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Abstract

Online-learning research has mainly been focusing on minimizing one objective
function. In many real-world applications, however, several objective functions
have to be considered simultaneously. Recently, an algorithm for dealing with
several objective functions in the i.i.d. case has been presented. In this paper,
we extend the multi-objective framework to the case of stationary and ergodic
processes, thus allowing dependencies among observations. We first identify an
asymptomatic lower bound for any prediction strategy and then present an algorithm
whose predictions achieve the optimal solution while fulfilling any continuous and
convex constraining criterion.

1 Introduction

In the traditional online learning setting, and in particular in sequential prediction under uncertainty,
the learner is evaluated by a single loss function that is not completely known at each iteration [6].
When dealing with multiple objectives, since it is impossible to simultaneously minimize all of the
objectives, one objective is chosen as the main function to minimize, leaving the others to be bound
by pre-defined thresholds. Methods for dealing with one objective function can be transformed to
deal with several objective functions by giving each objective a pre-defined weight. The difficulty,
however, lies in assigning an appropriate weight to each objective in order to keep the objectives
below a given threshold. This approach is very problematic in real world applications, where the
player is required to to satisfy certain constraints. For example, in online portfolio selection [4], the
player may want to maximize wealth while keeping the risk (i.e., variance) contained below a certain
threshold. Another example is the Neyman-Pearson (NP) classification paradigm (see, e.g., [19])
(which extends the objective in classical binary classification) where the goal is to learn a classifier
achieving low classification error whose type I error is kept below a given threshold.

In the adversarial setting it is known that multiple-objective is generally impossible when the
constraints are unknown a-priory [18]. In the stochastic setting, Mahdavi et al. [17] proposed a
framework for dealing with multiple objectives in the i.i.d. case. They proved that if there exists a
solution that minimizes the main objective function while keeping the other objectives below given
thresholds, then their algorithm will converge to the optimal solution.

In this work, we study online prediction with multiple objectives but now consider the challenging
general case where the unknown underlying process is stationary and ergodic, thus allowing observa-
tions to depend on each other arbitrarily. The (single-objective) sequential prediction under stationary
and ergodic sources, has been considered in many papers and in various application domains. For
example, in online portfolio selection, [12, 9, 10] proposed non-parametric online strategies that
guarantee, under mild conditions, the best possible outcome. Another interesting example in this
regard is the work on time-series prediction by [2, 8, 3]. A common theme to all these results is that
the asymptotically optimal strategies are constructed by combining the predictions of many simple
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experts. The above strategies use a countably infinite set of experts, and the guarantees provided
for these strategies are always asymptotic. This is no coincidence, as it is well known that finite
sample guarantees for these methods cannot be achieved without additional strong assumptions on the
source distribution [7, 16]. Approximate implementations of non-parametric strategies (which apply
only a finite set of experts), however, turn out to work exceptionally well and, despite the inevitable
approximation, are reported [11, 10, 9] to significantly outperform strategies designed to work in an
adversarial, no-regret setting, in various domains.

The algorithm presented in this paper utilizes as a sub-routine the Weak Aggregating Algorithm
(WAA) of [21], and [13] to handle multiple objectives. While we discuss here the case of only two
objective functions, our theorems can be extended easily to any fixed number of functions.

2 Problem Formulation

We consider the following prediction game. Let X , [−D,D]d ⊂ Rd be a compact observation
space where D > 0. At each round, n = 1, 2, . . ., the player is required to make a prediction yn ∈ Y ,
where Y ⊂ Rm is a compact and convex set, based on past observations, Xn−1

1 , (x1, . . . , xn−1)
and, xi ∈ X (X0

1 is the empty observation). After making the prediction yn, the observation xn is
revealed and the player suffers two losses, u(yn, xn) and c(yn, xn), where u and c are real-valued
continuous functions and convex w.r.t. their first argument. We view the player’s prediction strategy as
a sequence S , {Sn}∞n=1 of forecasting functions Sn : X (n−1) → Y; that is, the player’s prediction
at round n is given by Sn(Xn−1

1 ) (for brevity, we denote S(Xn−1
1 )). Throughout the paper we

assume that x1, x2, . . . are realizations of random variables X1, X2, . . . such that the stochastic
process (Xn)∞−∞ is jointly stationary and ergodic and P(Xi ∈ X ) = 1. The player’s goal is to play
the game with a strategy that minimizes the average u-loss, 1

N

∑N
i=1 u(S(Xi−1

1 ), xi), while keeping
the average c-loss 1

N

∑N
i=1 c(S(Xi−1

1 ), xi) bounded below a prescribed threshold γ. Formally, we
define the following:
Definition 1 (γ-bounded strategy). A prediction strategy S will be called γ-bounded if

lim sup
N→∞

(
1

N

N∑
i=1

c(S(Xi−1
1 ), Xi)

)
≤ γ

almost surely. The set of all γ-bounded strategies will be denoted Sγ .

The well known result of [1] states that for the single objective case the best possible outcome is
E
[
maxy∈Y() EP∞ [u(y,X0)]

]
where P∞ is the regular conditional probability distribution of X0

given F∞ (the σ-algebra generated by the infinite past X−1, X−2, . . .) and the maximization is over
the F∞-measurable functions. This motivates us to define the following:
Definition 2 (γ-feasible process). We say that the stationary and ergodic process {Xi}∞−∞ is γ-
feasible w.r.t. the functions u and c, if for a threshold γ > 0, there exists some y′ ∈ Y() such that
E [c(y′, X0)] < γ.

If γ-feasibility holds, then we will denote by y∗∞ (y∗∞ is not necessarily unique) the minimizer of the
following minimization problem:

minimize
y∈Y()

E [u(y,X0)]

subject to E [c(y,X0)] ≤ γ,
(1)

(1) and we define the γ-feasible optimal value as

V∗ = E [EP∞ [u(y∗∞, X0)]] .

Note that problem (1) is a convex minimization problem over Y(). Therefore, the problem is
equivalent to finding the saddle point of the Lagrangian function [15], namely,

min
y∈Y()

max
λ∈R+

L(y, λ),

where the Lagrangian is

L(y, λ) , (E [u(y,X0)] + λ (E [c(y,X0)]− γ)) .
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We denote the optimal dual by λ∗∞ and assume that L can be maximize by a unique F∞-measurable
function, λ∗∞(). Moreover, we set a constant λmax such that λmax > λ∗∞() P∞-a.s., and set
Λ , [0, λmax]. We also define the instantaneous Lagrangian function as

l(y, λ, x) , u(y, x) + λ (c(y, x)− γ) . (2)

In Brief, we are seeking a strategy S ∈ Sγ that is as good as any other γ-bounded strategy, in terms
of the average u-loss, when the underlying process is γ-feasible. Such a strategy will be called
γ-universal.

3 Optimality of V∗

In this section, we show that the average u-loss of any γ-bounded prediction strategy cannot be
smaller than V∗, the γ-feasible optimal value. This result is a generalization of the well-known
result of [1] regarding the best possible outcome under a single objective. Before stating and proving
this optimality result, we state three lemmas that will be used repeatedly in this paper. The first
lemma is known as Breiman’s generalized ergodic theorem. The second and the third lemmas
concern the continuity of the saddle point w.r.t. the probability distribution, their proofs appear in the
supplementary material.
Lemma 1 (Ergodicity, [5]). Let X = {Xi}∞−∞ be a stationary and ergodic process. For each positive
integer i, let Ti denote the operator that shifts any sequence by i places to the left. Let f1, f2, . . .
be a sequence of real-valued functions such that limn→∞ fn(X) = f(X) almost surely, for some
function f . Assume that E supn |fn(X)| <∞. Then,

lim
n→∞

1

n

n∑
i=1

fi(T
iX) = Ef(X)

almost surely.
Lemma 2 (Continuity and Minimax). Let Y,Λ,X be compact real spaces. l : Y × Λ × X → R
be a continuous function. Denote by P(X ) the space of all probability measures on X (equipped with
the topology of weak-convergence). Then the following function L∗ : P(X )→ R is continuous

L∗(Q) = inf
y∈Y

sup
λ∈Λ

EQ [l(y, λ, x)] . (3)

Moreover, for any Q ∈ P(X ),

inf
y∈Y

sup
λ∈Λ

EQ [l(y, λ, x)] = sup
λ∈Λ

inf
y∈Y

EQ [l(y, λ, x)] .

Lemma 3 (Continuity of the optimal selection). Let Y,Λ,X be compact real spaces. Then, there
exist two measurable selection functions hX ,hλ such that

hy(Q) ∈ arg min
y∈Y

(
max
λ∈Λ

EQ [l(y, λ, x)]

)
, hλ(Q) ∈ arg max

λ∈Λ

(
min
y∈Y

EQ [l(y, λ, x)]

)
for any Q ∈ P(X ). Moreover, let L∗ be as defined in Equation (3). Then, the set

Gr(L∗) , {(u∗, v∗,Q) | u∗ ∈ hy(Q), v∗ ∈ hλ(Q),Q ∈ P(X )},

is closed in Y × Λ× P(X ).

The importance of Lemma 3 stems from the fact that it proves the continuity properties of the
multi-valued correspondences Q→ hy(Q) and Q→ hλ(Q). This leads to the knowledge that if for
the limiting distribution, Q∞, the optimal set is a singleton, then Q→ hy(Q) and Q→ hλ(Q) are
continuous in Q∞. We are now ready to prove the optimality of V∗.
Theorem 1 (Optimality of V∗). Let {Xi}∞−∞ be a γ-feasible process. Then, for any strategy S ∈ Sγ ,
the following holds a.s.

lim inf
N→∞

1

N

N∑
i=1

u(S(Xi−1
1 ), Xi) ≥ V∗.
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Proof. For any given strategy S ∈ Sγ , we will look at the following sequence:

1

N

N∑
i=1

l(S(Xi−1
1 ), λ̃∗i , Xi). (4)

where λ̃∗i ∈ hλ(PXi|Xi−1
1

) Observe that

(4) =
1

N

N∑
i=1

(
l(S(Xi−1

1 ), λ̃∗i , Xi)− E
[
l(S(Xi−1

1 ), λ̃∗i , Xi) | Xi−1
1

])
+

1

N

N∑
i=1

E
[
l(S(Xi−1

1 ), λ̃∗i , Xi) | Xi−1
1

]
.

Since Ai = l(S(Xi−1
1 ), λ̃∗i , Xi) − E

[
l(S(Xi−1

1 ), λ̃∗i , Xi) | Xi−1
1

]
is a martingale difference se-

quence, the last summand converges to 0 a.s., by the strong law of large numbers (see, e.g., [20]).
Therefore,

lim inf
N→∞

1

N

N∑
i=1

l(S(Xi−1
1 ), λ̃∗i , Xi) = lim inf

N→∞

1

N

N∑
i=1

E
[
l(S(Xi−1

1 ), λ̃∗i , Xi) | Xi−1
1

]
≥ lim inf

N→∞

1

N

N∑
i=1

min
y∈Y()

E
[
l(y, λ̃∗i , Xi) | Xi−1

1

]
, (5)

where the minimum is taken w.r.t. all the σ(Xi−1
1 )-measurable functions. Because the process is

stationary, we get for λ̂∗i ∈ hλ(PX0|X−1
1−i

),

(5) = lim inf
N→∞

1

N

N∑
i=1

min
y∈Y()

E
[
l(y, λ̂∗i , X0) | X−1

1−i

]
= lim inf

N→∞

1

N

N∑
i=1

L∗(PX0|X−1
1−i

). (6)

Using Levy’s zero-one law, PX0|X−1
1−i
→ P∞ weakly as i approaches∞ and from Lemma 2 we know

that L∗ is continuous. Therefore, we can apply Lemma 1 and get that a.s.

(6) = E [L∗(P∞)] = E [EP∞ [l (y∗∞, λ
∗
∞, X0)]] = E [L (y∗∞, λ

∗
∞, X0)] . (7)

Note also, that due to the complementary slackness condition of the optimal solution, i.e.,
E [λ∗∞(EP∞ [c(y∗∞, X0)]− γ)] = 0, we get

(7) = E [EP∞ [u (y∗∞, X0)]] = V∗.

From the uniqueness of λ∗∞, and using Lemma 3 λ̂∗i → λ∗∞ as i approaches∞. Moreover, since l is
continuous on a compact set, l is also uniformly continuous. Therefore, for any given ε > 0, there
exists δ > 0, such that if |λ′ − λ| < δ, then

|l(y, λ′, x)− l(y, λ, x)| < ε

for any y ∈ Y and x ∈ X . Therefore, there exists i0 such that if i > i0 then |l(y, λ̂∗i , x) −
l(y, λ∗∞, x)| < ε for any y ∈ Y and x ∈ X . Thus,

lim inf
N→∞

1

N

N∑
i=1

l(S(Xi−1
1 ), λ∗∞, Xi)− lim inf

N→∞

1

N

N∑
i=1

l(S(Xi−1
1 ), λ̂∗i , Xi)

= lim inf
N→∞

1

N

N∑
i=1

l(S(Xi−1
1 ), λ∗∞, Xi) + lim sup

N→∞

1

N

N∑
i=1

−l(S(Xi−1
1 ), λ̂∗i , Xi)

≥ lim inf
N→∞

1

N

N∑
i=1

l(S(Xi−1
1 ), λ̂∗i , Xi)−

1

N

N∑
i=1

l(S(Xi−1
1 ), λ∗∞, Xi) ≥ −ε a.s.,
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Algorithm 1 Minimax Histogram Based Aggregation (MHA)

Input: Countable set of experts {Hk,h}, y0 ∈ Y , λ0 ∈ Λ, initial probability {αk,h},
For n = 0 to∞

Play yn, λn.
Nature reveals xn
Suffer loss l(yn, λn, xn).
Update the cumulative loss of the experts

lk,hy,n ,
n∑
i=0

l(yik,h, λi, xi) lk,hλ,n ,
n∑
i=0

l(yi, λ
i
k,h, xi)

Update experts’ weights

wy,(k,h)
n , αk,h exp

(
− 1√

n
lk,hy,n

)
p
y,(k,h)
n+1 ,

w
y,(k,h)
n+1∑∞

h=1

∑∞
k=1 w

y,(k,h)
n+1

Update experts’ weights wλ,(k,h)
n+1

w
λ,(k,h)
n+1 , αk,h exp

(
1√
n
lk,hλ,n

)
p
λ,(k,h)
n+1 =

w
λ,(k,h)
n+1∑∞

h=1

∑∞
k=1 w

λ,(k,h)
n+1

Choose yn+1 and λn+1 as follows

yn+1 =
∑
k,h

p
y,(k,h)
n+1 yn+1

k,h λn+1 =
∑
k,h

p
λ,(k,h)
n+1 λn+1

k,h

End For

and since ε is arbitrary,

lim inf
N→∞

1

N

N∑
i=1

l(S(Xi−1
1 ), λ∗∞, Xi) ≥ lim inf

N→∞

1

N

N∑
i=1

l(S(Xi−1
1 ), λ̂∗i , Xi).

Therefore we can conclude that

lim inf
N→∞

1

N

N∑
i=1

l(S(Xi−1
1 ), λ∗∞, Xi) ≥ V∗ a.s.

We finish the proof by noticing that since S ∈ Sγ , then by definition

lim sup
N→∞

1

N

N∑
i=1

c(S(Xi−1
1 ), Xi) ≤ γ a.s.

and since λ∗∞ is non negative, we will get the desired result.

The above lemma also provides the motivation to find the saddle point of the Lagrangian L. Therefore,
for the reminder of the paper we will use the loss function l as defined in Equation 2.

4 Minimax Histogram Based Aggregation

We are now ready to present our algorithm Minimax Histogram based Aggregation (MHA) and prove
that its predictions are as good as the best strategy.

By Theorem 1 we can restate our goal: find a prediction strategy S ∈ Sγ such that for any γ-feasible
process {Xi}∞−∞ the following holds:

lim
N→∞

1

N

N∑
i=1

u(S(Xi−1
1 ), Xi) = V∗ a.s.

5



Such a strategy will be called γ-universal. We do so by maintaining a countable set of experts
{Hk,h} k, h = 1, 2, . . ., which are constructed in a similar manner to the experts used in [10].
Each expert is defined using a histogram which gets finer as h grows, allowing us to construct an
empirical measure on X . An expert Hk,h therefore outputs a pair (yik,h, λ

i
k,h) ∈ Y × Λ at round

i. This pair is the minimax w.r.t. its empirical measure. We show that those emprical measures
converge weakly to P∞, thus, the experts’ prediction will converge to V∗. Our algorithm outputs at
round i a pair (yi, λi) ∈ Y × Λ where the sequence of predictions y1, y2, . . . tries to minimize the
average loss 1

N

∑N
i=1 l(y, λi, xi) and the sequence of predictions λ1, λ2, . . . tries to maximize the

average loss 1
N

∑N
i=1 l(yi, λ, xi). Each of yi and λi is the aggregation of predictions yik,h and λik,h,

k, h = 1, 2, . . . , respectively. In order to ensure that the performance of MHA will be as good as
any other expert for both the y and the λ predictions, we apply the Weak Aggregating Algorithm of
[21], and [13] twice alternately. Theorem 2 states that the selection of points made by the experts
above converges to the optimal solution, the proof of Theorem 2 and the explicit construction of the
experts appears in the supplementary material. Then, in Theorem 3 we prove that MHA applied on
the experts defined in Theorem 2 generates a sequence of predictions that is γ-bounded and as good
as any other strategy w.r.t. any γ-feasible process.
Theorem 2. Assume that {Xi}∞−∞ is a γ-feasible process. Then, it is possible to construct a
countable set of experts {Hk,h} for which

lim
k→∞

lim
h→∞

lim
n→∞

1

N

N∑
i=1

l(yik,h, λ
i
k,h, Xi) = V∗ a.s.,

where (yik,h, λ
i
k,h) are the predictions made by expert Hk,h at round i.

Before stating the main theorem regarding MHA, we state the following lemma (the proof appears in
the supplementary material), which is used in the proof of the main result regarding MHA.
Lemma 4. Let {Hk,h} be a countable set of experts as defined in the proof of Theorem 2. Then, the
following relation holds a.s.:

inf
k,h

lim sup
n→∞

1

N

N∑
i=1

l
(
yik,h, λi, Xi

)
≤ V∗ ≤ sup

k,h
lim inf
n→∞

1

N

N∑
i=1

l
(
yi, λ

i
k,h, Xi

)
,

where (yi, λi) are the predictions of MHA when applied on {Hk,h}.

We are now ready to state and prove the optimality of MHA.
Theorem 3 (Optimality of MHA). Let (yi, λi) be the predictions generated by MHA when applied
on {Hk,h} as defined in the proof of Theorem 2. Then, for any γ-feasible process {Xi}∞−∞: MHA is
a γ-bounded and γ-universal strategy.

Proof. We first show that

lim
N→∞

1

N

N∑
i=1

l(yi, λi, Xi) = V∗ a.s. (8)

Applying Lemma 5 in [13], we know that the x updates guarantee that for every expert Hk,h,

1

N

N∑
i=1

l(yi, λi, xi) ≤
1

N

N∑
i=1

l(yik,h, λi, xi) +
Ck,h√
N

(9)

1

N

N∑
i=1

l(yi, λi, xi) ≥
1

N

N∑
i=1

l(yi, λ
i
k,h, xi)−

C ′k,h√
N
, (10)

where Ck,h, C ′k,h > 0 are some constants independent of N . In particular, using Equation (9),

1

N

N∑
i=1

l(yi, λi, xi) ≤ inf
k,h

(
1

N

N∑
i=1

l(yik,h, λi, xi) +
Ck,h√
N

)
.
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Therefore, we get

lim sup
N→∞

1

N

N∑
i=1

l(yi, λi, xi) ≤ lim sup
N→∞

inf
k,h

(
1

N

N∑
i=1

l(yik,h, λi, xi) +
Ck,h√
N

)

≤ inf
k,h

lim sup
N→∞

(
1

N

N∑
i=1

l(yik,h, λi, xi) +
Ck,h√
N

)
≤ inf

k,h
lim sup
N→∞

(
1

N

N∑
i=1

l(yik,h, λi, xi)

)
, (11)

where in the last inequality we used the fact that lim sup is sub-additive. Using Lemma (4), we get
that

(11) ≤ V∗ ≤ sup
k,h

lim inf
n→∞

1

N

N∑
i=1

l
(
yi, λ

i
k,h, Xi

)
. (12)

Using similar arguments and using Equation (10) we can show that

(12) ≤ lim inf
N→∞

1

N

N∑
i=1

l(yi, λi, xi).

Summarizing, we have

lim sup
N→∞

1

N

N∑
i=1

l(yi, λi, xi) ≤ V∗ ≤ lim inf
N→∞

1

N

N∑
i=1

l(yi, λi, xi).

Therefore, we can conclude that a.s. limN→∞
1
N

∑N
i=1 l(yi, λi, Xi) = V∗.

To show that MHA is indeed a γ-bounded strategy, we use two special experts H0,0, H−1,−1 whose
predictions are λn0,0 = λmax and λn−1,−1 = 0 for every n and to shorten the notation, we denote

g(y, λ, x) , λ(c(y, x)− γ).

First, from Equation (10) applied on the expert H0,0, we get that:

lim sup
N→∞

1

N

N∑
i=1

g(yi, λmax, x) ≤ lim sup
N→∞

1

N

N∑
i=1

g(yi, λi, x). (13)

Moreover, since l is uniformly continuous, for any given ε > 0, there exists δ > 0, such that if
|λ′ − λ| < δ, then |l(y, λ′, x) − l(y, λ, x)| < ε for any y ∈ Y and x ∈ X . We also know from the
proof of Theorem 2 that limk→∞ limh→∞ limi→∞ λik,h = λ∗∞. Therefore, there exist k0, h0, i0 such
that |λik0,h0

− λ∗∞| < δ for any i > i0. Therefore,

lim sup
N→∞

(
1

N

N∑
i=1

l(yi, λ
∗
∞, xi)−

1

N

N∑
i=1

l(yi, λi, xi)

)
≤

lim sup
N→∞

(
1

N

N∑
i=1

l(yi, λ
∗
∞, xi)−

1

N

N∑
i=1

l(yi, λ
i
k0,h0

, xi)

)
+

lim sup
N→∞

(
1

N

N∑
i=1

l(yi, λ
i
k0,h0

, xi)−
1

N

N∑
i=1

l(yi, λi, xi)

)
(14)

From the uniform continuity we also learn that the first summand is bounded above by ε, and from
Equation (10), we get that the last summand is bounded above by 0. Thus,

(14) ≤ ε,
and since ε is arbitrary, we get that

lim sup
N→∞

(
1

N

N∑
i=1

l(yi, λ
∗
∞, xi)−

1

N

N∑
i=1

l(yi, λi, xi)

)
≤ 0.
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Thus, lim supN→∞
1
N

∑N
i=1 l(yi, λ

∗
∞, Xi) ≤ V∗, and from Theorem 1 we can conclude that

limN→∞
1
N

∑N
i=1 l(yi, λ

∗
∞, Xi) = V∗. Therefore, we can deduce that

lim sup
N→∞

1

N

N∑
i=1

g(yi, λi, xi)− lim sup
N→∞

1

N

N∑
i=1

g(yi, λ
∗
∞, xi) =

lim sup
N→∞

1

N

N∑
i=1

g(yi, λi, xi) + lim inf
N→∞

1

N

N∑
i=1

−g(yi, λ
∗
∞, xi)

≤ lim sup
N→∞

1

N

N∑
i=1

g(yi, λi, xi)−
1

N

N∑
i=1

g(yi, λ
∗
∞, xi)

= lim sup
N→∞

1

N

N∑
i=1

l(yi, λi, xi)−
1

N

N∑
i=1

l(yi, λ
∗
∞, xi) = 0,

which results in

lim sup
N→∞

1

N

N∑
i=1

g(yi, λi, xi) ≤ lim sup
N→∞

1

N

N∑
i=1

g(yi, λ
∗
∞, xi).

Combining the above with Equation (13), we get that

lim sup
N→∞

1

N

N∑
i=1

g(yi, λmax, xi) ≤ lim sup
N→∞

1

N

N∑
i=1

g(yi, λ
∗
∞, xi).

Since 0 ≤ λ∗∞ < λmax, we get that MHA is γ-bounded. This also implies that

lim sup
N→∞

1

N

N∑
i=1

λi(c(yi, xi)− γ) ≤ 0.

Now, if we apply Equation (10) on the expert H−1,−1, we get that

lim inf
N→∞

1

N

N∑
i=1

λi(c(yi, xi)− γ) ≥ 0.

Thus,

lim
N→∞

1

N

N∑
i=1

λi(c(yi, xi)− γ) = 0,

and using Equation (8), we get that MHA is also γ-universal.

5 Concluding Remarks

In this paper, we introduced the Minimax Histogram Aggregation (MHA) algorithm for multiple-
objective sequential prediction. We considered the general setting where the unknown underlying
process is stationary and ergodic., and given that the underlying process is γ-feasible, we extended the
well-known result of [1] regarding the asymptotic lower bound of prediction with a single objective,
to the case of multi-objectives. We proved that MHA is a γ-bounded strategy whose predictions also
converge to the optimal solution in hindsight.

In the proofs of the theorems and lemmas above, we used the fact that the initial weights of the
experts, αk,h, are strictly positive thus implying a countably infinite expert set. In practice, however,
one cannot maintain an infinite set of experts. Therefore, it is customary to apply such algorithms
with a finite number of experts (see [12, 9, 10]). Despite the fact that in the proof we assumed that the
observation set X is known a priori, the algorithm can also be applied in the case that X is unknown
by applying the doubling trick. For a further discussion on this point, see [8]. In our proofs, we relied
on the compactness of the set X . It will be interesting to see whether the universality of MHA can be
sustained under unbounded processes as well. A very interesting open question would be to identify
conditions allowing for finite sample bounds when predicting with multiple objectives.
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