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Abstract

The expected improvement (EI) algorithm is a popular strategy for information
collection in optimization under uncertainty. The algorithm is widely known to
be too greedy, but nevertheless enjoys wide use due to its simplicity and ability
to handle uncertainty and noise in a coherent decision theoretic framework. To
provide rigorous insight into EI, we study its properties in a simple setting of
Bayesian optimization where the domain consists of a finite grid of points. This
is the so-called best-arm identification problem, where the goal is to allocate
measurement effort wisely to confidently identify the best arm using a small
number of measurements. In this framework, one can show formally that EI is far
from optimal. To overcome this shortcoming, we introduce a simple modification
of the expected improvement algorithm. Surprisingly, this simple change results in
an algorithm that is asymptotically optimal for Gaussian best-arm identification
problems, and provably outperforms standard EI by an order of magnitude.

1 Introduction

Recently Bayesian optimization has received much attention in the machine learning community
[26]. This literature studies the problem of maximizing an unknown black-box objective function by
collecting noisy measurements of the function at carefully chosen sample points. At first a prior belief
over the objective function is prescribed, and then the statistical model is refined sequentially as data
are observed. Expected improvement (EI) [16] is one of the most widely-used Bayesian optimization
algorithms. It is a greedy improvement-based heuristic that samples the point offering greatest
expected improvement over the current best sampled point. EI is simple and readily implementable,
and it offers reasonable performance in practice.

Although EI is reasonably effective, it is too greedy, focusing nearly all sampling effort near the
estimated optimum and gathering too little information about other regions in the domain. This
phenomenon is most transparent in the simplest setting of Bayesian optimization where the function’s
domain is a finite grid of points. This is the problem of best-arm identification (BAI) [2] in a multi-
armed bandit. The player sequentially selects arms to measure and observes noisy reward samples
with the hope that a small number of measurements enable a confident identification of the best
arm. Recently Ryzhov [25] studied the performance of EI in this setting. His work focuses on a link
between EI and another algorithm known as the optimal computing budget allocation [5], but his
analysis reveals EI allocates a vanishing proportion of samples to suboptimal arms as the total number
of samples grows. Any method with this property will be far from optimal in BAI problems [2].
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In this paper, we improve the EI algorithm dramatically through a simple modification. The resulting
algorithm, which we call top-two expected improvement (TTEI), combines the top-two sampling
idea of Russo [24] with a careful change to the improvement-measure used by EI. We show that
this simple variant of EI achieves strong asymptotic optimality properties in the BAI problem, and
benchmark the algorithm in simulation experiments.

Our main theoretical contribution is a complete characterization of the asymptotic proportion of
samples TTEI allocates to each arm as a function of the true (unknown) arm means. These particular
sampling proportions have been shown to be optimal from several perspectives [6, 15, 12, 24, 11],
and this enables us to establish two different optimality results for TTEI. The first concerns the rate at
which the algorithm gains confidence about the identity of the optimal arm as the total number of
samples collected grows. Next we study the so-called fixed confidence setting, where the algorithm is
able to stop at any point and return an estimate of the optimal arm. We show that when applied with
the stopping rule of Garivier and Kaufmann [11], TTEI essentially minimizes the expected number
of samples required among all rules obeying a constraint on the probability of incorrect selection.

One undesirable feature of our algorithm is its dependence on a tuning parameter. Our theoretical
results precisely show the impact of this parameter, and reveal a surprising degree of robustness to its
value. It is also easy to design methods that adapt this parameter over time to the optimal value, and
we explore one such method in simulation. Still, removing this tuning parameter is an interesting
direction for future research.

Further related literature. Despite the popularity of EI, its theoretical properties are not well
studied. A notable exception is the work of Bull [4], who studies a global optimization problem and
provides a convergence rate for EI’s expected loss. However, it is assumed that the observations
are noiseless. Our work also relates to a large number of recent machine learning papers that try to
characterize the sample complexity of the best-arm identification problem [8, 22, 2, 10, 18, 13, 14, 19–
21]. Despite substantial progress, matching asymptotic upper and lower bounds remained elusive in
this line of work. Building on older work in statistics [6, 15] and simulation optimization [12], recent
work of Garivier and Kaufmann [11] and Russo [24] characterized the optimal sampling proportions.
Two notions of asymptotic optimality are established: sample complexity in the fixed confidence
setting and rate of posterior convergence. Garivier and Kaufmann [11] developed two sampling
rules designed to closely track the asymptotic optimal proportions and showed that, when combined
with a stopping rule motivated by Chernoff [6], this sampling rule minimizes the expected number
of samples required to guarantee a vanishing threshold on the probability of incorrect selection is
satisfied. Russo [24] independently proposed three simple Bayesian algorithms, and proved that
each algorithm attains the optimal rate of posterior convergence. TTEI proposed in this paper is
conceptually most similar to the top-two value sampling of Russo [24], but it is more computationally
efficient.

1.1 Main Contributions

As discussed below, our work makes both theoretical and algorithmic contributions.

Theoretical: Our main theoretical contribution is Theorem 1, which establishes that TTEI–a simple
modification to a popular Bayesian heuristic–converges to the known optimal asymptotic
sampling proportions. It is worth emphasizing that, unlike recent results for other top-two
sampling algorithms [24], this theorem establishes that the expected time to converge to the
optimal proportions is finite, which we need to establish optimality in the fixed confidence
setting. Proving this result required substantial technical innovations. Theorems 2 and 3 are
additional theoretical contributions. These mirror results in [24] and [11], but we extract
minimal conditions on sampling rules that are sufficient to guarantee the two notions of
optimality studied in these papers.

Algorithmic: On the algorithmic side, we substantially improve a widely used algorithm. TTEI can
be easily implemented by modifying existing EI code, but, as shown in our experiments, can
offer an order of magnitude improvement. A more subtle point involves the advantages of
TTEI over algorithms that are designed to directly target convergence on the asymptotically
optimal proportions. In the experiments, we show that TTEI substantially outperforms an
oracle sampling rule whose sampling proportions directly track the asymptotically optimal
proportions. This phenomenon should be explored further in future work, but suggests that

2



by carefully reasoning about the value of information TTEI accounts for important factors
that are washed out in asymptotic analysis. Finally–as discussed in the conclusion–although
we focus on uncorrelated priors we believe our method can be easily extended to more
complicated problems like that of best-arm identification in linear bandits [27].

2 Problem Formulation

Let A = {1, . . . , k} be the set of arms. At each time n ∈ N = {0, 1, 2, . . .}, an arm In ∈ A is
measured, and an independent noisy reward Yn,In is observed. The reward Yn,i ∈ R of arm i at time
n follows a normal distribution N(µi, σ

2) with common known variance σ2, but unknown mean
µi. The objective is to allocate measurement effort wisely in order to confidently identify the arm
with highest mean using a small number of measurements. We assume that µ1 > µ2 > . . . > µk.
Our analysis takes place in a frequentist setting, in which the true means (µ1, . . . , µk) are fixed but
unknown. The algorithms we study, however, are Bayesian in the sense that they begin with prior
over the arm means and update the belief to form a posterior distribution as evidence is gathered.

Prior and Posterior Distributions. The sampling rules studied in this paper begin with a normally
distributed prior over the true mean of each arm i ∈ A denoted by N(µ0,i, σ

2
0,i), and update this to

form a posterior distribution as observations are gathered. By conjugacy, the posterior distribution
after observing the sequence (I0, Y0,I0 , . . . , In−1, Yn−1,In−1

) is also a normal distribution denoted
by N(µn,i, σ

2
n,i). The posterior mean and variance can be calculated using the following recursive

equations:

µn+1,i =

{
(σ−2
n,iµn,i + σ−2Yn,i)/(σ

−2
n,i + σ−2) if In = i,

µn,i, if In 6= i,

and

σ2
n+1,i =

{
1/(σ−2

n,i + σ−2) if In = i,

σ2
n,i, if In 6= i.

.

We denote the posterior distribution over the vector of arm means by

Πn = N(µn,1, σ
2
n,1)⊗N(µn,2, σ

2
n,2)⊗ · · · ⊗N(µn,k, σ

2
n,k)

and let θ = (θ1, . . . , θk). For example, with this notation

Eθ∼Πn

[∑
i∈A

θi

]
=
∑
i∈A

µn,i.

The posterior probability assigned to the event that arm i is optimal is

αn,i , Pθ∼Πn

(
θi > max

j 6=i
θj

)
. (1)

To avoid confusion, we always use θ = (θ1, . . . , θk) to denote a random vector of arm means drawn
from the algorithm’s posterior Πn, and µ = (µ1, . . . , µk) to denote the vector of true arm means.

Two notions of asymptotic optimality. Our first notion of optimality relates to the rate of poste-
rior convergence. As the number of observations grows, one hopes that the posterior distribution
definitively identifies the true best arm, in the sense that the posterior probability 1− αn,1 assigned
by the event that a different arm is optimal tends to zero. By sampling the arms intelligently, we
hope this probability can be driven to zero as rapidly as possible. Following Russo [24], we aim to
maximize the exponent governing the rate of decay,

lim inf
n→∞

− 1

n
log (1− αn,1) ,

among all sampling rules.

The second setting we consider is often called the “fixed confidence” setting. Here, the agent is
allowed at any point to stop gathering samples and return an estimate of the identity of the optimal.
In addition to a sampling rule, we require a stopping rule that selects a time τ at which to stop, and
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a decision rule that returns an estimate Îτ of the optimal arm based on the first τ observations. We
consider minimizing the average number of observations E[τδ] required by an algorithm (that consists
of a sampling rule, a stopping rule and a decision rule) guaranteeing a vanishing probability δ of
incorrect identification, i.e., P(Îτδ 6= 1) ≤ δ. Following Garivier and Kaufmann [11], the number of
samples required scales with log(1/δ), and so we aim to minimize

lim sup
δ→0

E[τδ]

log(1/δ)

among all algorithms with probability of error no more than δ. In this setting, we study the perfor-
mance of sampling rules when combined with the stopping rule studied by Chernoff [6] and Garivier
and Kaufmann [11].

3 Sampling Rules

In this section, we first introduce the expected improvement algorithm, and point out its weakness.
Then a simple variant of the expected improvement algorithm is proposed. Both algorithms make
calculations using function f(x) = xΦ(x) + φ(x) where Φ(·) and φ(·) are the CDF and PDF of
the standard normal distribution. One can show that as x → ∞, log f(−x) ∼ −x2/2, and so
f(−x) ≈ e−x2/2 for very large x. One can also show that f is an increasing function.

Expected Improvement. Expected improvement [16] is a simple improvement-based sampling
rule. The EI algorithm favors the arm that offers the largest amount of improvement upon a target.
The EI algorithm measures the arm In = arg maxi∈A vn,i where vn,i is the EI value of arm i at time
n. Let I∗n = arg maxi∈A µn,i denote the arm with largest posterior mean at time n. The EI value of
arm i at time n is defined as

vn,i , Eθ∼Πn

[(
θi − µn,I∗n

)+]
.

where x+ = max{x, 0}. The above expectation can be computed analytically as follows,

vn,i =
(
µn,i − µn,I∗n

)
Φ

(
µn,i − µn,I∗n

σn,i

)
+ σn,iφ

(
µn,i − µn,I∗n

σn,i

)
= σn,if

(
µn,i − µn,I∗n

σn,i

)
.

The EI value vn,i measures the potential of arm i to improve upon the largest posterior mean µn,I∗n at
time n. Because f is an increasing function, vn,i is increasing in both the posterior mean µn,i and
posterior standard deviation σn,i.

Top-Two Expected Improvement. The EI algorithm can have very poor performance for selecting
the best arm. Once the posterior indicates a particular arm is the best with reasonably high probability,
EI allocates nearly all future samples to this arm at the expense of measuring other arms. Recently
Ryzhov [25] showed that EI only allocates O(log n) samples to suboptimal arms asymptotically.
This is a severe shortcoming, as it means n must be extremely large before the algorithm has enough
samples from suboptimal arms to reach a confident conclusion.

To improve the EI algorithm, we build on the top-two sampling idea in Russo [24]. The idea is to
identify in each period the two “most promising” arms based on current observations, and randomize
to choose which to sample. A tuning parameter β ∈ (0, 1) controls the probability assigned to the
“top” arm. A naive top-two variant of EI would identify the two arms with largest EI value, and flip
a β–weighted coin to decide which to measure. However, one can prove that this algorithm is not
optimal for any choice of β. Instead, what we call the top-two expected improvement algorithm uses
a novel modified EI criterion which more carefully accounts for the decision-maker’s uncertainty
when deciding which arm to sample.

For i, j ∈ A, define vn,i,j , Eθ∼Πn [(θi − θj)+]. This measures the expected magnitude of
improvement arm i offers over arm j, but unlike the typical EI criterion, this expectation integrates
over the uncertain quality of both arms. This measure can be computed analytically as

vn,i,j =
√
σ2
n,i + σ2

n,jf

 µn,i − µn,j√
σ2
n,i + σ2

n,j

 .
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TTEI depends on a tuning parameter β > 0, set to 1/2 by default. With probability β, TTEI measures
the arm I

(1)
n by optimizing the EI criterion, and otherwise it measures an alternative I(2)

n that offers
the largest expected improvement on the arm I

(1)
n . Formally, TTEI measures the arm

In =

{
I

(1)
n = arg maxi∈A vn,i, with probability β,
I

(2)
n = arg maxi∈A vn,i,I(1)n

, with probability 1− β.

Note that vn,i,i = 0, which implies I(2)
n 6= I

(1)
n .

We notice that TTEI with β = 1 is the standard EI algorithm. Comparing to the EI algorithm, TTEI
with β ∈ (0, 1) allocates much more measurement effort to suboptimal arms. We will see that TTEI
allocates β proportion of samples to the best arm asymptotically, and it uses the remaining 1 − β
fraction of samples for gathering evidence against each suboptimal arm.

4 Convergence to Asymptotically Optimal Proportions

For all i ∈ A and n ∈ N, we define Tn,i ,
∑n−1
`=0 1{I` = i} to be the number of samples of arm

i before time n. We will show that under TTEI with parameter β, limn→∞ Tn,1/n = β. That is,
the algorithm asymptotically allocates β proportion of the samples to true best arm. Dropping for
the moment questions regarding the impact of this tuning parameter, let us consider the optimal
asymptotic proportion of effort to allocate to each of the k − 1 remaining arms. It is known that the
optimal proportions are given by the unique vector (wβ2 , · · · , w

β
k ) satisfying

∑k
i=2 w

β
i = 1− β and

(µ1 − µ2)2

1/β + 1/wβ2
= . . . =

(µ1 − µk)2

1/β + 1/wβk
. (2)

We set wβ1 = β, so wβ =
(
wβ1 , . . . , w

β
k

)
encodes the sampling proportions of each arm.

To understand the source of equation (2), imagine that over the first n periods each arm i is sampled
exactly wβi n times, and let µ̂n,i ∼ N

(
µi,

σ2

wβi n

)
denote the empirical mean of arm i. Then

µ̂n,1 − µ̂n,i ∼ N
(
µ1 − µi, σ̃2

i

)
where σ̃2

i =
σ2

n

(
1

β
+

1

wβi

)
.

The probability µ̂n,1 − µ̂n,i ≤ 0–leading to an incorrect estimate of which arm has highest mean–is
Φ ((µi − µ1)/σ̃i) where Φ is the CDF of the standard normal distribution. Equation (2) is equivalent
to requiring (µ1 − µi)/σ̃i is equal for all arms i, so the probability of falsely declaring µi ≥ µ1

is equal for all i 6= 1. In a sense, these sampling frequencies equalize the evidence against each
suboptimal arm. These proportions appeared first in the machine learning literature in [24, 11], but
appeared much earlier in the statistics literature in [15], and separately in the simulation optimization
literature in [12]. As we will see in the next section, convergence to this allocation is a necessary
condition for both notions of optimality considered in this paper.

Our main theoretical contribution is the following theorem, which establishes that under TTEI
sampling proportions converge to the proportions wβ derived above. Therefore, while the sampling
proportion of the optimal arm is controlled by the tuning parameter β, the remaining 1−β fraction of
measurement is optimally distributed among the remaining k − 1 arms. Such a result was established
for other top-two sampling algorithms in [24]. The second notion of optimality requires not just
convergence to wβ with probability 1, but also a sense in which the expected time until convergence
is finite. The following theorem presents such a stronger result for TTEI. To make this precise,
we introduce a time after which for each arm, the empirical proportion allocated to it is accurate.
Specifically, given β ∈ (0, 1) and ε > 0, we define

M ε
β , inf

{
N ∈ N : max

i∈A
|Tn,i/n− wβi | ≤ ε ∀n ≥ N

}
. (3)

It is clear that P(M ε
β <∞) = 1 for all ε > 0 if and only if Tn,i/n→ wβi with probability 1 for each

arm i ∈ A. To establish optimality in the “fixed confidence setting”, we need to prove in addition that
E[M ε

β ] <∞ for all ε > 0, which requires substantial new technical innovations.
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Theorem 1. Under TTEI with parameter β ∈ (0, 1), E[M ε
β ] <∞ for any ε > 0.

This result implies that under TTEI, P(M ε
β <∞) = 1 for all ε > 0, or equivalently

lim
n→∞

Tn,i
n

= wβi ∀i ∈ A.

4.1 Problem Complexity Measure

Given β ∈ (0, 1), define the problem complexity measure

Γ∗β ,
(µ1 − µ2)2

2σ2
(

1/β + 1/wβ2

) = . . . =
(µ1 − µk)2

2σ2
(

1/β + 1/wβk

) ,
which is a function of the true arm means and variances. This will be the exponent governing
the rate of posterior convergence, and also characterizing the average number of samples in the
fixed confidence stetting. The optimal exponent comes from maximizing over β. Let us define
Γ∗ = maxβ∈(0,1) Γ∗β and β∗ = arg maxβ∈(0,1) Γ∗β and set

w∗ = wβ
∗

=
(
β∗, wβ

∗

2 , . . . , wβ
∗

k

)
.

Russo [24] has proved that for β ∈ (0, 1), Γ∗β ≥ Γ∗/max
{
β∗

β ,
1−β∗
1−β

}
, and therefore Γ∗1/2 ≥ Γ∗/2.

This demonstrates a surprising degree of robustness to β. In particular, Γβ is close to Γ∗ if β is
adjusted to be close to β∗, and the choice of β = 1/2 always yields a 2-approximation to Γ∗.

5 Implied Optimality Results

This section establishes formal optimality guarantees for TTEI. Both results, in fact, hold for any
algorithm satisfying the conclusions of Theorem 1, and are therefore of broader interest.

5.1 Optimal Rate of Posterior Convergence

We first provide upper and lower bounds on the exponent governing the rate of posterior convergence.
The same result has been has been proved in Russo [24] for bounded correlated priors. We use
different proof techniques to prove the following result for uncorrelated Gaussian priors.

This theorem shows that no algorithm can attain a rate of posterior convergence faster than e−Γ∗n

and that this is attained by any algorithm that, like TTEI with optimal tuning parameter β∗, has
asymptotic sampling ratios (w∗1 , . . . , w

∗
k). The second part implies TTEI with parameter β attains

convergence rate e−nΓ∗β and that it is optimal among sampling rules that allocation β–fraction of
samples to the optimal arm. Recall that, without loss of generality, we have assumed arm 1 is the arm
with true highest mean µ1 = maxi∈A µi. We will study the posterior mass 1− αn,1 assigned to the
event that some other has the highest mean.
Theorem 2 (Posterior Convergence - Sufficient Condition for Optimality). The following properties
hold with probability 1:

1. Under any sampling rule that satisfies Tn,i/n→ w∗i for each i ∈ A,

lim
n→∞

− 1

n
log (1− αn,1) = Γ∗.

Under any sampling rule,

lim sup
n→∞

− 1

n
log(1− αn,1) ≤ Γ∗.

2. Let β ∈ (0, 1). Under any sampling rule that satisfies Tn,i/n→ wβi for each i ∈ A,

lim
n→∞

− 1

n
log(1− αn,1) = Γ∗β .
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Under any sampling rule that satisfies Tn,1/n→ β,

lim sup
n→∞

− 1

n
log(1− αn,1) ≤ Γ∗β .

This result reveals that when the tuning parameter β is set optimally to β∗, TTEI attains the optimal
rate of posterior convergence. Since Γ∗1/2 ≥ Γ∗/2, when β is set to the default value 1/2, the
exponent governing the convergence rate of TTEI is at least half of the optimal one.

5.2 Optimal Average Sample Size

Chernoff’s Stopping Rule. In the fixed confidence setting, besides an efficient sampling rule, a
player also needs to design an intelligent stopping rule. This section introduces a stopping rule
proposed by Chernoff [6] and studied recently by Garivier and Kaufmann [11]. This stopping rule
makes use of the Generalized Likelihood Ratio statistic, which depends on the current maximum
likelihood estimates of all unknown means. For each arm i ∈ A, the maximum likelihood estimate
of its unknown mean µi at time n is its empirical mean µ̂n,i = T−1

n,i

∑n−1
`=0 1{I` = i}Y`,I` where

Tn,i =
∑n−1
`=0 1{I` = i}. Next we define a weighted average of empirical means of arms i, j ∈ A:

µ̂n,i,j ,
Tn,i

Tn,i + Tn,j
µ̂n,i +

Tn,j
Tn,i + Tn,j

µ̂n,j .

Then if µ̂n,i ≥ µ̂n,j , the Generalized Likelihood Ratio statistic Zn,i,j has the following explicit
expression:

Zn,i,j , Tn,id(µ̂n,i, µ̂n,i,j) + Tn,jd(µ̂n,j , µ̂n,i,j)

where d(x, y) = (x− y)2/(2σ2) is the Kullback-Leibler (KL) divergence between Gaussian distribu-
tions N(x, σ2) and N(y, σ2). Similarly, if µ̂n,i < µ̂n,j , Zn,i,j = −Zn,j,i ≤ 0 where Zn,j,i is well
defined as above. If either arm has never been sampled before, these quantities are not well defined
and we take the convention that Zn,i,j = Zn,j,i = 0. Given a target confidence δ ∈ (0, 1), to ensure
that one arm is better than the others with probability at least 1− δ, we use the stopping time

τδ , inf

{
n ∈ N : Zn , max

i∈A
min

j∈A\{i}
Zn,i,j > γn,δ

}
where γn,δ > 0 is an appropriate threshold. By definition, minj∈A\{i} Zn,i,j is nonnegative if
and only if µ̂n,i ≥ µ̂n,j for all j ∈ A \ {i}. Hence, whenever Î∗n , arg maxi∈A µ̂n,i is unique,
Zn = minj∈A\{Î∗n} Zn,Î∗n,j .

Next we introduce the exploration rate for normal bandit models that can ensure to identify the best
arm with probability at least 1− δ. We use the following result given in Garivier and Kaufmann [11].

Proposition 1 (Garivier and Kaufmann [11] Proposition 12). Let δ ∈ (0, 1) and α > 1. There exists
a constant C = C(α, k) such that under any sampling rule, using the Chernoff’s stopping rule with
the threshold γαn,δ = log(Cnα/δ) guarantees

P
(
τδ <∞, arg max

i∈A
µ̂τδ,i 6= 1

)
≤ δ.

Sample Complexity. Garivier and Kaufmann [11] recently provided a general lower bound on the
number of samples required in the fixed confidence setting. In particular, they show that for any
normal bandit model, under any sampling rule and stopping time τδ that guarantees a probability of
error no more than δ,

lim inf
δ→0

E[τδ]

log(1/δ)
≥ 1

Γ∗
.

Recall that M ε
β , defined in (3), is the first time after which the empirical proportions are within ε

of their asymptotic limits. The next result provides a condition in terms of M ε
β that is sufficient to

guarantee optimality in the fixed confidence setting.
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Theorem 3 (Fixed Confidence - Sufficient Condition for Optimality). Let δ, β ∈ (0, 1) and α > 1.
Under any sampling rule which, if applied with no stopping rule, satisfies E[M ε

β ] <∞ for all ε > 0,
using the Chernoff’s stopping rule with the threshold γαn,δ = log(Cnα/δ) (where C = C(α, k))
guarantees

lim sup
δ→0

E[τδ]

log(1/δ)
≤ 1

Γ∗β
.

When β = β∗ the general lower bound on sample complexity of 1/Γ∗ is essentially matched. In
addition, when β is set to the default value 1/2, the sample complexity of TTEI combined with the
Chernoff’s stopping rule is at most twice the optimal sample complexity since 1/Γ∗1/2 ≤ 2/Γ∗.

6 Numerical Experiments

To test the empirical performance of TTEI, we conduct several numerical experiments. The first
experiment compares the performance of TTEI with β = 1/2 and EI. The second experiment
compares the performance of different versions of TTEI, top-two Thompson sampling (TTTS) [24],
knowledge gradient (KG) [9] and oracle algorithms that know the optimal proportions a priori. Each
algorithm plays arm i = 1, . . . , k exactly once at the beginning, and then prescribe a priorN(Yi,i, σ

2)
for unknown arm-mean µi where Yi,i is the observation from N(µi, σ

2). In both experiments, we fix
the common known variance σ2 = 1 and the number of arms k = 5. We consider three instances
[µ1, . . . , µ5] = [5, 4, 1, 1, 1], [5, 4, 3, 2, 1] and [2, 0.8, 0.6, 0.4, 0.2]. The optimal parameter β∗ equals
0.48, 0.45 and 0.35, respectively.

Recall that αn,i, defined in (1), denotes the posterior probability that arm i is optimal. Tables 1 and 2
show the average number of measurements required for the largest posterior probability assigned
to some arm being the best to reach a given confidence level c, i.e., maxi αn,i ≥ c. In a Bayesian
setting, the probability of correct selection under this rule is exactly c. The results in Table 1 are
averaged over 100 trials. We see that TTEI with β = 1/2 outperforms standard EI by an order of
magnitude.

Table 1: Average number of measurements required to reach the confidence level c = 0.95

TTEI-1/2 EI
[5, 4, 1, 1, 1] 14.60 238.50
[5, 4, 3, 2, 1] 16.72 384.73
[2, .8, .6, .4, .2] 24.39 1525.42

The second experiment compares the performance of different versions of TTEI, TTTS, KG, a random
sampling oracle (RSO) and a tracking oracle (TO). The random sampling oracle draws a random arm
in each round from the distribution w∗ encoding the asymptotically optimal proportions. The tracking
oracle tracks the optimal proportions at each round. Specifically, the tracking oracle samples the arm
with the largest ratio its optimal and empirical proportions. Two tracking algorithms proposed by
Garivier and Kaufmann [11] are similar to this tracking oracle. TTEI with adaptive β (aTTEI) works
as follows: it starts with β = 1/2 and updates β = β̂∗ every 10 rounds where β̂∗ is the maximizer of
equation (2) based on plug-in estimators for the unknown arm-means. Table 2 shows the average
number of measurements required for the largest posterior probability being the best to reach the
confidence level c = 0.9999. The results in Table 2 are averaged over 200 trials. We see that the
performances of TTEI with adaptive β and TTEI with β∗ are better than the performances of all other
algorithms. We note that TTEI with adaptive β substantially outperforms the tracking oracle.

Table 2: Average number of measurements required to reach the confidence level c = 0.9999

TTEI-1/2 aTTEI TTEI-β∗ TTTS-β∗ RSO TO KG
[5, 4, 1, 1, 1] 61.97 61.98 61.59 62.86 97.04 77.76 75.55
[5, 4, 3, 2, 1] 66.56 65.54 65.55 66.53 103.43 88.02 81.49
[2, .8, .6, .4, .2] 76.21 72.94 71.62 73.02 101.97 96.90 86.98

In addition to the Bayesian stopping rule tested above, we have run some experiments with the
Chernoff stopping rule discussed in Section 5.2. Asymptotic analysis shows these two rules are

8



similar when the confidence level c is very high. However, the Chernoff stopping rule appears to be
too conservative in practice; it typically yields a probability of correct selection much larger than
the specified confidence level c at the expense of using more samples. Since our current focus is on
allocation rules, we focus on this Bayesian stopping rule, which appears to offer a more fundamental
comparison than one based on ad hoc choice of tuning parameters. Developing improved stopping
rules is an important area for future research.

7 Conclusion and Extensions to Correlated Arms

We conclude by noting that while this paper thoroughly studies TTEI in the case of uncorrelated
priors, we believe the algorithm is also ideally suited to problems with complex correlated priors
and large sets of arms. In fact, the modified information measure vn,i,j was designed with an eye
toward dealing with correlation in a sophisticated way. In the case of a correlated normal distribution
N(µ,Σ), one has

vn,i,j = Eθ∼N(µ,Σ)[(θi − θj)+] =
√

Σii + Σjj − 2Σijf

(
µn,i − µn,j√

Σii + Σjj − 2Σij

)
.

This closed form accommodates efficient computation. Here the term Σi,j accounts for the correlation
or similarity between arms i and j. Therefore v

n,i,I
(1)
n

is large for arms i that offer large potential

improvement over I(1)
n , i.e. those that (1) have large posterior mean, (2) have large posterior variance,

and (3) are not highly correlated with arm I
(1)
n . As I(1)

n concentrates near the estimated optimum, we
expect the third factor will force the algorithm to experiment in promising regions of the domain that
are “far” away from the current-estimated optimum, and are under-explored under standard EI.
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A Notation

We now introduce some important notation that will be used throughout the proof. First, recall we
use the notation µn,i for the posterior mean of arm i, and µ̂n,i for the empirical mean. The empirical
mean is only well defined when Tn,i > 0, which potentially requires us qualify throughout entire
proof that equations are only defined under such circumstances. To avoid this, we take the convention
that µ̂n,i = 0 when Tn,i = 0. The default choice of 0 for the mean is unimportant.

The top two arms identified by TTEI at time n are denote by I
(1)
n and I

(2)
n . We let I∗n =

arg maxi∈A µn,i denote the arm with highest posterior mean and În = arg maxi∈A µ̂n,i denote
the arm with highest empirical mean. For much of the proof, Î∗n = I∗n, in which case the distinction
between these two notations is unimportant.

Next, we define
βmin , min{β, 1− β} and βmax , max{β, 1− β}

and
∆min , min

i 6=j
|µi − µj | and ∆max , max

i,j∈A
(µi − µj).

Since β ∈ (0, 1), 0 < βmin ≤ βmax < 1. Because of the assumption that the arm means are unique,
we have ∆min,∆max > 0.

There are two sources of randomness in our problem: the randomness in the observation noise, and
the randomness in action selection due to the stochastic nature of the TTEI policy. We introduce
two variables W1 and W2, which bound the maximum impact of this randomness. First, define the
random variable

W1 , max
n∈N

max
i∈A

√
Tn,i + 1

log(e+ Tn,i)

∣∣∣∣ µ̂n,i − µiσ

∣∣∣∣ . (4)

Ignoring logarithmic factors, for any sample path
∣∣∣ µ̂n,i−µiσ

∣∣∣ is bounded by a term of order W1/
√
Tn,i.

Note that the term 1/
√
Tn,i is what would be expected by the central limit theorem.

The second source of randomness is due to the stochastic nature of TTEI. For all i ∈ A and n ∈ N,
define

ψn,i , P(In = i|Fn) and Ψn,i ,
n−1∑
`=0

ψ`,i.

where
Fn = σ(I0, Y0,I0 , · · · , In−1, Yn−1,In−1

)

is the σ-algebra generated by observations before time n. Note that for all i ∈ A, T0,i = Ψ0,i = 0.
Both Tn,i and Ψn,i measure the effort allocated to arm i before time n. Next we introduce the second
sample-path dependent variable W2 that measures the difference between two measurements of effort
under TTEI. Define

W2 , max
n∈N

max
i∈A

|Tn,i −Ψn,i|√
(1 + Ψn,i/βmin) log (e2 + Ψn,i/βmin)

. (5)

Ignoring constants and logarithmic terms, for any sample path |Tn,i −Ψn,i| is bounded by a term of
order W2/

√
Ψn,i.

Our main results require bounding the expected time for certain events to occur under TTEI. The
proof strategy is to bound these times for any sample path in terms of the maximal deviations W1 and
W2. We can then appeal to concentration results for W1 and W2 that are established in Section C.

A final piece of important notation pertains to an alternative to the random time M ε
β defined in

equation (3) in Section 4. It will often be more convenient to work with the time

N ε
β , inf

{
N ∈ N : max

i∈A
|µ̂n,i − µi| ≤ ε and max

i∈A
|Tn,i/n− wβi | ≤ ε ∀n ≥ N

}
(6)

after which both the sampling proportions and estimated arm means are close to their asymptotic
limits.
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B Proof Outline

The remainder of the appendix is organized as follows.

1. Section C provides some basic tail bounds for Gaussian distributions and the expected
improvement measure. The section then shows that all moments of the random variables
W1 and W2 are finite. A final part looks at the sufficient condition given in Theorem 3, and
shows this condition implies the existence of a time after which the estimated mean of each
arm is accurate within any fixed tolerance.

2. Section D provides the proof of Theorem 2, establishing that convergence of sampling
proportions to some fixed optimal proportions guarantees the optimal rate of posterior
convergence.

3. Section E provides the proof of Theorem 3, a sufficient condition under which optimality in
the fixed confidence setting is achieved.

4. Section F proves that TTEI satisfies this sufficient condition for optimality, which immedi-
ately establishes Theorem 1.

C Concentration and Maximal Inequalities

C.1 Basic Gaussian Tail Bounds

The following two lemmas are standard results on the tail probabilities of Gaussian distributions. The
first tail bound holds for all sub-Gaussian distributions, and is a standard concentration inequality [3].

Lemma 1. Let x > 0. If X ∼ N(µ, σ2) then P(X ≥ µ+ x) ≤ e−x2/(2σ2).

The next lemma shows that the exponent in the upper bound above is sharp. That is logP(X ≥
µ+ x) = − x2

2σ2 + o(x) as x→∞. This is perhaps the most basic result in large deviations theory
and can be found in textbooks [7] or lecture notes [17]. We often consider limits where the number
of measurements tends to zero, and as a result the posterior variance of a Gaussian tends to zero. For
this reason, the following alternative writing of this result is more convenient for our purposes.
Lemma 2. Fix constants x > 0 and µ ∈ R. Let Xσ ∼ N(µ, σ2) for all σ > 0. Then

lim
σ→0

σ2 logP(Xσ ≥ µ+ x) = −x
2

2
.

C.2 Properties of the EI Measure

We provide several properties of the function f(x) = xΦ(x) + φ(x). The first establishes monotonic-
ity. Then Lemmas 4 and 5 provide upper and lower bounds for f(·) which help us to compare two EI
values.
Lemma 3. f(x) is positive and increasing on R.

Proof. This is true since f ′(x) = Φ(x) ≥ 0 and limx→−∞ f(x) = 0.

Lemma 4. For x > 0,
f(−x) < φ(−x).

Proof. For x > 0, f(−x) = −xΦ(−x) + φ(−x) < φ(−x).

Lemma 5. For x ≥ 2,

f(−x) >
1

x3
φ(−x).

Proof. Let g(x) = 1
x [f(−x) − 1

x3φ(−x)] = −Φ(−x) + 1
xφ(−x) − 1

x4φ(−x). We have g′(x) =

(−x−2 +x−3 + 4x−5)φ(x) = x−5(−x+ 2)(x2 +x+ 2)φ(x), which implies that g(x) is decreasing
in [2,∞). We notice that g(2) > 0 and limx→∞ g(x) = 0, so for x ≥ 2, g(x) > 0. Therefore, for
x ≥ 2, f(−x) > 1

x3φ(−x).
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C.3 Maximal Inequalities for the Observation Noise

In our theoretical analysis, we need a bound on the difference between the empirical mean µ̂n,i and
the unknown true mean µi for each arm i ∈ A at time n. Recall the definition

W1 = max
n∈N

max
i∈A

√
Tn,i + 1

log(e+ Tn,i)

∣∣∣∣ µ̂n,i − µiσ

∣∣∣∣ .
given in equation (4). The next lemma establishes that the moment generating function forW1 always
exists, which immediately implies bounds on the tails of its distribution function.

To prove this claim, we will use a standard tool in the analysis of bandit algorithms. Imagine
writing code to simulate a sampling rule. One way of writing the code waits to see the action In
selected by TTEI at time n, and then generates the corresponding observation Yn,In ∼ N(µIn , σ

2).
A mathematically equivalent way of simulating the system is to generate a collection of latent
independent random variables (Xn,i)n∈N,i∈A where each Xn,i ∼ N(µi, σ

2). At time n = 0, 1, . . .,
the algorithm selects an arm In, and observes the real valued response XTn,In ,In

. The proof below
works directly with the array of latent variables (Xn,i)n∈N,i∈A, and then deduces implications for
Yn,In from this. The notation for Xn,i is important for this result, but not used again in subsequent
proofs.
Lemma 6. Under any sampling rule, E[eλW1 ] <∞ for all λ > 0.

Proof. Recall that µ̂n,i = T−1
n,i

∑n−1
`=0 1{I` = i}Y`,I` and Tn,i =

∑n−1
`=0 1{I` = i}. We took the

convention that µ̂n,i = 0 when Tn,i = 0, so equation (4) is always well defined. Let (Xn,i)n∈N,i∈A
be a collection of latent independent random variables where each Xn,i ∼ N(µi, σ

2). For all i ∈ A,
we let X̂0,i = 0, and for n ≥ 1, X̂n,i = 1

n

∑n−1
`=0 X`,i denote the empirical mean of arm i before

time n. We will bound

ξ0 , max
n∈N

max
i∈A

√
n+ 1

log(e+ n)

∣∣∣∣∣X̂n,i − µi
σ

∣∣∣∣∣ .
When every arm is played infinitely often, W1 = ξ0. One always has W1 ≤ ξ0, so it is sufficient to
bound E[eλξ0 ]. It is also sufficient to bound E[eλξ] where

ξ , max
n≥1

max
i∈A

√
n+ 1

log(e+ n)

∣∣∣∣∣X̂n,i − µi
σ

∣∣∣∣∣ .
For all n ≥ 1 and i ∈ A, we define Zn,i ,

√
n
(
X̂n,i−µi

σ

)
, and then

ξ = max
n≥1

max
i∈A

√
n+ 1

n log(e+ n)
|Zn,i|.

Each Zn,i ∼ N(0, 1), and thus by Lemma 1, Zn,i satisfies the tail bound P(|Zn,i| ≥ z) ≤ 2e−z
2/2

for z > 0. Therefore, for all x ≥ 2

P (ξ ≥ 2x) = P

(
∃n ≥ 1, i ∈ A : |Zn,i| ≥ 2

√
n log(e+ n)

n+ 1
x

)

≤ k
∞∑
n=1

P

(
|Zn,i| ≥ 2

√
n log(e+ n)

n+ 1
x

)

≤ 2k

∞∑
n=1

exp

(
−2n log(e+ n)

n+ 1
x2

)
(∗)
≤ 2k

∞∑
n=1

exp

(
−2 log(e+ n)− n

n+ 1
x2

)

= 2k

∞∑
n=1

(
1

e+ n

)2

e−
n
n+1x

2

≤ Ce−x
2/2
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where step (∗) uses the ab ≥ a+ b when a, b ≥ 2 and C = 2k
∑∞
n=1(e+ n)−2 <∞ is a constant.

Then for all λ > 0,

E
[
eλξ
]

=

∞∫
x=1

P
(
eλξ ≥ x

)
dx

(∗)
=

∞∫
u=0

P
(
eλξ ≥ e2λu

)
2λe2λudu

= 2λ

2∫
u=0

P (ξ ≥ 2u) e2λudu+ 2λ

∞∫
u=2

P (ξ ≥ 2u) e2λudu

≤ (e4λ − 1) + 2λC

∞∫
u=2

e−u
2/2 · e2λudu <∞

where in step (∗), we have substituted x = e2λu. Hence, for all λ > 0, E
[
eλW1

]
<∞.

This result provides a bound for the difference between the empirical mean of an arm and its true
unknown mean. Specifically, for all i ∈ A and n ∈ N,

|µ̂n,i − µi| ≤ σW1

√
log(e+ Tn,i)

Tn,i + 1
.

C.4 Maximal Inequalities for the Randomness in the Policy

The previous subsection investigates the accuracy of empirical arm means as a function of the number
of times Tn,i it has been sampled. However, since TTEI is a randomized policy, it is often more
natural to study the total probability Ψn,i the algorithm assigns to measuring arm i throughout the
first n measurements. We now consider the random variable

W2 = max
n∈N

max
i∈A

|Tn,i −Ψn,i|√
(1 + Ψn,i/βmin) log (e2 + Ψn,i/βmin)

.

given in equation (5), which captures the maximum relative deviation between Tn,i and Ψn,i. As in
Lemma 7, we show the moment generating function of W2 always exists, which immediately implies
bounds on the tails of the distribution function of W2.

Lemma 7. Under TTEI with parameter β ∈ (0, 1), E[eλW2 ] <∞ for all λ > 0.

Proof. Similar to the proof of Lemma 6, it suffices to show P(W2 ≥ x) ≤ ke−x2/2 for all x ≥ 2.

Fix some i ∈ A. Define for each n ∈ N

Dn , Tn,i −Ψn,i =

n−1∑
`=0

d`

where
dn , 1(In = i)− ψn,i = 1(In = i)− P(In = i|Fn).

Then E[dn|Fn] = 0 and Dn is a zero mean martingale. Note ψn,i ∈ {0, β, 1− β} almost surely, and
set

Xn , 1(ψn,i > 0)

to be the indicator that i is among the top-two at time n. We can see that dn = Xndn, and so

Dn =

n−1∑
`=0

X`d`.

Here {Xn} is a binary valued process and dn is a zero-mean process with increments bounded as
|dn| ≤ 1 almost surely. Each Xn is Fn measureable while each dn is Fn+1 measurable.
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The quadratic variation of Dn is

〈D〉n =

n−1∑
`=0

E[X`d
2
` |F`] =

n−1∑
`=0

X`β(1− β),

so the magnitude of fluctuation of the martingale Dn scales with the number of times that arm i is
among the top-two.

There are a number of martingale analogues to the central limit theorem, which suggest that Dn =

OP

(√
〈D〉n

)
. To establish this formally, we apply the theorem of self-normalized martingale

processes [23], which bound processes like Dn/
√
〈D〉n. We will apply a result established in [1].

Because |dn| ≤ 1, applying Hoeffding’s Lemma implies

E[eλdn |Fn] ≤ eλ
2/2, λ ∈ R

and so dn is 1-sub–Gaussian conditioned on Fn. Applying Corollary 8 of [1] implies that for any
δ > 0, with probability least 1− δ,

|Dn| ≤

√√√√√2

(
1 +

n−1∑
`=0

X`

)
log


√

1 +
∑n−1
`=0 X`

δ

, ∀n ∈ N.

Analogously, for any x ≥ 2 with probability at least 1− e−x2/2,

|Dn| ≤

√√√√√2

(
1 +

n−1∑
`=0

X`

)
log


√

1 +
∑n−1
`=0 X`

e−x2/2


=

√√√√(1 +

n−1∑
`=0

X`

)(
log

(
1 +

n−1∑
`=0

X`

)
+ x2

)

≤

√√√√(1 +

n−1∑
`=0

X`

)(
log

(
e2 +

n−1∑
`=0

X`

)
+ x2

)

≤

√√√√(1 +

n−1∑
`=0

X`

)
log

(
e2 +

n−1∑
`=0

X`

)
x2

for all n ∈ N, where the last step uses that ab ≥ a+ b for a, b ≥ 2. Then for all x ≥ 2

P

max
n∈N

|Dn|√(
1 +

∑n−1
`=0 X`

)
log
(
e2 +

∑n−1
`=0 X`

) ≥ x
 ≤ e−x2/2

Since Ψn,i ≥ βmin

∑n−1
`=0 X`, we have shown that for any i,

P

(
max
n∈N

|Tn,i −Ψn,i|√
(1 + Ψn,i/βmin) log (e2 + Ψn,i/βmin)

≥ x

)
≤ e−x

2/2.

Taking a union bound over i ∈ A implies P(W2 ≥ x) ≤ ke−x2/2 for any x ≥ 2.

This result implies that for all i ∈ A and n ∈ N,

|Tn,i −Ψn,i| ≤W2

√
(1 + Ψn,i/βmin) log (e2 + Ψn,i/βmin).
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C.5 A Random Time after which All Means and Sampling Proportions are Accurate

As defined in equation (3), M ε
β is is a time after which the proportion of samples Tn,i/n of any arm i

is within ε of its ideal proportion wβi . We have also defined

N ε
β = inf

{
N ∈ N : max

i∈A
|µ̂n,i − µi| ≤ ε and max

i∈A
|Tn,i/n− wβi | ≤ ε ∀n ≥ N

}
,

given in equation (6), which is the time after which both the empirical sampling proportion and the
empirical mean of each arm is accurate. These two appear to be closely related: for small ε and
n ≥M ε

β each arm has been sampled Ω(n) times, and so we expect the empirical mean is close to the
true mean at each arm. Based on this intuition, we obtain the following result.

Lemma 8. Let β ∈ (0, 1). Under any sampling rule that satisfies E[M ε
β ] < ∞ for any ε > 0,

E[N ε
β ] <∞ for any ε > 0.

Proof. Fix β ∈ (0, 1). Let cβ = 0.5 mini∈A w
β
i . By definition of M cβ

β , for all n ≥M cβ
β and i ∈ A,

we have Tn,i/n ≥ wβi − cβ ≥ cβ , and thus Tn,i ≥ ncβ .

Given ε > 0. When
Tn,i + 1

log(e+ Tn,i)
≥
(
σW1

ε

)2

,

we have

|µ̂n,i − µi| ≤ σW1

√
log(e+ Tn,i)

Tn,i + 1
≤ ε.

For all n ≥M cβ
β +

[
4 + (σW1/ε)

4
]
/cβ and i ∈ A,

Tn,i ≥ ncβ ≥ 4 + (σW1/ε)
4,

and thus
Tn,i + 1

log(e+ Tn,i)
≥ T 1/2

n,i ≥
(
σW1

ε

)2

where the first inequality uses log(e+ Tn,i) ≤ T 1/2
n,i when Tn,i ≥ 4.

Hence, for n ≥M ε
β +M

cβ
β + [4 + (σW1/ε)

4]/cβ ,

max
i∈A
|Tn,i/n− wβi | ≤ ε and max

i∈A
|µ̂n,i − µi| < ε,

which implies
N ε
β ≤M ε

β +M
cβ
β +

[
4 + (σW1/ε)

4
]
/cβ .

Since E[M ε
β ] for any ε > 0 and by Lemma 6, E[W 4

1 ] <∞, we have E[N ε
β ] <∞ for any ε > 0.

D Proof of Theorem 2

To simplify the presentation, we introduce the following asymptotic notation. We say two real-valued
sequences {an} and {bn} are logarithmically equivalent if

lim
n→∞

1

n
log

(
an
bn

)
= 0.

We denote this relation by an
.
= bn. We can show the following result.

Lemma 9.
1− αn,1

.
= max

i6=1
Pθ∼Πn (θi ≥ θ1) .
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Proof. By definition, αn,1 = Pθ∼Πn (θ1 > maxi6=1 θi), and then

1− αn,1 = Pθ∼Πn (∪i 6=1(θi ≥ θ1)) .

Hence,

max
i 6=1

Pθ∼Πn (θi ≥ θ1) ≤ 1− αn,1 ≤
∑
i 6=1

Pθ∼Πn (θi ≥ θ1) ≤ (k − 1) max
i 6=1

Pθ∼Πn (θi ≥ θ1)

where the second inequality uses the union bound. Using the squeeze theorem, we have

1− αn,1
.
= max

i6=1
Pθ∼Πn (θi ≥ θ1) .

For each sample path, we can divide the set of all arms A into two subsets:

I , {i ∈ A : lim
n→∞

Tn,i =∞} and I , A \ I.

I is the set of arms that receive infinite measurement effort. If I is empty, all arms are sampled
infinite times, and we have the following result.

Lemma 10. If I is empty,

Pθ∼Πn (θi ≥ θ1)
.
= exp

(
−(µ1 − µi)2

2σ2(1/Tn,1 + 1/Tn,i)

)
∀i 6= 1.

Proof. Fix i 6= 1. For θ ∼ Πn, θi − θ1 ∼ N
(
−∆n, σ̃

2
n

)
where we define ∆n = µn,1 − µn,i and

σ̃2
n = σ2

n,i + σ2
n,1 =

1

1/σ2
0,i + Tn,i/σ2

+
1

1/σ2
0,1 + Tn,1/σ2

.

By hypothesis, Tn,i → ∞ and Tn,1 → ∞. This implies ∆n → µ1 − µi and σ̃n → 0. Applying
Lemma 2 shows

Pθ∼Πn (θi ≥ θ1)
.
= exp

(
−∆2

n/2σ̃
2
n

)
.

For any two sequences {an} and {bn}, an
.
= bn if n−1 log(an)− n−1 log(bn)→ 0. We have

∆2
n

2σ̃2
n

=
(µ1 − µi)2

2σ2(1/Tn,1 + 1/Tn,i)
+ o(n)

since Tn,i →∞ and Tn,1 →∞, and therefore

exp
(
−∆2

n/2σ̃
2
n

) .
= exp

(
−(µ1 − µi)2

2σ2(1/Tn,1 + 1/Tn,i)

)
.

Now we are ready to prove the theorem.

Theorem 2 (Posterior Convergence - Sufficient Condition for Optimality). The following properties
hold with probability 1:

1. Under any sampling rule that satisfies Tn,i/n→ w∗i for each i ∈ A,

lim
n→∞

− 1

n
log (1− αn,1) = Γ∗. (7)

Under any sampling rule,

lim sup
n→∞

− 1

n
log(1− αn,1) ≤ Γ∗. (8)
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2. Let β ∈ (0, 1). Under any sampling rule that satisfies Tn,i/n→ wβi for each i ∈ A,

lim
n→∞

− 1

n
log(1− αn,1) = Γ∗β .

Under any sampling rule that satisfies Tn,1/n→ β,

lim sup
n→∞

− 1

n
log(1− αn,1) ≤ Γ∗β .

Proof. We begin by establishing the result in equation (8). Recall I is the set of arms that are sampled
an infinite number of times, and I is its complement. Suppose first that I is nonempty. In this case,
we show limn→∞ αn,1 < 1, which implies (8).

For each i ∈ A, we define
µ∞,i , lim

n→∞
µn,i and σ2

∞,i , lim
n→∞

σ2
n,i,

so for each i ∈ I
µ∞,i = µi and σ2

∞,i = 0,

while for each i ∈ I, σ2
∞,i > 0.

We let
Π∞ , N(µ∞,1, σ

2
∞,1)⊗N(µ∞,2, σ

2
∞,2)⊗ · · · ⊗N(µ∞,k, σ

2
∞,k)

denote the limiting posterior distribution, with the understanding that for each i ∈ I, N(µ∞,i, σ
2
∞,i)

represents a point mass at the true mean µi. For each i ∈ A, we define

α∞,i , Pθ∼Π∞

(
θi > max

j 6=i
θj

)
.

Suppose that I is nonempty. For each i ∈ I, since σ2
∞,i > 0, we have α∞,i > 0, which implies

α∞,1 < 1. Hence,

lim
n→∞

− 1

n
log(1− αn,1) = lim

n→∞
− 1

n
log(1− α∞,1) = 0.

Now suppose that I is empty. By Lemma 10, we have
1− αn,1

.
= max

i 6=1
Pθ∼Πn (θi ≥ θ1)

.
= max

i 6=1

{
exp

(
−(µ1 − µi)2

2σ2(1/Tn,1 + 1/Tn,i)

)}
.
= exp

(
−nmin

i6=1

{
(µ1 − µi)2

2σ2(n/Tn,1 + n/Tn,i)

})
where the second equality uses the property that if for each i = 1, . . . ,m, an,i

.
= bn,i, then

maxi∈{1,...,m} an,i
.
= maxi∈{1,...,m} bn,i.

Let

Σ ,

{
w = (w1, . . . , wk) :

k∑
i=1

wi = 1 and wi ≥ 0,∀i ∈ A

}
denote the set of possible proportions allocated to k arms. Russo [24] showed that

Γ∗ = max
w∈Σ

min
i 6=1

(µ1 − µi)2

2σ2(1/w1 + 1/wi)
,

where the maximizer is w∗.

Under any sampling rule,

1− αn,1
.
= exp

(
−nmin

i6=1

{
(µ1 − µi)2

2σ2(n/Tn,i + n/Tn,1)

})
≥ exp

(
−nmax

w∈Σ
min
i6=1

{
(µ1 − µi)2

2σ2(1/wi + 1/w1)

})
= exp (−nΓ∗) ,
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which implies

lim sup
n→∞

− 1

n
log(1− αn,1) ≤ Γ∗.

This completes the proof of (8).

These same calculations can be leveraged to establish (7). Under any sampling rule that satisfies
Tn,i/n→ w∗i for each i ∈ A,

1− αn,1
.
= exp

(
−nmin

i 6=1

{
(µ1 − µi)2

2σ2(n/Tn,1 + n/Tn,i)

})
.
= exp

(
−nmin

i 6=1

{
(µ1 − µi)2

2σ2(1/w∗1 + 1/w∗i )

})
= exp(−nΓ∗),

and thus
lim sup
n→∞

− 1

n
log(1− αn,i) = Γ∗.

Given β ∈ (0, 1), Russo [24] showed that

Γ∗β = max
w∈Σ:w1=β

min
i 6=1

(µ1 − µi)2

2σ2(1/w1 + 1/wi)
,

where the maximizer is wβ . Repeating the same proof given above with minor changes in notation,
we can show that under any sampling rule that satisfiesTn,i/n→ wβi for each i ∈ A,

lim
n→∞

− 1

n
log(1− αn,1) = Γ∗β ,

and under any sampling rule that satisfies Tn,1/n→ β, we have

lim sup
n→∞

− 1

n
log(1− αn,1) ≤ Γ∗β .

E Proof of Theorem 3

Intuitively speaking, this theorem works because in the Chernoff’s stopping rule, the statistic Zn ≈
Γ∗βn as n is large and the threshold γαn,δ = log(Cnα/δ) = log(1/δ) + o(n), which implies that the
stopping time τδ scales as log(1/δ)/Γ∗β .

We first recall the statement of Theorem 3.
Theorem 3 (Fixed Confidence - Sufficient Condition for Optimality). Let δ, β ∈ (0, 1) and α > 1.
Under any sampling rule which, if applied with no stopping rule, satisfies E[M ε

β ] <∞ for all ε > 0,
using the Chernoff’s stopping rule with the threshold γαn,δ = log(Cnα/δ) (where C = C(α, k))
guarantees

lim sup
δ→0

E[τδ]

log(1/δ)
≤ 1

Γ∗β
.

Our proof appeals to the random time Nβ
ε defined in equation (6) as

Nβ
ε = inf

{
N ∈ N : max

i∈A
|µ̂n,i − µi| ≤ ε and max

i∈A
|Tn,i/n− wβi | ≤ ε ∀n ≥ N

}
.

Lemma 8 shows that our hypothesis E[M ε
β ] <∞ for all ε > 0 implies E[N ε

β ] <∞ for all ε > 0.

The proof relies on a sequence of lemmas. The first shows that when n is large, the statistic Zn used
in the Chernoff’s stopping rule is approximately equal to Γ∗βn.

Lemma 11. Fix any ζ > 0. Under the conditions of Theorem 3, there exists N with E[N ] <∞ such
that for all n ≥ N , Zn ≥ (Γ∗β − ζ)n.
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Proof. Using the formula for KL divergence d(x, y) = (x− y)2/(2σ2),

Zn = min
i∈A\{Î∗n}

Zn,Î∗n,i
= min
i∈A\{Î∗n}

(µ̂n,Î∗n
− µ̂n,i)2

2σ2(1/Tn,Î∗n
+ 1/Tn,i)

.

By the assumption that the true best arm 1 = arg maxi∈A µi is unique, we can choose sufficiently
small ε > 0 such that Î∗n = 1 when maxi∈A |µ̂n,i − µi| ≤ ε. Hence, for n ≥ N ε

β ,

Zn
n

= min
i∈A\{1}

(µ̂n,1 − µ̂n,i)2

2σ2(n/Tn,1 + n/Tn,i)
. (9)

Since µ̂n,1 − µ̂n,i → µ1 − µi and n/Tn,1 + n/Tn,i → 1/β + 1/wβi and the right hand side of
equation (9) is continuous at the limit

Γ∗β =
(µ1 − µ2)2

2σ2
(

1/β + 1/wβ2

) = . . . =
(µ1 − µk)2

2σ2
(

1/β + 1/wβk

) ,
there exists a sufficiently small ε > 0 such that when maxi∈A |µ̂n,i−µi| ≤ ε and maxi∈A |Tn,i/n−
wβi | ≤ ε, Zn/n ≥ Γ∗β − ζ . We set N = N ε

β . Then, Zn ≥ (Γ∗β − ζ)n for all n ≥ N and by Lemma 8,
E[N ] = E[N ε

β ] <∞.

Bounding the first time when Zn > γαn,δ is made more technically challenging by the fact that
the threshold used in the Chernoff’s stopping rule grows logarithmically with n. The next lemma
simplifies the proof by lower bounding Zn − γαn,δ by a term without this logarithmic factor.

Lemma 12. Fix any ζ > 0. Under the conditions of Theorem 3 there exists N with E[N ] <∞ such
that for all n ≥ N , Zn − γαn,δ > (Γ∗β − 2ζ)n− log(C/δ).

Proof. Fix any ζ > 0. There exists a deterministic time N1 such that

γαn,δ = log(C/δ) + α log(n) < log(C/δ) + ζn

for all n ≥ N1. By Lemma 11, there is a random time N2 with E[N2] <∞ such that n ≥ N2 implies
Zn ≥ (Γ∗β − ζ)n. Taking N = N1 +N2 implies the result.

We now complete the proof of Theorem 3.

Proof of Theorem 3. By definition, if Zn−γαn,δ > 0, then τδ ≤ n. Fix any ζ ∈ (0,Γ∗β/2), by Lemma
12, there exists N with E[N ] <∞ such that

Zn − γαn,δ > (Γ∗β − 2ζ)n− log(C/δ)

for all n ≥ N . Therefore

τδ ≤ max

{
N,

log(C/δ)

(Γ∗β − 2ζ)

}
≤ N +

log(C)

(Γ∗β − 2ζ)
+

log(1/δ)

(Γ∗β − 2ζ)
.

Since E[N ] <∞, we find

lim sup
δ→0

E[τδ]

log(1/δ)
≤ 1

(Γ∗β − 2ζ)
.

Since this inequality holds for arbitrarily small ζ > 0, it implies lim supδ→0
E[τδ]

log(1/δ) ≤
1

Γ∗β
.
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F Results specific to TTEI

In this section, we present theoretical results specific to the proposed TTEI policy. The main challenge
is ensuring that E[M ε

β ] is finite where M ε
β is the time after which the empirical proportions are ε-

accurate. To do this, we present several results for each sample path (up to a set of measure zero),
and show that M ε

β depends at most polynomially on W1 and W2. By Lemmas 6 and 7, the expected
value of polynomials of W1 and W2 is finite. This ensures that E[M ε

β ] is finite, which immediately
establishes that TTEI achieves the sufficient conditions for both notions of optimality.

Consistently throughout the proof we make statements like the following: For all ε > 0, there exists
a time N = poly(W1,W2) such that for all n ≥ N , maxi∈A |µn,i − µi| ≤ ε. This means that for
arbitrarily small ε, there is a random time N after which all means are ε–accurate. Certainly N may
depend on ε, as implied by the order in which ε andN are chosen. The expressionN = poly(W1,W2)
means N = O(W c1

1 W c2
2 ) for positive constants c1 and c2 where (ε, σ, k, µ1, . . . , µk, β) are treated

as constants. By Lemmas 6 and 7, this is enough to ensure E[N ] <∞. Throughout the entire proof,
the problem parameters (σ, k, µ1, . . . , µk, β) are fixed. Keeping with the use of n to denote a time
period, we typically use N to denote a random time after which an event occurs. We typically use S
to denote a random number of samples required, such as Tn,i ≥ S =⇒ |µn,i − µi| ≤ ε. We use s
as a related dummy variable.

For notational convenience, we assume that TTEI begins with an improper prior such that for each
arm i ∈ A, σ2

0,i = ∞, and we let each µ0,i = 0. Consequently, if Tn,i =
∑n−1
`=0 1{I` = i} = 0,

µn,i = µ0,i = 0 and σn,i = σ1,i =∞, and if Tn,i > 0,

µn,i =
1

Tn,i

n−1∑
`=0

1{I` = i}Y`,I` and σ2
n,i =

σ2

Tn,i
,

so the posterior parameters are identical to the frequentist sample mean and variance under the
observations collected so far, and thus the arm I∗n of highest posterior mean is identical to the arm Î∗n
of highest empirical mean, i.e. I∗n = Î∗n. The difference between these formulas and those under a
proper prior wash out rapidly as an arm is sampled, but this choice leads to simpler expression in
the proof. In this section, empirical mean and posterior mean are used interchangeably. Under this
improper prior, when Tn,i = 0, σ2

n,i =∞, and we define vn,i =∞ and vn,i,j =∞ for j 6= i. This
is the natural definition, owing to the fact that if Xσ ∼ N(µ, σ2), E[(Xσ − x)+]→∞ as σ →∞.
Indeed, in the limit as the prior variance σ2

0,i →∞, v0,i →∞ and v0,i,j →∞ for j 6= i.

Finally, rather than use the notation vn,i and vn,i,j introduced in Section 3 for the expected-
improvement measures, it is more convenient to work with the notation defined here. Set

v
(1)
n,i , vn,i ∀i ∈ A

to be the expected improvement measure used in identifying the first arm I
(1)
n among the top-two, and

v
(2)
n,i , v

n,i,I
(1)
n

∀i ∈ A

to be the second expected improvement measure used in identifying the best alternative I(2)
n .

F.1 A Technical Lemma

The following technical lemma is used in the analysis of TTEI to compare two EI values.
Lemma 13. Fix constants c0 > c1 > 0 and a0, c2 > 0. Then for any a1, a2 > 0, there exists a
X = poly(a1, a2) such that for all x ≥ X ,

exp (a0x
c0 − a1x

c1) > a2x
c2 .

Proof. There exists X1 = poly(a1) such that for all x ≥ X1, a0x
c0−c1 − a1 > 1. In addition,

there exists X2 = poly(a2) such that for all x ≥ X2, exp (xc1) > a2x
c2 . Hence, for all x ≥ X ,

max{X1, X2},
exp (a0x

c0 − a1x
c1) = exp

(
xc1
(
a0x

c0−c1 − a1

))
≥ exp (xc1) > a2x

c2 .
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F.2 Sufficient Exploration of All Arms and Concentration of Empirical Means

In this subsection, we first show that when n is large, every arm is sampled frequently. Then
the concentration of each empirical mean can be immediately established by the inequality on the
difference between the empirical mean and the unknown true mean in terms of the number of samples.
Proposition 2. There exists N = poly(W1,W2) such that for all n ≥ N ,

Tn,i ≥ (n/k)1/4, ∀i ∈ A.

This proposition is established in a sequence of results. The first one shows the relationship between
the number of samples allocated to the arm I∗n with the largest posterior mean and the top arm I

(1)
n

under TTEI. Notice that these two arms could be identical.
Lemma 14. For arms I∗n and I(1)

n ,
Tn,I∗n ≥ Tn,I(1)n

.

Proof. We prove this by contradiction. Suppose Tn,I∗n < T
n,I

(1)
n

. This implies I∗n 6= I
(1)
n and

σn,I∗n > σ
n,I

(1)
n

. Since f(x) is positive and increasing, we have

v
(1)
n,I∗n

= σn,I∗nf(0) > σ
n,I

(1)
n
f

(
µ
n,I

(1)
n
− µn,I∗n

σ
n,I

(1)
n

)
= v

(1)

n,I
(1)
n

,

which contradicts that I(1)
n has the largest EI value. Therefore, Tn,I∗n ≥ Tn,I(1)n

.

The next result shows that if arm I∗n and some other arm i are sampled sufficiently, then there is some
gap between their empirical means. This result can be used to bound the EI value of arm i from
above.
Lemma 15. There exists S = poly(W1) such that for all s ≥ S, if Tn,I∗n ≥ s and Tn,i ≥ s for some
i 6= I∗n,

µn,I∗n − µn,i ≥ ∆min/2.

Proof. If Tn,I∗n ≥ s, then by Lemma 6,

|µn,I∗n − µI∗n | ≤ σW1

√
log(e+ Tn,I∗n)

Tn,I∗n + 1
≤ σW1

√
log(e+ s)

s+ 1

where the last inequality is valid because g(x) = log(e+ x)/(x+ 1) is positive and decreasing on
(0,∞). There exists S = poly(W1) such that for all s ≥ S,√

log(e+ s)

s+ 1
≤

√
s1/2

s+ 1
≤ ∆min

4σW1
,

which leads to
|µn,I∗n − µI∗n | ≤ ∆min/4.

Similarly, for all s ≥ S, if Tn,i ≥ s for some i 6= I∗n,

|µn,i − µi| ≤ ∆min/4.

Now we want to show that µI∗n > µi. We prove this by contradiction. Suppose µi ≥ µI∗n . This
implies that µi − µI∗n ≥ ∆min since all arm-means are unique. Then we have

µn,i − µn,I∗n ≥ (µi −∆min/4)− (µI∗n + ∆min/4) ≥ ∆min/2,

which contradicts the definition of I∗n. Hence, µI∗n > µi, and thus

µn,I∗n − µn,i ≥ (µI∗n −∆min/4)− (µi + ∆min/4) ≥ ∆min/2.
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The next result shows that under a mild condition, if arm I
(1)
n has been sampled sufficiently, then

I
(1)
n = I∗n, the arm with the highest posterior mean. Note that by Lemma 14, I∗n has been sampled

at least as many times as I(1)
n . The mild condition of this proof ensures that the number of samples

of I∗n is not an exponential factor larger than the number of samples of I(1)
n , which could lead to a

contradiction if I(1)
n 6= I∗n.

Lemma 16. There exists S = poly(W1) such that for all s ≥ S, when n ≤ exp(∆2
mins/(4σ

2)), if
T
n,I

(1)
n
≥ s, then I(1)

n = I∗n.

Proof. T
n,I

(1)
n
≥ s is equivalent to I(1)

n ∈ V sn . By Lemma 14, Tn,I∗n ≥ T
n,I

(1)
n
≥ s, which means

I∗n ∈ V sn . We notice that if v(1)
n,I∗n

> v
(1)
n,i for all i ∈ V sn \ {I∗n}, then I(1)

n = I∗n.

By Lemma 15, there exists S = poly(W1) such that for all s ≥ S, µn,I∗n − µn,i ≥ ∆min/2 for each
i ∈ V sn \ {I∗n}, and thus

v
(1)
n,i = σn,if

(
µn,i − µn,I∗n

σn,i

)
≤ σ

s1/2
f

(
−∆mins

1/2

2σ

)
<

σ√
2πs1/2

exp

(
−∆2

mins

8σ2

)
where the last inequality uses Lemma 4. When n ≤ exp(∆2

mins/(4σ
2)),

v
(1)
n,I∗n

= σn,I∗nf(0) ≥ σ√
2πn1/2

≥ σ√
2πs1/2

exp

(
−∆2

mins

8σ2

)
> v

(1)
n,i .

This concludes the proof.

Now we need to introduce some further notations. Given s ≥ 0, we define two sets for all n ∈ N:
Usn , {i ∈ A : Tn,i < s1/2}

and
V sn , {i ∈ A : Tn,i < s}.

We let Usn , A \ Usn and V sn , A \ V sn . It is easy to see the following properties:

1. Usn ⊆ V sn .
2. Usn+1 ⊆ Usn and V sn+1 ⊆ V sn .

With these defined sets, we can divide all arms into three sets: Usn, Usn \ V sn and V sn . We can view Usn
and V sn as the set of arms that are not well explored and the set of arms that are well explored. Then
we will show that under some condition, if there exists some arm that is not well explored, then it
cannot happen that TTEI measures two arms I(1)

n and I(2)
n that are both well explored.

Lemma 17. There exists S = poly(W1) such that for all s ≥ S, when n ≤ exp(∆2
mins/(4σ

2)), if
Usn is nonempty, I(1)

n ∈ V sn or I(2)
n ∈ V sn .

Proof. We want to argue that if I(1)
n /∈ V sn , there exists some arm j such that v(2)

n,j > v
(2)
n,i for

all i ∈ V sn , which implies I(2)
n /∈ V sn , and thus I(2)

n ∈ V sn . By Lemmas 16 and 15, there exists
S1 = poly(W1) such that for all s ≥ S1, when n ≤ exp(∆2

mins/(4σ
2)), I(1)

n = I∗n ∈ V sn , and for
each i ∈ V sn \ {I

(1)
n }, µn,I(1)n

− µn,i ≥ ∆min/2.

Notice that by definition, v(2)

n,I
(1)
n

= 0. For each i ∈ V sn \ {I
(1)
n }, we have

σ2
n,i + σ2

n,I
(1)
n

=
σ2

Tn,i
+

σ2

T
n,I

(1)
n

≤ σ2

s
+
σ2

s
<

4σ2

s
,

which leads to

v
(2)
n,i =

√
σ2
n,i + σ2

n,I
(1)
n

f

 µn,i − µn,I(1)n√
σ2
n,i + σ2

n,I
(1)
n

 <
2σ

s1/2
f

(
−∆mins

1/2

4σ

)
<

2σ

s1/2
φ

(
−∆mins

1/2

4σ

)
(10)
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where the last inequality uses Lemma 4.

For any j ∈ Usn (which is possible since Usn is nonempty), we have

µn,j − µn,I(1)n
≥µj − σW1

√
log(e+ Tn,j)

Tn,j + 1
− µ

I
(1)
n
− σW1

√√√√ log
(
e+ T

n,I
(1)
n

)
T
n,I

(1)
n

+ 1

≥
(
µj − µI(1)n

)
− 2σW1

√
log(e)

1

=
(
µj − µI(1)n

)
− 2σW1

≥−∆max − 2σW1

where ∆max = maxi,j∈A(µi − µj), and the first inequality uses Lemma 6, and the second inequality
is valid because g(x) = log(e+ x)/(x+ 1) is positive and decreasing on (0,∞). In addition,

σ2
n,j + σ2

n,I
(1)
n
≥ σ2

n,j =
σ2

Tn,j
>

σ2

s1/2
.

which leads to

v
(2)
n,j >

σ

s1/4
f

(
−(∆max + 2σW1)s1/4

σ

)
.

For all s ≥ S2 , (2σ/∆max)4, we have

(∆max + 2σW1)s1/4

σ
>

∆maxs
1/4

σ
≥ 2,

and then by Lemma 5,

v
(2)
n,j >

σ

s1/4
f

(
−(∆max + 2σW1)s1/4

σ

)
>

σ4

s(∆max + 2σW1)3
φ

(
−(∆max + 2σW1)s1/4

σ

)
.

(11)
By Lemma 13, there exists S3 = poly(W1) such that for all s ≥ S3, the right hand side of inequality
(11) is larger than the right hand side of inequality (10), which implies I(2)

n /∈ V sn , and thus I(2)
n ∈ V sn .

Therefore, for s ≥ S , max{S1, S2, S3}, when n ≤ exp(∆2
mins/(4σ

2)), if Usn is nonempty
I

(1)
n ∈ V sn or I(2)

n ∈ V sn .

With the above lemma, we are ready to show that when n is large, the set Usn of arms that are not
well explored is indeed empty.

Lemma 18. There exists S = poly(W1,W2) such that for all s ≥ S, Usbks2c is empty.

Proof. For notational convenience, we assume bks2c = ks2.

When s is large, ks2 ≤ exp(∆2
mins/(4σ

2)). Then Lemma 17 implies that there exists S1 = poly(W1)

such that for all s ≥ S1, when n ≤ ks2, if Usn is nonempty, then I(1)
n ∈ V sn or I(2)

n ∈ V sn . There
exists S2 = poly(W2) such that for all s ≥ S2,

s2 ≥ ks and βmins
2 − 2kW2

√
(1 + ks2/βmin) log(e2 + ks2/βmin) ≥ ks

where βmin = min{β, 1− β} > 0. The reason to construct the above two inequalities becomes clear
in the following analysis.

We consider s ≥ S , max{S1, S2}, and prove the statement by contradiction. Suppose Usks2 is
nonempty. Then Us0 ⊇ Us1 ⊇ . . . ⊇ Usks2−1 ⊇ Usks2 are all nonempty. Since Usn ⊆ V sn for all
n ∈ N, then we V s0 ⊇ V s1 ⊇ . . . ⊇ V sks2−1 ⊇ V sks2 are all nonempty. Since s2 ≥ ks, at least one
arm is measured at least s times before time s2, and thus

∣∣V ss2∣∣ ≤ k − 1. Then we want to show
that for each r = 2, 3, . . . , k, at least one arm in V s(r−1)s2 is measured at least s times in periods
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[
(r − 1)s2, rs2 − 1

]
. For each ` ∈

[
(r − 1)s2, rs2 − 1

]
, since Us` is nonempty, by Lemma 17, we

have I(1)
` ∈ V s` or I(2)

` ∈ V s` , and thus∑
i∈V s`

ψ`,i =
∑
i∈V s`

P(I` = i|F`) ≥ βmin,

which leads to ∑
i∈V s

(r−1)s2

ψ`,i ≥
∑
i∈V s`

ψ`,i ≥ βmin

where we use V s(r−1)s2 ⊇ V
s
` . Hence, we have

∑
i∈V s

(r−1)s2

(
Ψrs2,i −Ψ(r−1)s2,i

)
=

rs2−1∑
`=(r−1)s2

∑
i∈V s

(r−1)s2

ψ`,i ≥ βmins
2.

Then by Lemma 7, we have∑
i∈V s

(r−1)s2

(
Trs2,i − T(r−1)s2,i

)
≥

∑
i∈V s

(r−1)s2

[
Ψrs2,i −W2

√
(1 + Ψrs2,i/βmin) log(e2 + Ψrs2,i/βmin)

]

−
∑

i∈V s
(r−1)s2

[
Ψ(r−1)s2,i +W2

√
(1 + Ψ(r−1)s2,i/βmin) log(e2 + Ψ(r−1)s2,i/βmin)

]
≥ βmins

2 − 2kW2

√
(1 + ks2/βmin) log(e2 + ks2/βmin)

≥ ks

where the second inequality uses
∣∣∣V s(r−1)s2

∣∣∣ ≤ k and Ψ(r−1)s2,i ≤ Ψrs2,i ≤ Ψks2,i ≤ ks2 for
any i ∈ A. Hence, for each r = 2, 3, . . . , k, at least one arm in V s(r−1)s2 is sampled at least s

times in periods
[
(r − 1)s2, rs2 − 1

]
, which implies

∣∣V srs2∣∣ ≤ ∣∣∣V s(r−1)s2

∣∣∣− 1. Since
∣∣V ss2 ∣∣ ≤ k − 1,

by induction, we have
∣∣V srs2∣∣ ≤ k − r for each r = 1, 2, . . . , k. Hence,

∣∣V sks2∣∣ = 0, i.e. V sks2 is
empty. Since Usks2 ⊆ V sks2 , Usks2 is empty, which contradicts the supposition that Usks2 is nonempty.
Therefore, for all s ≥ S, Usks2 is empty.

Now we can complete the proof of Proposition 2.

Proof of Proposition 2. By Lemma 18, there exists S such that for all s ≥ S, Usbks2c is empty. Then

for all n ≥ N , kS2, we have
√
n/k ≥ S, and thus U

√
n/k

n is empty, which means

Tn,i ≥
(√

n/k
)1/2

= (n/k)1/4, ∀i ∈ A.

We have proved that when n is large, each arm is explored sufficiently often. Then using the bound
on the difference between the empirical mean µn,i and the unknown true mean µi in terms of Tn,i,
we can formally show the concentration of µn,i to µi.
Proposition 3. Fix a constant ε > 0. There exists N = poly(W1,W2) such that for all n ≥ N ,

|µn,i − µi| ≤ ε, ∀i ∈ A.

Proof. By Lemma 6, for all i ∈ A and n ∈ N,

|µn,i − µi| ≤ σW1

√
log(e+ Tn,i)

Tn,i + 1
.
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By Proposition 2, there exists N1 = poly(W1,W2) such that for all n ≥ N1, for all i ∈ A,
Tn,i ≥ (n/k)1/4 , and thus

|µn,i − µi| ≤ σW1

√
log(e+ Tn,i)

Tn,i + 1
≤ σW1

√
log(e+ (n/k)1/4)

(n/k)1/4 + 1

where the last inequality uses g(x) = log(e+x)/(x+ 1) is positive and decreasing on (0,∞). There
exists N2 = poly(W1) such that for all n ≥ N2,√

log(e+ (n/k)1/2)

(n/k)1/2 + 1
≤

√
2(n/k)1/4

(n/k)1/2 + 1
≤ ε

σW1
.

Then for all n ≥ N , max{N1, N2}, we have

|µn,i − µi| ≤ σW1
ε

σW1
= ε, ∀i ∈ A.

Notice that the unknown arm-means are unique, so µ1 > µ2 . . . > µk. Using Proposition 3 on
sufficiently small ε > 0, we can show that when n is large, the empirical means are so accurate that
µn,1 > µn,2 . . . > µn,k, which means that the arm with the largest posterior mean I∗n is arm 1.

F.3 Tracking the Optimal Asymptotic Proportion allocated to the Best Arm

In this subsection, we show that when the number of arm draws goes large, the empirical proportion
allocated to the best arm concentrates to the tuning parameter β used in TTEI. To prove this, we will
first show that when n is large, the arm with the largest EI value I(1)

n is always arm 1.

Lemma 19. There exists N = poly(W1,W2) such that for all n ≥ N , I(1)
n = I∗n = 1.

Proof. Using Proposition 3 on ε = ∆min/4 (where ∆min = mini 6=j |µi − µj | > 0), there exists
N1 = poly(W1,W2) such that for all n ≥ N1,

|µn,i − µi| ≤ ∆min/4, ∀i ∈ A,

which implies µn,1 > µn,2 > . . . > µn,k, and thus I∗n = 1. Then for i 6= I∗n, we have

µn,I∗n − µn,i = µn,1 − µn,i
≥ µ1 −∆min/4− µi −∆min/4

= (µ1 − µi)−∆min/2

≥ ∆min/2.

By Proposition 2, there exists N2 = poly(W1,W2) such that for all n ≥ N2, Tn,i ≥ (n/k)1/4 for all
i ∈ A. Hence, for all n ≥ max{N1, N2}, for each i 6= I∗n, we have

v
(1)
n,i = σn,if

(
µn,i − µn,I∗n

σn,i

)
≤ σk1/8

n1/8
f

(
−∆minn

1/8

2σk1/8

)
<
σk1/8

n1/8
φ

(
−∆minn

1/8

2σk1/8

)
(12)

where the last inequalities uses Lemma 4. For arm I∗n, we have

v
(1)
n,I∗n

= σn,I∗nf(0) =
σ√
Tn,I∗n

φ(0) ≥ σ

n1/2
φ(0) (13)

There exists a deterministic N3 such that for all n ≥ N3, the right hand side of inequality (13) is
larger than the right hand side of inequality (12). Therefore, for all n ≥ N , max{N1, N2, N3},
v

(1)
n,I∗n

> v
(1)
n,i for all i 6= I∗n, which leads to I(1)

n = I∗n = 1.

This lemma immediately implies that when n is large, ψn,1 = P(In = 1|Fn) = β, and then we can
show the concentration of Ψn,i/n =

∑n−1
`=0 ψ`,i/n to β.
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Lemma 20. Fix a constant ε > 0. There exists N = poly(W1,W2) such that for all n ≥ N ,∣∣∣∣Ψn,1

n
− β

∣∣∣∣ ≤ ε.
Proof. By Lemma 19, there exists N1 = poly(W1,W2) such that for all n ≥ N1, we have I(1)

n = 1,
which leads to ψn,1 = P(In = 1|Fn) = β. Then for n ≥ N1,

Ψn,1

n
=

1

n

(
N1−1∑
`=0

ψ`,1 +

n−1∑
`=N1

ψ`,1

)

≤ 1

n
[βmaxN1 + β(n−N1)]

=β +
(βmax − β)N3

n
where βmax = max{β, 1− β}, and

Ψn,1

n
=

1

n

(
N1−1∑
`=0

ψ`,1 +

n−1∑
`=N1

ψ`,1

)

≥ 1

n
β(n−N1)

=β − βN1

n
.

For all n ≥ N2 , βmaxN1/ε, we have (βmax − β)N1/n < ε and −βN1/n ≥ −ε. Therefore, for all
n ≥ N , max{N1, N2}, we have |Ψn,1/n− β| ≤ ε.

With this result and Lemma 7 which shows that Tn,i/Ψn,i is close to 1 when Ψn,i is large, we are
ready to show the conconetration of Tn,1/n to β.
Lemma 21. Fix a constant ε > 0. There exists N = poly(W1,W2) such that for all n ≥ N ,∣∣∣∣Tn,1n − β

∣∣∣∣ ≤ ε.
Proof. It suffices to prove this only for fixed ε ∈ (0, β] since if ε > β, we can letN be the satisfactory
one associated with the constant β. By Lemma 20, there exists N1 = poly(W1,W2) such that for all
n ≥ N1, |Ψn,1/n− β| ≤ ε/2, which implies Ψn,1 ≥ (β − ε/2)n ≥ βn/2. By Lemma 7,

|Tn,1 −Ψn,1| ≤W2

√
(1 + Ψn,i/βmin) log (e2 + Ψn,1/βmin)

If Ψn,1 ≥ βmin, we have 1 + Ψn,i/βmin ≤ 3Ψn,i/βmin and log
(
e2 + Ψn,i/βmin

)
≤

3(Ψn,i/βmin)1/2, which leads to

|Tn,i −Ψn,i| ≤ 3W2(Ψn,i/βmin)3/4 ≤ 3W2

βmin
Ψ

3/4
n,i .

Then for all n ≥ N2 , max{N1, 2βmin/β}, we have Ψn,1 ≥ βn/2 ≥ βmin, and thus∣∣∣∣ Tn,1Ψn,1
− 1

∣∣∣∣ ≤ 3W2/βmin

Ψ
1/4
n,i

≤ 3W2/βmin

(βn/2)1/4
(14)

where the second inequality uses Ψn,1 ≥ βn/2. There exists N3 = poly(W2) such that for all
n ≥ N3, the right hand side of inequality (14) is less than ε/(2β + ε). Hence, for all n ≥ N ,
max{N2, N3}, we have |Ψn,1/n− β| ≤ ε/2 and |Tn,1/Ψn,1 − 1| < ε/(2β + ε), and thus

Tn,1
n

<

(
1 +

ε

2β + ε

)
Ψn,1

n
≤ 2(β + ε)

2β + ε
(β + ε/2) = β + ε

and
Tn,1
n

<

(
1− ε

2β + ε

)
Ψn,1

n
≥ 2β

2β + ε
(β − ε/2) > β − ε,

which leads to |Tn,1/n− β| ≤ ε.
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F.4 Tracking the Optimal Asymptotic Proportions Allocated to Each Arm

We can further show that for each arm, the empirical proportion allocated to it concentrates to the
optimal asymptotic proportion when the number of arm draws goes large.
Proposition 4. Fix a constant ε > 0. There exists N = poly(W1,W2) such that for all n ≥ N ,∣∣∣∣Tn,in − wβi

∣∣∣∣ ≤ ε, ∀i ∈ A.

This proposition is established in a sequence of results. We first introduce some further notations. For
all n ∈ N, we define the under-sampled set:

Pn ,

{
i 6= 1 :

Tn,i
n
− wβi < 0

}
,

where
(
wβ2 , . . . , w

β
k

)
, defined in equation (2) in Section 4, are the optimal asymptotic proportions of

effort allocated to each suboptimal arms. In addition, given ε > 0, we define the over-sampled set for
all n ∈ N:

Oεn ,

{
i 6= 1 :

Tn,i
n
− wβi > ε

}
.

We have shown that when n is large, the empirical proportion allocated to the best arm is accurate,
then intuitively speaking, if there is an suboptimal arm that is over-sampled, there should be an
suboptimal arm that is under-sampled. Specifically, we have the following result.
Lemma 22. Fix a constant ε > 0. There exists N = poly(W1,W2) such that for all n ≥ N , if Oεn is
nonempty, then Pn is nonempty.

Proof. By Lemma 21, there exists N = poly(W1,W2) such that for all n ≥ N , |Tn,1/n− β| ≤ ε,
which implies Tn,1 ≥ β − ε. Then we prove this by contradiction. Suppose Pn is empty. For all
i 6= 1, we have Tn,i/n ≥ wβi . Since Oεn is nonempty, there exists j 6= 1 such that Tn,j/n > wβj + ε.
Then we have ∑

i∈A
Tn,i/n = Tn,1/n+ Tn,j/n+

∑
i 6=1,j

Tn,i/n

> β − ε+ wβj + ε+
∑
i 6=1,j

wβi

=
∑
i∈A

wβi = 1,

which leads to a contradiction. Hence, Pn is nonempty.

Next we will show that when n is large, the best alternative I(2)
n is not from the over-sampled set, or

equivalently, for any arm i that is over-sampled, it could not be the best alternative I(2)
n .

Lemma 23. Fix a constant ε > 0. There exists N = poly(W1,W2) such that for all n ≥ N ,
I

(2)
n /∈ Oεn.

Proof. We want to argue that when n is sufficiently large, if Oεn is nonempty, there exists some
arm j such that v(2)

n,j > v
(2)
n,i for all i ∈ Oεn, which implies I(2)

n /∈ Oεn. By Lemma 19, there exists

N1 = poly(W1,W2) such that for n ≥ N2, I(1)
n = I∗n = 1. Then for i 6= 1,

v
(2)
n,i =

√
σ2
n,i + σ2

n,1f

 µn,i − µn,1√
σ2
n,i + σ2

n,1

 .

where α2
n,i = σ2/Tn,i and α2

n,1 = σ2/Tn,1. By Lemma 22, there exists N2 = poly(W1,W2) such
that for all n ≥ N1, if Oεn is nonempty, Pn is nonempty. We will show that when n is sufficiently
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large, for all i ∈ Oεn and j ∈ Pn, v(2)
n,j > v

(2)
n,i . By Proposition 3 and Lemma 21, for any ζ > 0, there

exists N3 = poly(W1,W2) (that depends on ζ) such that for all n ≥ N3, |µn,i − µi| < ζ for each
i ∈ A and |Tn,1/n − β| ≤ ζ. We let ζ be sufficiently small such that Tn,1 ≥ (β − ζ)n > 0 and
µn,i − µn,1 ≤ µi − µ1 + 2ζ < 0 for each i 6= 1. Then for i ∈ Oεn, we have Tn,i > (wβi + ε)n, and
thus

v
(2)
n,i < σ

(
1

wβi + ε
+

1

β − ζ

)1/2

n−1/2φ

 (µi − µ1 + 2ζ)n1/2

σ
[
1/(wβi + ε) + 1/(β − ζ)

]1/2


where Lemma 4 is used. For j ∈ Pn, we have Tn,j < wβj n, and thus

v
(2)
n,j > σ

(
1

wβj
+

1

β + ζ

)1/2

n−1/2f

 (µj − µ1 − 2ζ)n1/2

σ
[
1/wβj + 1/(β + ζ)

]1/2


> σ4

(
1

wβj
+

1

β + ζ

)2

(−µj + µ1 + 2ζ)−3n−2φ

 (µj − µ1 − 2ζ)n1/2

σ
[
1/wβj + 1/(β + ζ)

]1/2


where Lemma 5 is used in the last inequality for all n ≥ N4 such that the value taken by f is less
than −2.

Now we need to define some further notations to compare the above two EI values. For any i, j 6= 1,
as x→ 0,

gi,j(x) ,
(µi − µ1 + 2x)2

1/(wβi + ε) + 1/(β − x)
− (µj − µ1 − 2x)2

1/wβj + 1/(β + x)

is continuous at the limit

Ci,j ,
(µi − µ1)2

1/(wβi + ε) + 1/β
− (µj − µ1)2

1/wβj + 1/β
,

where ε > 0 is fixed, and we let
Cmin , min

i,j 6=1
Ci,j .

Since
(µ2 − µ1)2

1/wβ2 + 1/β
= . . . =

(µk − µ1)2

1/wβk + 1/β
,

we have Ci,j > 0 for any i, j 6= 1, and thus Cmin > 0. Clearly, there exists sufficiently small x̃ > 0
such that for any i, j 6= 1,

gi,j(ζ) ≥ Cmin/2,

and we let ζ = x̃. Next we define

Di,j ,
σ3
[
1/wβj + 1/(β + ζ)

]2
(−µj + µ1 + 2ζ)−3[

1/(wβi + ε) + 1/(β − ζ)
]1/2

for any i, j 6= 1, and we let
Dmin , min

i,j 6=1
Di,j .

With these notations, we know that for all n ≥ N5 , max{N1, N2, N3, N4}, for all i ∈ Oεn and
j ∈ Pn,

v
(2)
n,j

v
(2)
n,i

> Di,jn
−3/2 exp

(
Cminn

4σ2

)
≥ Dminn

−3/2 exp

(
Cminn

4σ2

)
. (15)

There exists N6 such that for all n ≥ N6, the right hand side of inequality (15) is greater than 1,
which is v(2)

n,j > v
(2)
n,i . There, for n ≥ N , max{N5, N6}, v(2)

n,j > v
(2)
n,i for all i ∈ Oεn and j ∈ Pn,

which implies I(2)
n /∈ Oεn.
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The above result and Lemma 19 together shows that when n is large, for any arm i 6= 1 that is
over-sampled, I(2)

n 6= i and I(1)
n = 1 6= i, which means that arm i is not sampled at time n. Next we

are going to show that indeed, there is no over-sampled arm when n is sufficiently large.
Lemma 24. Fix a constant ε > 0. There exists N = poly(W1,W2) such that for all n ≥ N , Oεn is
empty.

Proof. By Lemma 19, there exists N1 such that for all n ≥ N1, I(1)
n = 1. By Lemma 23, there

exists N2 = poly(W1,W2) such that for all n ≥ N2, if Oε/2n is nonempty, then I(2)
n /∈ Oε/2n . Let

M , max{N1, N2, 2/ε}. Without loss of generality, we assume M ∈ N for notational convenience.

For any i /∈ Oε/2M such that i 6= 1, we want to prove by induction that for all n ≥M , Tn,i/n−wβi ≤ ε,
i.e. i /∈ Oεn. By definition, TM,i/M − wβi ≤ ε/2 < ε. Suppose that for a fixed n ≥ M ,
Tn,i/n − wβi ≤ ε. We want to show that Tn+1,i/(n + 1) − wβi ≤ ε. There are two situations. If
Tn,i/n− wβi ≤ ε/2, then

Tn+1,i

n+ 1
− wβi <

1 + Tn,i
n

− wβi ≤ 1/n+ ε/2 ≤ ε

where the last inequality uses n ≥M ≥ 2/ε. On the other hand, if ε/2 < Tn,i/n− wβi ≤ ε, then by
Lemma 23, I(2)

n 6= i, and we also have I(1)
n = 1 6= i. Hence,

Tn+1,i

n+ 1
− wβi =

Tn,i
n+ 1

− wβi ≤
Tn,i
n
− wβi ≤ ε.

Combining these two situation, we have Tn+1,i/(n+ 1)− wβi ≤ ε. Therefore, by induction, for all
n ≥M , Tn,i/n− wβi ≤ ε, i.e. i /∈ Oεn.

For any i ∈ Oε/2M , if we can find Mi ≥M such that i /∈ Oε/2Mi
is empty, then same as the proof above,

we can show that for all n ≥Mi, Tn,i/n−wβi ≤ ε, i.e. i /∈ Oεn. By definition, TM,i/M −wβi > ε/2.
Notice that for all n ≥M , I(1)

n = 1 6= i and by Lemma 23, if Tn,i/n− wβi > ε/2, I(2)
n 6= i. Hence,

arm i is not sampled until the empirical proportion allocated to it is less than or equal to wβi + ε/2.
There exists Mi such that for all n ∈ [M,Mi − 1],

Tn,i
n
− wβi =

TM,i

n
− wβi > ε/2

and
TMi,i

Mi
− wβi ≤ ε/2,

which is i /∈ Oε/2Mi
. Hence, for all n ≥Mi, i /∈ Oεn.

Let N = M/minj∈A w
β
j . Without loss of generality, we assume N ∈ N for notational convenience.

Now we want to prove that each Mi ≤ N . Suppose Mi ≥ N + 1. Then N ∈ [M,Mi − 1], so

TN,i
N
− wβi =

TM,i

N
− wβi > ε/2

However, we also have

TN,i
N
− wβi =

TM,i

N
− wβi ≤

M

N
− wβi = min

j∈A
wβj − wi ≤ 0,

which leads to a contradiction. Hence, Mi ≤ N .

Since M = poly(W1,W2), N = M/minj∈A w
β
j = poly(W1,W2), and for all n ≥ N , i /∈ Oεn for

all i 6= 1, which means Oεn is empty.

We can further show that when n is large, the under-sampled set is also empty, which immediately
establishes Proposition 4.
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Proof of Proposition 4. By Lemmas 21 and 24, there exists N = poly(W1,W2) such that for all
n ≥ N ,

|Tn,1/n− wβ1 | ≤ ε/k and Tn,i/n− wβi ≤ ε/k, ∀i 6= 1

where wβ1 = β. Suppose there exists j ∈ A such that Tn,j/n− wβj < −ε. Then∑
i∈A

Tn,i/n = Tn,j/n+
∑
i6=j

Tn,i/n

< wβj − ε+
∑
i 6=i′

(wβi + ε/k)

=
∑
i∈A

wβi − ε/k = 1− ε/k,

which contradicts
∑
i∈A Tn,i/n = 1. Hence, for all n ≥ N , we also have

Tn,i/n− wβi ≥ −ε, ∀i ∈ A.

This concludes the proof.

F.5 Proof of Theorem 1

Based on Proposition 4, Theorem 1 can be immediately established.
Theorem 1. Under TTEI with parameter β ∈ (0, 1), E[M ε

β ] <∞ for any ε > 0.

Proof. For any ε > 0,

M ε
β = inf

{
N ∈ N : max

i∈A
|Tn,i/n− wβi | ≤ ε ∀n ≥ N

}
.

By Proposition 4, there exists N = poly(W1,W2) such that for all n ≥ N , maxi∈A |Tn,i/n−wβi | ≤
ε, which implies M ε

β ≤ N . By Lemmas 6 and 7, we have E[eλW1] <∞ and E[eλW2] <∞ for all
λ > 0, which implies E[poly(W1,W2)] <∞. Therefore, E[M ε

β ] ≤ E[N ] <∞.
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