equivalent to (126), and that of s(Il) = (i1,02,...,ir = K+ 1,...,ip)
given o = ok is equivalent to (125).

Computing the KL divergence for this case, which we will denote by D, we get

ps(l)la.

_ T K+1

Dy = D(PS<I1>|U o1 ||P<I)|U JKH Z Z D >‘UK+1 gip o . (128)
R=1 (Il)‘ R=1 sy |o1

Case 3:1c€¢Zand K+1€7Z: a

Let Ry and Rk 41 be the ranks of items 1 and K + 1 respectively within the permutation s; ). Given o = o1, wWe

obtain the probability of 5(11) = (1,92, IR —1,iR, = Ly, IRg 1 —1+9Rey, = K +1,...,ipr) as follows.

» Rﬁ w;,. Wi
Wy, =
s\ S WK TR e MR Ricsn} Wim ) \ WK WKL D mime Ry +1, MV (Ric 1} Wi

Riq1-1 M
w;, WK 41 Wi,
< 11 | a7 Il =«

r=Ri+1 WEK+1 Zm:mG[r,]V[]\{RK+1} Wi, WEK+1 + Zm:RK+1+1 Wiy, r=Rgi1+1 Zm:r Wiy,

(129)

Similarly, given 0 = ox 41, we get

D, = Rﬁ i e
1 =
St |UK+1 1 WK +1 +'U)K +Zm:mE[T,M]\{Rl,RK+1}wim WK +1 +7.UK +Zm!mE[R1+1,M]\{RK+1}wim

Ryt w w M w
[ K T
x H . < — 4 ) H ——— | . (130)

r=R;+1 WK Zm:me[r,M]\{RK+1} Wi, Wik + Zm:RK+1+1 Wi, r=Rgi1+1 Zm:r Wiy,

n (129) and (130), we consider the case where item 1 is ranked higher than item K + 1 is, namely R; < Rg1.
Let us consider the symmetric case by assuming Rx 1 is the rank of item 1 and R; is the rank of item K + 1, where

Ry < Ri 1. In this case, we can simply swap wx and wg 1 in (129) and (130). Thus, we can obtain the probability of
(1 o , . , , .

S(I) = (i1,92, .-y iR —1,0R, = K+ 1,.. . Jige  —1,iRx, = 1,...,00r) @S Ps0 g, = Pyigy,, and Ps gy = Pello, -
Using these facts, we can simplify the computation of the KL divergence for this case, which we denote by Ds, as
follows.

p (1 )|U pP.
_ 1 j : Z sy’ o1
Ds = E : z : ps(Il)|U1 logp ( ) + ps(zl)‘a'l log p.
Ri<Brt1 s(Vvip, =1yin,,  =K+1 lox+1 Ri>Riq s vin, =1ying,, =K+1 sz lox
Py, P
1 sy lo1
= E E p. ., log kAL E E p. ., log ezl
sz’ lon Py, sz lo Py,
Ri<Rr+1 3(11):iR1:17iRK+1:K+1 Sz 19K+1 Ri<Rk+1 (1) g, =K+1, IRK+1 1 f 10K+
Py, Py,
&£ < K
— § § P, log _Tszlon 4 § E P log TS lor4n
sz’lo D sz loK4 D
Bi<Br+1 s =1ip, =K+1 sz lor Ri<Rier sMiip —lin, =K+1 sz lon
p (1)‘0.
1
= 1 —D lo 131
E E (PS<I>‘(,1 PS<I>|UK+1) P (131)
Ri<Rg 1 s(Il):iR1 :1,iRK+1:K+1 Sz lox+1

Case 4: 1¢Tand K+1¢T:
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The scores of items for any given Z are unchanged given either 0 = 01 or 0 = 0 1. Computing the KL divergence,
which we will denote by Dy, we get

Di=D(Pw,_, IPw,_,..)=0 (132)

Putting altogether, we can express >, D(Ps(zl)w:al ||PS<11)|(7:0K+1) as follows.

n—2 n—2
2Dl P lomcys) = (M_l) (D1 + D) + (M_Q)Dg. (133)
Soon, we will show that

D1+ Dy < COA%{, (134)
D3 < cpA%, (135)

where ¢g is a numerical constant.

Applying (134) and (135) to (133), we get the claimed bound (122):

)
R N R
<

ZC[) ) oA + (;2) mCoA2 (]C[) %COA%. (137)

Now, let us provide the proofs of (134) and (135).

Z l)(PS(I1> lo=01 ‘ |PS(11) \U:oK+1
z

IN

4.1.1 Bound on D; + Dy: Proof of (134)
From (127) and (128), we get

5 b M ) p<)|U1 ps(zl)lal e P()IU1
14D =30 T (P, Pl ) 08 D OID ST 1l

R=1,00 50 PsPlocin R=1,005, s$ 1okt Ps®loks

(138)

To obtain an upper bound of D; 4+ D5, we will show that for s( ) = = (i1,%2,...,ir = 1,...,ip), where R is the rank

of item 1 within the permutation s(I1 ), we have

p9(1)|¢7 ps(l)\a 1 M 2
ezl g ) g 21T A2 4 22 ] 139
( ) )Og ) SRkt \ R 1 T % —Ry1) (139)

Ps®lore s Ps®lorcs

1 1-1/b
(L
Z Ps < (3M ) (M_R+1> 7 (140)

(1) _

where b := %mex We provide the proofs of (139) and (140) in detail soon. For the time being, let us show that D; 4 Do
attains the Clalmed bound of (134).

Applying (139) to (138), we get

M M 2
| M
2 A2 2 A2
Dit DD, D0 Pl Bh 2 D ppe, PPAk (M—R+1+logM—R+l> -

R=1 sg_.l):iRZI R=1 s(Il):iR:I
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M

2
(@) ;2 242 1 M
= b A +b A }; ()Z p (1 )|UK+1 (W +10g W) (142)
1
dp=1

M

1 M
_ 1242 2 A2 § : § :
=b AK+b AKR (_I{H‘Flog%) » p()‘UK_*_1 ’ (143)
—1 (1

where (a) follows by the fact that the sum of the probabilities of all possible permutations is 1. Then, applying (140)
o (143), we get

M 1 1-1/b 1 o 2
Dy + Dy < 2A2 (14 (30017 - L lee— ) ) <2 144
1tbes K( +( )Rz_:l M—-—R+1 MRl 83— gy1) | S0tk (49

1-1/b 2
where (144) follows by the fact that E%zl (*) ( L — +log M7A14%+1) < eM'/? as shown in Appendix

M—R+1 M—R+1
5.2. This ends the proof of (134).
Now, we provide the proofs of (139) and (140).

P, P,
Proof of (139): For s( ) = = (i1,%2,...,9r = 1,...,ip), we can obtain an upper bound of (1 — 1> log —z171
P )\0K+1 ps(zl)\vKJrl
as follows.

P, Py, B Wk + 3l wj,,
< Doy _1> log L1 ( [ e 2 mimelr M\(R) _1> 1Og< wi
WK 41 i

=

WK +1 + Z'm,:’mE[T‘,JW]\{R} Wi, )

Ps®iogein Ps®ionin o1 WK D mer, MR} Wi WK+ 15 WK+ D melr, MR} Wim
(145)
R
(e e Lommelr M\(R) Vin 10g< Wi > (146)
WK+1 r=1 Wi + Zm:mG[r,N[]\{R} Wi, WK+1
R . R )
I RS H WK1+ D pime MR} Win log H WK + D imefr, MR} Wi (147)
WK+ ;25 WK Dmmeln MR} Win 721 WKL D nimelr, MIV(R) Wim
(@) fwg —w w 1 il W — W
<(Kw Kﬂ)log(wK )—|— 1-— = logH(l—i—w JrZK Kl " )
K+1 K+1 WK —WK+1 _ K+1 m:me(r im
HT:l (1 + WE4+1F2 0 mime [r, M\ { R} wim> r=1 €lr MI\{ R}
(148)
(g WK — WK1

WK +1

Wi 1 WK — WK 41 )
lo — lo 149
g<“’f<+1) % (1 + i) gH( M=+ i 9

M7T+1)IUK+1

2
WK — WK+1 WK — WK+1 WK — WK+1
log |1+ log [ 1+ 150
WEK+1 ) & ( WEK+1 ) (Z g ( —r+ 1)wK+1>> 150

—
O
~

IN&

IA
/‘\/\/‘\/\

2
WK — ’LUK+1 WK — WK+1
151
(e ) w

WK +1 WK+1

r=1
2

—
)
—

WK — WK+1

IA

14

+ log

M 2
M—-R+1

M S Ne)
2 P2 A2
<M R+ +1gM—R+1>] s Ak

1
WK 41 <M—R—‘r1

(152)

where (a) follows by the fact that HT 1 wjﬂ:gl:{”l ’ww’"jr-g:"‘ R*ivwi"‘ < 1 since wg > wiy1; (b) follows by replacing
m=r T tm m=R+1 m

w;, with w15 (¢) follows by applying 1 —e™? < z; (d) follows by applying log(1 + =) < z; (e) follows by the
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fact that ZT = r+1 < 3= R+1 + log 37 ]\/II:{+1 as shown in Appendix 5.1; (f) follows by b = %max — _WK_ apd

Wmin WK +1

w w w w
AK — K—WK+41 __ K —WK+1

Wmax WK :
Proof of (140): Now, we provide an upper bound of RIS
pa

R—1 w; M wi Wi
Z by |O'K+1 Z H . H M ; M
1 m

NOW s ip—1 \r=1 W1+ Z:mimé[TJW]\{R} Wiy r=R+1 Dy W WK1+ D e g1 Win,

(153)

g)Z(

sWig=1

Wj,. i Zm:mE[T,M]\{R} Wi, il Wj,. WK +1
Il 5 i ST g E—

21 Zmemelr, MR} Win )\ 72f WKL+ Dmimefr M\ (RY Qim |\, 251 Domer WK1 + Y1 Wi,
(154)
M R—1
_ Z H Wy, H 'wi,,. H Zm:me[r,M]\{R} Wi, WK +1
siig=1 D Zmamelr MVRY Win )\, St oy Win )\t WK1 F Dimefr M\(R) Wine ) W1 + Yoz gy Wi,

(155)

)

e Z H Wi, 1]\—/[[ Wi, }ﬁl (M —r)wk WK+1 (156)
B ZnL me[r, M\{R} Wiy, M Wi, WK+1 + (M - T)wK (M — R+ 1)’[UK+1

sE_,l):iRzl r=R+1 m=r r=1
R—1 R—1 R—-1
(é) H (M—’I“)’LUK WK1 _ H wK—l—(M—r)wK i H 14 WK — WK+1 i
S WK+ (M —rwg | (M —R+ 1wk L WK1t (M —rywg | M — (M —rwg | M
(157)
(d) WK — WK+1 it 1 1 (@ WK — WK+1 1 M-1 1
< — < 1 — 158
—eXp< wi ;M—r =P wi M_R+l ®M_R+1))M (158)
WK —WEK 41
) M—1 \_ =& 1 (9 1 1-1/b
<3 - < (3M—1/b) - : 159
= (MR+1) M= M-R+1 (159)
where (a) follows by splitting the first product in parentheses into two; (b) follows by replacing w;  with wx or wx 41
R—1 Wi, M w;,. o .
properly; (c) follows by the fact that ) _ R (I—L D Sm———— ﬂhm) (HT Rl Z:Mim) = 1 holds according

M S - R+1+IOgM R+1

< e < 3 for any R; (g) follows by the

to the PL model; (d) follows by applymg 1+ z < e”; (e) follows by the fact that ZT 1
as shown in Appendix 5.1; (f) follows by the fact that exp (wK wiK“ Fr o R+1>
fact that wwK—;l < % Note that b= ©(1).

4.1.2 Bound on Dj3: Proof of (135)

Following a similar line of steps toward the bound of D; 4+ Ds, we can also obtain an upper bound of D3. From (131),
we get

p (1 )‘0.1

Ds = Z Z (ps(zl)\al _ps(Il)IUK+1) lo

Ri<Rri1, (1) iRy =LiRg =K+

ps(zl)\cn ps(Il)‘a.l
- v 3 P, | TP =1 log 17 (161)

p,m
Ra<Rict1 i =i, , =K+1 sz oK

(160)
ps§)|a;<+1

Similarly, we will show that for 5(11) = (i1,02,...,iRr, = 1,... iR, = K +1,...,ipn), where Ry is the rank of item
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1 and Rk is the rank of item K + 1 respectively within the permutation s(Il), we have

P P 1 M 2
sz'lot sz'lot 2 A2
ezl ) jog 21T <2 ( +log ) , (162)
<p5(11)|0’1<+1 ) PsMigpsy - Ris1+1 M = Rg41+1
Z P < L (3M71/b) ; e (163)
sy'lok+1 — M — 1 M_RK+1+1 ’
5(11) iRy =1, ZRK+17K+1
Applying (162) and (163) to (161), we get
(a) 1 M 2
o 202
Dy < ) 1 > P e, O A% (M R il by oy s 1) (164)
R <Rri1 40 ):iRlzl,iRK+1:K+1
1 M 2
= b2 A2 I 1 165
2 K(M—RK+1+1+ OgM—RK+1+1> . 2 PP lrscsn (165)

Ri<Rg 41 sy )vip, =1, ZRK+17K+1

(b) b 1 -1/ 1 M 2
&) M) (s b2A2 1 166
> M—1(3 )(M—RK+1+1) K\ M= Rea 41 M- Repr +1 (166)

R1<RK+1

(C) M b 1 1-1/b 1 M 2
3M—1/b) I b2 A2 ( 4l )
RK21 1( M—Rgii+1 K\M - Rrgs1 +1 M _—Rgsi+1
+1
(167)
M 1-1/b 2
1 1 M @

< 3B3AZ ML/ I . lg AZ 168
< 30°Ak > M — Rgi1 +1 M—Ren 1 W —Renti1) =9 (168)

Ri4+1=1

where (a) follows by (162); (b) follows by (163); (¢) follows by the fact that we can have at most (M —1) different pairs of
2

1-1/b
(R1, Ry 1) for fixed Ri1; (d) follows by the fact that Z%K+1:1 (m) (M7R11<+1+1 + log M7R¥+1H) <
cM'/? as shown in Appendix 5.2. This ends the proof of (135).
Now, we provide proofs of (162) and (163).

Py, P, . . .
Proof of (162): We can obtain an upper bound of (p(l)zl — 1) log ﬁ by applying a similar line of steps
st lok4a st lok4a

from (148) to (152).

-1

R 1 R
( p5(11)|gl B 1) log pS(Il)lo_1 _ - K+ W + Zm:mE[T,]\/f]\{R} w;,, log ﬁ'l wWr + Zm:mE[T,M]\{R} Wi,
Peloesy POy Rt CEHL Y Dmelr M\ (R} Pin i1 WKL Dl M\ (R} Vi
(169)
1 M 2
< b2A? +lo ) ) 170
= K(M—RK+1+1 M~ Resr 11 (170)

Proof of (163): Now, we provide the upper bound of }_ W,

Z ps(zl)|aK+1

S(l-) iR, =1, 'LRK+1—K+1

(@) ot wy, fre Wy, M Wi,
Dy (e ) ) I e

s r=1 m:mé€[r,M\{R1,Rx11} W r=R;+1 ZmimE[TaM]\{RKH} Wi, r=Rp411+1 Zm:r Wi,,,
T

’LRl—l ZRK+1—K+1p )‘O'K+1.

:iRlzl,iRK+1:K+1
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« WK+1 WK
WEK 1—|—U)K+Z w; w +ZM "y
+ mmeE[Ry, M]\{R1,Rk+1} ~*m K m=Rg11+1 Yim

Ryi—1 ) R 1 )
% Zm:me[r,M]\{Rl,RK+1} Wi, Kﬁ Zm:me[r,M]\{RK+1} Wi (171)
S WEA1 F WK Y me [ M\ Ry, R 1} Wi

i1 WK el M\ (R 1} Wim

(2) ( WK 41 ) ( WK ) Rll—ll (M —rwg RKﬁ ' (M —r)wg
- (M—R1 +1)wK+1 (M—RK_H +1)wK+1 WK 41 —|—(M—7‘)wK (M—T—Fl)w}(

r=1 r=R;+1
(172)
Ri—1 w Rg41—-1 w M W
4 = (n - )T - R
[9;1) ipy=LliRg  =K+1 ( Zm:me[r,M]\{Rl’RKH} Wi, r=Ri+1 Em:me[T’M]\{RKJrl} Wi, r=Rpy1+1 Zm:r Wi,
(173)
Ri—1 Rygi1—1
() ( Wi 1 ) ( Wi ) H (M — r)wk H (M — r)wg
(M — Ry + 1wi 41 (M — Rg41+ Dwr i1 24 wrsr + (M —r)wg R (M —r+1Nwk
(174)
(i) (1 TR L Sf 2 > ﬁ < + i wKH) - (175)
- wrt1 + (M —r)wg st —rwg ) M

A

r=1
K1 1-1/b
wrt1) 1@ b “1 1
— | — < M e — 176
1;[ ( —T)UIK>M_M—1(3 ) M—RK+1+1 ’ ( )

where (a) follows by applying a similar line of step from (153) to (155); (b) follows by replacing w;, with wg or wx 41
properly; (¢) follows by the fact that the term in brackets is equal to 1 according to the PL model; (e) follows by
applying a similar line of steps in(157); (d) follows by the fact that Ry < Rx41; (e) follows by applying a similar line
of steps from (158) to (159).

5 Appendix

5.1 Bound of Summation 1

For all a, 3 > 0,

B
1 1
S Loli? (177)
= m atiogg

Proof. & < [™  Lldz =logm —log(m — 1) holds since 1 is a decreasing function for z € (0, c0). O
5.2 Bound of Summation 2
For all v such that 0 <y <1 and v = O(1),

M 1—~ 2

1 1 M
[ — 1 <eM? 1
Z(M—R—i—l) (M—R+1+OgM—R—|—1> = (178)

R=1

where ¢ is a numerical constant.
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Proof. We can rewrite (178) as

M 1—v 2
1 1 M

E () (—l—log) <cM". (179)
m m m

m=1

Since (%)1_7 (% + log %)2 is a decreasing function for x € [1, M], we can see that

1\'"7 /1 M2 mo N /1 M\?
— — +log — §/ - — +log — | dux. (180)
m m m m—1 \T T T

Thus, for 0 < v < 1, we get

M 1—v 2 M 1—~ 2
Z <1> (1 + log M) < (14 log M)* + / <1> (1 + log M) dx (181)
m m m 1 \z x x

m=1
1 2 2 (log M)?
< (1+log M)? + M"Y + + =) e <M,
= (Llog M) <M2(—2+7) M(=1+7)? 73> v T
(182)
where ¢ and ¢’ are some numerical constants. For v = 1, we get
M 2 M 2
1 M 1 M 1
Z <—|—10g> §(1+logM)2+/ (—i—log) dx = 2M + (log M)* — — < 3M. (183)
m m 1 T T M

m=1

5.3 Hoeffding’s Inequality

Throughout the provided proofs, we often use Hoeffding’s inequality stated as follows.
Hoeffding’s inequality Let X; be independent random variables bounded by the interval [a;,b;] : a; < X; < b;. Then,

Zn:Xi - ZR:IE[Xi] > t] < 2exp <_Z”(2£2—a)2) . (184)

Pr

5.4 Holder’s Inequality

Throughout the provided proofs, we often use the matrix version of Hélder’s inequality stated as follows.
Hoélder’s inequality For a matriz Q@ € R™*"™, the following inequality holds.

1Qllz < /IRl Q- (185)

Using the definitions of ||Q||; and ||Q]| ., we can further derive that

I, < <m§XZIle> maxy Qi | (186)
i=1 j=1
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5.5 Matrix Bernstein Inequality

Throughout the provided proofs, we often use the matrix Bernstein inequality stated as follows.
Matrix Bernstein Inequality (Tropp 2011) Consider a finite sequence {Q;} of independent, random, self-adjoint
n X n matrices. Assume that

E[Qi] =0 and |Qills <R almost surely. (187)

|

5.6 Courant-Fischer Theorem

Then, for all t > 0,

ZQi

—t2/2
>t <2 —_ 1
=z ] < 2nexp (02+Rt)’ (188)

where 02 := ||21E [QZQ] ||2

Throughout the provided proofs, we often use a special case of the Courant-Fischer theorem stated as follows.
Courant-Fischer Theorem Consider a symmetric matriz Q € R™*™ and its eigenvalue {\;}?_,. Then,

max [\;| = HmHa_x1 2" Qx| . (189)

One can show this by representing x using the eigenvectors of (). From the definition of ||Q||,, we can further derive
that

QI = max |A;] = e |27 Qu|. (190)

5.7 Concentration Inequality
Throughout the provided proofs, we often use the a concentration inequality stated as follows.
Lemma 7. Suppose independent and identically distributed (i.i.d.) random wvariables X; follow Bernoulli(q) and

-2
q > 8™ Then, with probability at least 1 — 2n~ 2(3”3)6,

n

(1—r)ng < En:XZ- < (1+r)ng. (191)
i=1

Proof. Applying the Bernstein inequality, we get

P[iXi—nq

=1
logn

n

nq+%t

> t] < 2exp (— 3t ) . (192)

Then we choose ¢t = rng and use ¢ > ¢ , to get the following tail probability, which completes the proof.

|

We can see that a sum of random variables concentrates to the order of its expectation with high probability when
c and r are constant.

n

ZXZ-—nq

i=1

_ 37‘2 _ng _ 37‘2 c
>rpg| < 2n 20F len < 2p” 20E C (193)

O
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