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Abstract

MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) which play
key roles in post-transcriptional gene regulation. Direct identification of mature
miRNAs is infeasible due to their short lengths, and researchers instead aim at iden-
tifying precursor miRNAs (pre-miRNAs). Many of the known pre-miRNAs have
distinctive stem-loop secondary structure, and structure-based filtering is usually
the first step to predict the possibility of a given sequence being a pre-miRNA. To
identify new pre-miRNAs that often have non-canonical structure, however, we
need to consider additional features other than structure. To obtain such additional
characteristics, existing computational methods rely on manual feature extraction,
which inevitably limits the efficiency, robustness, and generalization of computa-
tional identification. To address the limitations of existing approaches, we propose
a pre-miRNA identification method that incorporates (1) a deep recurrent neural
network (RNN) for automated feature learning and classification, (2) multimodal
architecture for seamless integration of prior knowledge (secondary structure), (3)
an attention mechanism for improving long-term dependence modeling, and (4) an
RNN-based class activation mapping for highlighting the learned representations
that can contrast pre-miRNAs and non-pre-miRNAs. In our experiments with recent
benchmarks, the proposed approach outperformed the compared state-of-the-art
alternatives in terms of various performance metrics.

1 Introduction

MicroRNAs (miRNAs) play crucial roles in post-transcriptional gene regulation by binding to the 3′

untranslated region of target messenger RNAs [16]. Among the research problems related to miRNA,
computational identification of miRNAs has been one of the most significant. The biogenesis of
a miRNA consists of the primary miRNA stage, the precursor miRNA (pre-miRNA) stage, and
the mature miRNA stage [17]. Mature miRNAs are usually short, having only 20–23 base pairs
(bp), and it is difficult to identify them directly. Most computational approaches focus on detecting
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pre-miRNAs since they are usually more identifiable because they are longer (approximately 80bp)
and have a distinctive stem-loop secondary structure.

In terms of the machine learning (ML), pre-miRNA identification can be viewed as a binary classifica-
tion problem in which a given sequence must be classified as either a pre-miRNA or a non-pre-miRNA.
A variety of computational approaches for miRNA identification have been proposed, and we can
broadly classify them [18] into rule-based such as MIReNA [1], and ML-based approaches, which
can be categorized into three groups in terms of the classification algorithm used: (1) MiPred [12],
microPred [2], triplet-SVM [3], iMiRNA-SSF [38], miRNApre [39], and miRBoost [4] use support
vector machines; (2) MiRANN [1] and DP-miRNA [37] use neural networks; and (3) (CSHMM) [5],
which use a context-sensitive hidden Markov model.

Known pre-miRNAs have distinctive structural characteristics, and therefore most computational
methods make first-order decisions based on the secondary structure of the input RNA sequence.
However, the identification of new pre-miRNAs with non-canonical structure and subtle properties,
and maybe both, it requires the consideration of features other than secondary structure. Some authors
[19] have even argued that the performance of ML-based tools are more dependent on the set of input
features than the ML algorithms that are used.

The discovery of new features which are effective in pre-miRNA identification currently involves
either searching for hand-crafted features (such as the frequency of nucleotide triplets in the loop,
global and intrinsic folding attributes, stem length, and minimum free energy) or combining existing
features. One recent study utilized 187 such features [4], another 48 features [2], most of which were
manually prepared. Manual feature extraction requires ingenuity and inevitably limits the efficiency,
robustness, and generalization of the resulting identification scheme developed. Furthermore, neural
network-based methods above only use neural networks for classification of hand-designed features,
and not for feature learning.

Similar challenges exist in other disciplines. Recently, end-to-end deep learning approaches have
been successfully applied to tasks such as speech and image recognition, largely eliminating the
manual construction of feature engineerings. Motivated by these successes, we propose a deep
neural network-based pre-miRNA identification method which we call deepMiRGene to address the
limitations of existing approaches. It incorporates the following key components:

1. A deep recurrent neural network (RNN) with long short-term memory (LSTM) units for
RNA sequence modeling, automated feature learning, and robust classification based on the
learned representations.

2. A multimodal architecture for seamless integration of prior knowledge (such as the impor-
tance of RNA secondary structure in pre-miRNA identification) with automatically learned
features.

3. An attention mechanism for effective modeling of the long-term dependence of the primary
structure (i.e., sequence) and the secondary structure of RNA molecules.

4. An RNN-based class activation mapping (CAM) to highlight the learned representations in
the way that contrasts pre-miRNAs and non-pre-miRNAs to obtain biological insight.

We found that simply combining existing deep learning modules did not deliver satisfactory per-
formance in our task. Thus our contribution can be seen as inventing a novel pipeline and with
components optimized for handling RNA sequences and structures to predict (possibly subtle) pre-
miRNA signals, rather than just assembling pre-packaged components. Our research for an optimal
set of RNN architectures and hyperparameters for pre-miRNA identification involved an exploration
of the design space spanned by the components of our methodology. The result of this research is
a technique with demonstrable advantages over other state-of-the-art alternatives in terms of both
cross-validation results but also the generalization ability (i.e., performance on test data). The source
code for the proposed method is available at https://github.com/eleventh83/deepMiRGene.

2 Related Work

2.1 The Secondary Structure of a Pre-miRNA

The secondary structure of an RNA transcript represents the base-pairing interactions within that
transcript. The usual secondary structure of a pre-miRNA is shown in Fig. 1, which shows that
a pre-miRNA is a base-paired double helix rather than a single strand, and this pairing is one
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Figure 1: (A) sequence of a pre-miRNA, and (B) the secondary structure of the given sequence. The
dot-bracket notation in (A) describes RNA secondary structures. Unpaired nucleotides are represented
as “.”s and base-paired nucleotides are represented as “(”s and “)”s.
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Figure 2: Overview of our method: #sample is the number of input sequences and lseq is the
maximum length of the input sequence. The dimension of intermediate data is labeled (#sample,
lseq, 16).

of the most prominent features for pre-miRNA identification [12, 2]. The secondary structure
of a given sequence can be predicted by tools such as RNAfold [5], which is widely used. It
constructs a thermodynamically stable secondary structure from a given RNA sequence by calculating
the minimum free energy and the probable base-pairings [20]. However, reliable pre-miRNA
identification requires features other than the secondary structure to be considered, since false
positives may be generated due to the limitations of structure prediction algorithms and the inherent
unpredictability of these structures [21].

2.2 Deep Recurrent Neural Networks

RNNs are frequently used for sequential modeling and learning. RNNs process one element of input
data at a time and implicitly store past information using cyclic connections of hidden units [8].
However, early RNNs often had difficulty in learning long-term dependencies because of the vanishing
or exploding gradient problem [9]. Recent deep RNNs incorporate mechanisms to address this
problem. Explicit memory units, such as LSTM units [10] or GRUs [3], are one such mechanism. An
LSTM unit, for works as a sophisticated hidden unit that uses multiplicative gates to learn when to
input, output, and forget in addition to cyclic connections to store the state vector. A more recent
innovation [2] is the attention mechanism. This can take various forms, but in our system, a weighted
combination of the output vectors at each point in time replaces the single final output vector of a
standard RNN. An attention mechanism of this sort helps learn long-term dependencies and also
facilitates the interpretation of results, e.g., by showing how closely the output at a specific time point
is related to the final output [30, 29, 2].

3 Methodology

Fig. 2 shows the proposed methodology of our system. The input consists of either a set of pre-
miRNA sequences (in the training phase) or a test sequence (in the testing phase). The output for each
input sequence is a two-dimensional (softmax) vector which indicates whether the input sequence
encodes pre-miRNA or not. In a preprocessing phase, we derive the secondary structure of the input
sequence and then encode the sequence and its structure together into a 16-dimensional binary vector.
Encoded vectors are then processed by the RNN architecture, consisting of LSTM layers and fully
connected (FC) layers, and the attention mechanism. The pseudocode of our approach is available as
Appendix A, in the supplementary material.
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3.1 Preprocessing

Preprocessing a set of input pre-miRNA sequences involves two tasks. First, RNAfold is used to
obtain the secondary structure of each sequence; we already noted the importance of this data. We
clarify that each position in an RNA sequence as one of {A, C, G, U}, and the corresponding location
in the secondary structure as one of {(, ), ., :}. This dot-bracket notation is shown in Fig. 1. The
symbol “:” represents a position inside a loop (unpaired nucleotides surrounded by a stem). Let xs
and xt denote an input sequence and its secondary structure, respectively. Then, xs ∈ {A, C, G, U}|xs|

and xt ∈ {(, ), ., :}|xt|. Note that |xs| = |xt|.
Next, each input sequence xs is combined with its secondary structure xt into a numerical represen-
tation. This is a simple one-hot encoding [4], which gave better results in our experiments than a
soft encoding (see Section 4). Our encoding scheme uses a 16-dimensional one-hot vector, in which
position i (i = 0, 1, . . . , 15) is interpreted as follows:

if bi/4c =


0 then A
1 then G
2 then C
3 then U

and if i%4 =


0 then (
1 then )
2 then .
3 then :

The “%” symbol denotes the modulus operator. After preprocessing, the sequence xs and the structure
xt are together represented by the matrix Xs ∈ {0, 1}|xs|×16, each row of which is the 16-dimensional
one-hot vector described above. For instance, xs = AUG and xt = (:) are represented by the
following 3× 16 binary matrix:

Xs =


A︷ ︸︸ ︷

1 0 0 0

C︷ ︸︸ ︷
0 0 0 0

G︷ ︸︸ ︷
0 0 0 0

U︷ ︸︸ ︷
0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0︸ ︷︷ ︸
().:

0 0 0 0 0 1 0 0 0 0 0 0

 .

3.2 Neural Network Architecture

The main features of our neural network is the attention mechanism provided by the LTSM and FC
layers.

1) LSTM layers: The purpose of these layers is sequential modeling of the primary and secondary
structure of the input pre-miRNA transcripts. We use two stacked LSTM layers denoted by LLSTM

1
and LLSTM

2 respectively. LLSTM
1 takes the matrix Xs produced in the preprocessing stage and returns a

weight matrix H1, as follows:

H1 = LLSTM
1 (Xs) ∈ R|xs|×d1 , (1)

where d1 is the number of LSTM units in the first layer. Similarly, the second layer first returns a
second weight matrix H2:

H2 = LLSTM
2 (H1) ∈ R|xs|×d2 , (2)

where d2 is the number of LSTM units in the second layer.

We apply an attention mechanism to the output of LLSTM
2 with the aim of learning the importance

of each position of xs. The neural networks first learn an attention weight for each output of the
second LSTM layer for each sequence position in a training process. These weights are collectively
represented by a matrix Ω ∈ Rd2×|xs|. An attention weight matrix Ωatt ∈ R|xs|×|xs| is then constructed
as follows:

Ωatt = H2Ω. (3)

This yields the attention weight vector ωatt

ωatt = softmax(diag(Ωatt)) ∈ R|xs|, (4)
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where the ith element of ωatt corresponds to the attention weight for the ith position of xs. Then,
Hatt ∈ R|xs|×d2 , the attention-weighted representation of H2, can be expressed as follows:

Hatt = H2 � (ωatt ⊗ ud2
), (5)

where ud2 is the d2-dimensional unit vector, and � and ⊗ respectively denote the element-wise
multiplication and outer product operators.

Finally, we reshape the matrix Hatt by flattening it into a (d2 · |xs|)-dimensional vector h̃att for the
sake of compatibility with third-party software. We use the standard nonlinearities (i.e., hyperbolic
tangent and logistic sigmoid) inside each LSTM cell.

2) Fully connected layers: The neural network collects the outputs from the last LSTM layer and
makes a final decision using three FC layers. We denote the operations performed by these three
layers by LFC

1 , LFC
2 , and LFC

3 , which allows us to represent the outputs of the three FC layers as
f1 = LFC

1

(
h̃att

)
, f2 = LFC

2 (f1), and ŷ = LFC
3 (f2), where f1 ∈ Rd3 and f2 ∈ Rd4 are intermediate

vectors, and ŷ ∈ R2 denotes the final softmax output; d3 and d4 are the numbers of hidden nodes in
the last two FC layers. The first two FC layers use logistic sigmoids as theirs activation functions,
while the last FC layer uses the softmax function.

3.3 Training

We based our training objective on binary cross-entropy (also known as logloss). As will be explained
in Section 4 (see Table 1), we encountered a class-imbalance problem in this study, since there exist
significantly more negative training examples (non-pre-miRNA sequences) than positives (known
pre-miRNA sequences). We addressed this issue by augmenting the logloss training objective with
balanced class weights [31], so that the training error E is expressed as follows:

E = −1

b

∑
i

{
c−yi log(ŷi) + c+(1− yi) log(1− ŷi)

}
where b is the mini-batch size (we used b = 128), and yi ∈ {0, 1} is the class label provided in
training data (yi = 0 for pre-miRNA; yi = 1 for non-pre-miRNA); c− and c+ represent the balanced
class weights given by

ck =
N

2 · nk
, k ∈ {−,+} (6)

where N is the total number of training examples and nk is the number of examples in either the
positive or the negative class.

We minimized E using the Adam [6] gradient descent method, which uses learning rates which adapt
to the first and second moments of the gradients of each parameter. We tried other optimization
methods (e.g., the stochastic gradient descent [27] and RMSprop [28]), but they did not give better
results.

We used dropout regularization with an empirical setup. In the LSTM layers, a dropout parameter for
input gates and another for recurrent connection were both set to 0.1. In the FC layers, we set the
dropout parameter to 0.1. We tried batch normalization [22], but did not find it effective.

All the weights were randomly initialized in the range of [−0.05, 0.05]. The number of hidden nodes
in the LSTM (d1, d2) and the FC (d3, d4) layers were determined by cross validation as d1 = 20,
d2 = 10, d3 = 400, and d4 = 100. The mini-batch size and training epochs were set to 128 and 300
respectively.

4 Experimental Results

We used three public benchmark datasets [4] named human, cross-species, and new. The positive
pre-miRNA sequences in all three datasets were obtained from miRBase [25] (release 18). For the
negative training sets, we obtained noncoding RNAs other than pre-miRNAs and exonic regions of
protein-coding genes from NCBI (http://www.ncbi.nlm.nih.gov), fRNAdb [23], NONCODE [24], and
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Table 1: Numbers of sequences in the three bench-
mark datasets [4] used in this study. The median
length of each dataset is given in brackets.

Type \ Dataset name Human Cross-species New

Positive examples 863 (85) 1677 (93) 690 (71)
Negative examples 7422 (92) 8266 (96) 8246 (96)

Table 2: Performance evaluation of different pre-miRNA identification methods with cross-validation
(CV) and test data using sensitivity (SE), specificity (SP), positive predictive value (PPV), F-score,
geometric mean (g-mean), area under the receiver operating characteristic curve (AUROC), and area
under the precision-recall curve (AUPR).

Human Cross-species

Methods SE1 SP2 PPV3 F-score4 g-mean5 AUROC AUPR SE SP PPV F-score g-mean AUROC AUPR

miRBoost (CV) 0.803 0.988 0.887 0.843 0.891 - - 0.861 0.977 0.884 0.872 0.917 - -
CSHMM (CV) 0.713 0.777 0.559 0.570 0.673 - - 0.826 0.576 0.533 0.564 0.524 - -
triplet-SVM (CV) 0.669 0.986 0.851 0.749 0.812 0.957 0.854 0.735 0.967 0.819 0.775 0.843 0.943 0.869
microPred (CV) 0.763 0.989 0.888 0.820 0.869 0.974 0.890 0.825 0.975 0.875 0.848 0.897 0.970 0.873
MIReNA (CV) 0.818 0.943 0.624 0.708 0.878 - - 0.766 0.952 0.765 0.765 0.854 - -
Proposed (CV) 0.799 0.988 0.885 0.839 0.888 0.984 0.915 0.886 0.982 0.911 0.898 0.933 0.985 0.927

miRBoost (test) 0.884 0.969 0.768 0.822 0.925 - - 0.856 0.844 0.526 0.651 0.850 - -
CSHMM (test) 0.616 0.978 0.768 0.684 0.777 - - 0.749 0.960 0.791 0.769 0.848 - -
triplet-SVM (test) 0.744 0.992 0.914 0.821 0.859 0.947 0.830 0.760 0.977 0.870 0.812 0.862 0.952 0.908
microPred (test) 0.779 0.988 0.882 0.827 0.877 0.980 0.892 0.814 0.985 0.919 0.863 0.896 0.963 0.906
MIReNA (test) 0.826 0.941 0.617 0.706 0.881 - - 0.796 0.950 0.764 0.780 0.870 - -
Proposed (test) 0.822 0.992 0.919 0.868 0.903 0.981 0.918 0.900 0.983 0.913 0.906 0.940 0.984 0.955

TP:
∑

true positive, TN:
∑

true negative, FP:
∑

false positive, FN:
∑

false negative. 1 SE = TP/(TP + FN) 2 SP =

TN/(TN + FP) 3 PPV (precision) = TP/(TP + FP) 4 F-score = 2TP/(2TP + FP + FN) 5 g-mean =
√

SE · SP

snoRNA-LBME-db [26]. Note that we only acquired those datasets that had undergone redundancy
removal and had annotation corrected by the data owners.

As shown in Table 1, the human dataset contains 863 human pre-miRNA sequences (positive
examples) and 7422 non-pre-miRNA sequences (negative examples). The cross-species dataset
contains 1677 pre-miRNA sequences collected from various species (e.g., human, mouse, and fly),
and 8266 non-miRNA sequences. The new dataset has 690 newly discovered pre-miRNA sequences,
which are in miRBase releases 19 and 20, with 8246 non-pre-miRNA sequences. For the human and
cross-species datasets, 10% of the data was randomly chosen as a clean test dataset (also known as a
publication dataset) and was never used in training. Using the remaining 90% of each dataset, we
carried out five-fold cross-validation for training and model selection. Note that the new dataset was
used for testing purposes only, as described in Tran et al. [4]. Additional details of the experimental
settings used can be found in Appendix B.

4.1 Validation and Test Performance Evaluation

We used seven evaluation metrics: sensitivity (SE), specificity (SP), positive predictive value (PPV), F-
score, the geometric mean of SE and SP (g-mean), the area under the receiver operating characteristic
curve (AUROC), and the area under the precision-recall curve (AUPR). Higher sensitivity indicates a
more accurate pre-miRNAs predictor which is likely to assist the discovery of novel pre-miRNAs.
Higher specificity indicates more effective filtering of pseudo pre-miRNAs, which increases the
efficiency of biological experiments. Because they take account of results with different decision
thresholds, AUROC and AUPR typically deliver more information than the more basic metrics such
as sensitivity, specificity, and PPV, which are computed with a single decision threshold. Note that
miRBoost, MIReNA, and CSHMM do not provide decision values, and so the AUROC and AUPR
metrics cannot be obtained from these methods.

The results of a cross-validation performance comparison are shown in the upper half of Table 2,
while the results of the test performance comparison are shown in the bottom half. For the human
dataset, the cross-validation performance of our method was comparable to that of others, but our
method achieved the highest test performance in terms of F-score, AUROC, and AUPRG. For the
cross-species dataset, our method achieved the best overall performance in terms of both cross-
validation and test evaluation results. Some tools, such as miRBoost, showed fair performance in
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Table 3: Evaluation of performance on the new dataset.

Methods SE SP PPV F-score g-mean AUROC AUPR

miRBoost 0.921 0.936 0.609 0.733 0.928 - -
CSHMM 0.536 0.069 0.046 0.085 0.192 - -
triplet-SVM 0.721 0.981 0.759 0.740 0.841 0.934 0.766
microPred 0.728 0.970 0.672 0.699 0.840 0.940 0.756
MIReNA 0.450 0.941 0.392 0.419 0.650 - -
Proposed method 0.917 0.964 0.682 0.782 0.941 0.981 0.808

SE SP F-score g-mean
0.5
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1
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Figure 3: Using both sequence and structure information gives the best performance on the human
dataset. Each bar shows the metrics of average cross-validation results.

terms of the cross-validation but failed to deliver the same level of performance on the test data.
These results suggest that our approach provides better generalization than the alternatives. The
similarity of the performance in terms of the cross-validation and test results suggests that overfitting
was handled effectively.

Following the experimental setup used by Tran et al. [4], we also evaluated the proposed method on
the new dataset, with a model trained by the cross-species dataset, as shown in Table 3, to assess the
potential of our approach in the search for novel pre-miRNAs. Again, our method did not show the
best performance in terms of basic metrics such as sensitivity and specificity, but it returned the best
values of AUROC and AUPR. The results show that the proposed method can be used effectively to
identify novel pre-miRNAs as well as to filter out pseudo pre-miRNAs.

To evaluate the statistical significance of our approach, we applied a Kolmogorov-Smirnov test [40] to
the classifications produced by our method, grouped by true data labels. For the human, cross-species,
and new datasets, the p-values we obtained were 5.23 × 10−54, 6.06 × 10−102, and 7.92 × 10−49

respectively, indicating that the chance of these results occurring at random is very small indeed.

4.2 Effectiveness of Multimodal Learning

Our approach to the identification of pre-miRNAs takes both biological sequence information and
secondary structure information into account. To assess the benefit of this multimodality, we measured
the performance of our method using only sequences or secondary structures in training on the human
dataset. As shown in Fig. 3, all of the performance metrics were higher when both sequence and
structure information were used together. Compared with the use of sequence or structure alone,
the sensitivity of the multimodal approach was increased by 48% point and 2% point, respectively.
For specificity, the cases using both sequence and structure achieved higher performance values
(0.988) than those of the sequence only (0.987) and structure only (0.978) cases. Similarly, in terms
of F-score, using the multimodality gave 29% point and 5% point higher scores (0.839) than using
sequence only (0.649) or structure only (0.795), respectively.

4.3 Gaining Insights by Analyzing Attention Weights

A key strength of our approach is its ability to learn the features useful for pre-miRNA identification
from data. This improves efficiency, and also has the potential to aid the discovery of subtle features
that might be missed in manual feature design. However, learned features, which are implicitly
represented by the trained weights of a deep model, come without intuitive significance.

To address this issue, we experimented with the visualization of attention weights using the class
activation mapping [32], a technique that was originally proposed to interpret the operation of
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Figure 4: Attention weighted RNN outputs with the human dataset. (A) Class activation mapping
for predicted examples (negatives: non-pre-miRNAs). (B) Class activation mapping for predicted
examples (positives: pre-miRNAs). (C) Stem-loop structure of a pre-miRNA (homo sapiens miR-1-1).

Table 4: Performance of different types of neural network, assessed in
terms of five-fold cross-validation results from the human dataset. The
number of stacked layers is shown in brackets. ATT means that an attention
mechanism was included, and a BiLSTM is a bi-directional LSTM. The
configuration that we finally adopted is shown in row 6.

No. Type SE SP F-score g-mean

1 1D-CNN(2) 0.745 0.978 0.771 0.853
2 1D-CNN(2)+LSTM(2) 0.707 0.976 0.738 0.830
3 1D-CNN(2)+LSTM(2)+ ATT 0.691 0.979 0.739 0.822

4 LSTM(2) 0.666 0.988 0.751 0.810
5 LSTM(1) + ATT 0.781 0.987 0.824 0.878
6 LSTM(2) + ATT (proposed) 0.799 0.988 0.839 0.888

7 BiLSTM(1) + ATT 0.783 0.987 0.827 0.879
8 BiLSTM(2) + ATT 0.795 0.987 0.834 0.886

convolutional neural networks (CNNs) in image classification by highlighting discriminative regions.
We modified the class activation mapping of RNNs to discover which part of the sequential output
is significant for identifying pre-miRNAs. We performed one-dimensional global average pooling
(GAP) on the attention weighted output Hatt (see Section 3.2) to derive a d2-dimensional weight
vector ωgap. We then multiplied Hatt by ωgap to obtain a class activation map of size |xs| for each
sequence sample.

Fig. 4 (A) and Fig. 4 (B) show the resulting heatmap representations of class activation mapping on
the human dataset for positive and negative predicted examples, respectively. Since sequences can
have different lengths, we normalized the sequence lengths to 1 and presented individual positions in
a sequence between 0% and 100% in the x-axis. By comparing the plots in Fig. 4 (A) and (B), we
can see that class activation maps of the positive and negative data show clear differences, especially
at the 10–50% sequence positions, within the red box in Fig. 4 (B). This region corresponds to the 5′
stem region of typical pre-miRNAs, as shown in Fig. 4 (C). This region coincides with the location of
a mature miRNA encoded within a pre-miRNA, suggesting that the data-driven features learned by
our approach have revealed relevant characteristics of pre-miRNAs.

The presence of some nucleotide patterns has recently been reported in the mature miRNA region
inside a pre-miRNA [33]. We anticipate that further interpretation of our data-driven features may
assist in confirming such patterns, and also in discovering novel motifs in pre-miRNAs.

4.4 Additional Experiments

1) Architecture exploration: We explored various alternative network architectures, as listed in
Table 4, which shows the performance of different network architectures, annotated with the number
of layers and any of attention mechanism. Rows 1–3 of the table, show results for CNNs with and
without LSTM networks. Rows 4–6 show the results of LSTM networks. Rows 7–8, show results for
bi-directional LSTM (BiLSTM) networks. More details can be found in Appendix C.1.

2) Additional results: Appendix C.2–4 presents more details of hyperparameter tuning, the design
decisions made between the uses of soft and hard encoding, and running-time comparisons.
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5 Discussion

Given the importance of the secondary structure in pre-miRNA identification (e.g., see Section 4.2),
we derived the secondary structure of each input sequence using RNAfold. We then combined the
secondary structure information with the primary structure (i.e. the sequence), and sent the result
to the RNN. However, a fully end-to-end approach to pre-miRNA identification we would need to
learn even the secondary structure from the input sequences. Due to the limited numbers of known
pre-miRNA sequences, this remains as challenging future work.

Our experimental results supported the effectiveness of a multi-modal approach that considers
sequences and structures together from an early stage of the pipeline. Incorporating other types of
information would be possible and might improve performance further. For example, sequencing
results from RNA-seq experiments reflect the expression levels and the positions of each sequenced
RNA [34]; and conservation information would allow a phylogenetic perspective [35]. Such additional
information could be integrated into the current framework by representing it as new network branches
and merging them with the current data before the FC layers.

Our proposed method has the clear advantage over existing approaches that it does not require
hand-crafted features. But we need to ensure that learned feature provide satisfactory performance,
and they also need to have some biological meaning. Biomedical researchers naturally hesitate to use
a black-box methodology. Our method of visualizing attention weights provides a tool for opening
that black-box, and assist data-driven discovery.
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