
A Proof of Lemma 1

Just like Russo and Zou [3], we exploit the Donsker–Varadhan variational representation of the
relative entropy [20, Corollary 4.15]: for any two probability measures ⇡, ⇢ on a common measurable
space (⌦,F),

D(⇡k⇢) = sup

F

⇢Z

⌦

F d⇡ � log

Z

⌦

eFd⇢

�
, (A.1)

where the supremum is over all measurable functions F : ⌦ ! R, such that eF 2 L1

(⇢). From
(A.1), we know that for any � 2 R,

D(PX,Y kPX ⌦ PY ) � E[�f(X,Y )]� logE
⇥
e�f(

¯X, ¯Y )

⇤

� �
�
E[f(X,Y )]� E[f( ¯X, ¯Y )]

�
� �2�2

2

, (A.2)

where the second step follows from the subgaussian assumption on f( ¯X, ¯Y ):

logE
⇥
e�(f(

¯X, ¯Y )�E[f( ¯X, ¯Y )])

⇤
 �2�2

2

8� 2 R.

Inequality (A.2) gives a nonnegative parabola in �, whose discriminant must be nonpositive, which
implies

��E[f(X,Y )]� E[f( ¯X, ¯Y )]

�� 
q
2�2D(PX,Y kPX ⌦ PY ).

The result follows by noting that I(X;Y ) = D(PX,Y kPX ⌦ PY ).

B Proof of Theorem 3

To prove Theorem 3, we need the following two lemmas.
Lemma B.1. Consider the parallel execution of m independent copies of PW |S on independent
datasets S

1

, . . . , Sm: for t = 1, . . . ,m, an independent copy of PW |S takes St ⇠ µ⌦n as input and
outputs Wt. Define Sm , (S

1

, . . . , Sm). If under µ, PW |S satisfies that I(⇤W(S);W )  ", then the
overall algorithm PWm|Sm satisfies I(⇤W(S

1

), . . . ,⇤W(Sm);Wm
)  m".

Proof. The proof is based on the independence among (St,Wt), t = 1, . . . ,m, and the chain rule of
mutual information.

Lemma B.2. Let Sm , (S
1

, . . . , Sm), where St ⇠ µ⌦n. If an algorithm PW,T,R|Sm
: Zm⇥n !

W ⇥ [m]⇥ {±1} satisfies I(⇤W(S
1

), . . . ,⇤W(Sm);W,T,R)  ", and if `(w,Z) is �-subgaussian
for all w 2 W, then

E
⇥
R(LST (W )� Lµ(W ))

⇤

r

2�2"

n
.

Proof. The proof is based on Lemma 1. Let X = (⇤W(S
1

), . . . ,⇤W(Sm)), Y = (W,T,R), and

f
�
(⇤W(s

1

), . . . ,⇤W(sm)), (w, t, r)
�
= rLst(w).

If `(w,Z) is �-subgaussian under Z ⇠ µ for all w 2 W, then r
n

Pn
i=1

`(w,Zt,i) is �/
p
n-

subgaussian for all w 2 W, t 2 [m] and r 2 {±1}, and hence f( ¯X, ¯Y ) is �/
p
n-subgaussian.

Lemma 1 implies that

E[RLST (W )]� E[RLµ(W )] 
r

2�2I(⇤W(S
1

), . . . ,⇤W(Sm);W,T,R)

n

and proves the claim.

Note that the upper bound in Lemma B.2 does not depend on m. With these lemmas, we can prove
Theorem 3.
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Proof of Theorem 3. The proof is an adaptation of a “monitor technique” proposed by Bassily
et al. [6]. First, let PWm|Sm be the parallel execution of m independent copies of PW |S : for
t = 1, . . . ,m, an independent copy of PW |S takes an independent St ⇠ µ⌦n as input and outputs
Wt. Given Sm and Wm, let the output of the “monitor” be a sample (W ⇤, T ⇤, R⇤

) drawn from
W ⇥ [m]⇥ {±1} according to

(T ⇤, R⇤
) = argmax

t2[m], r2{±1}
r
�
Lµ(Wt)� LSt(Wt)

�
and W ⇤

= WT⇤ . (B.3)

This gives

R⇤�Lµ(W
⇤
)� LST⇤ (W

⇤
)

�
= max

t2[m]

��Lµ(Wt)� LSt(Wt)
��.

Taking expectation on both sides, we have

E
⇥
R⇤�Lµ(W

⇤
)� LST⇤ (W

⇤
)

�⇤
= E

h
max

t2[m]

��Lµ(Wt)� LSt(Wt)
��
i
. (B.4)

Note that conditional on Wm, the tuple (W ⇤, T ⇤, R⇤
) can take only 2m values, which means that

I(⇤W(S
1

), . . . ,⇤W(Sm);W ⇤, T ⇤, R⇤|Wm
)  log(2m). (B.5)

In addition, since PW |S is assumed to satisfy I(⇤W(S);W )  ", Lemma B.1 implies that

I(⇤W(S
1

), . . . ,⇤W(Sm);Wm
)  m".

Therefore, by the chain rule of mutual information and the data processing inequality, we have

I(⇤W(S
1

), . . . ,⇤W(Sm);W ⇤, T ⇤, R⇤
)  I(⇤W(S

1

), . . . ,⇤W(Sm);Wm,W ⇤, T ⇤, R⇤
)

 m"+ log(2m).

By Lemma B.2 and the assumption that `(w,Z) is �-subgaussian,

E
⇥
R⇤�LST⇤ (W

⇤
)� Lµ(W

⇤
)

�⇤

r

2�2

n

�
m"+ log(2m)

�
. (B.6)

Combining (B.6) and (B.4) gives

E
h
max

t2[m]

��LSt(Wt)� Lµ(Wt)
��
i

r

2�2

n

�
m"+ log(2m)

�
. (B.7)

The rest of the proof is by contradiction. Choose m = b1/�c. Suppose the algorithm PW |S does not
satisfy the claimed generalization property, namely,

P
⇥��LS(W )� Lµ(W )

�� > ↵
⇤
> �. (B.8)

Then by the independence among the pairs (St,Wt), t = 1, . . . ,m,

P
h
max

t2[m]

��LSt(Wt)� Lµ(Wt)
�� > ↵

i
> 1� (1� �)b1/�c >

1

2

.

Thus

E
h
max

t2[m]

��LSt(Wt)� Lµ(Wt)
��
i
>

↵

2

. (B.9)

Combining (B.7) and (B.9) gives

↵

2

<

s
2�2

n

⇣ "
�
+ log

2

�

⌘
. (B.10)

The above inequality implies that

n <
8�2

↵2

✓
"

�
+ log

2

�

◆
, (B.11)

which contradicts the condition in (16). Therefore, under the condition in (16), the assumption in
(B.8) cannot hold. This completes the proof.
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C Proof of Theorem 5

To solve the relaxed optimization problem in (26), first note that

inf

PW |S

✓
E[LS(W )] +

1

�
D(PW |SkQ|PS)

◆

= inf

PW |S

Z

Zn

µ⌦n
(ds)

✓
E[Ls(W )|S = s] +

1

�
D(PW |S=skQ)

◆

=

Z

Zn

µ⌦n
(ds) inf

PW |S=s

✓
E[Ls(W )|S = s] +

1

�
D(PW |S=skQ)

◆
.

It follows that for each s 2 Zn, the algorithm P ⇤
W |S that minimizes (26) satisfies

P ⇤
W |S=s = arg inf

PW |S=s

✓
E[Ls(W )|S = s] +

1

�
D(PW |S=skQ)

◆
. (C.12)

This is a simple convex optimization problem. The solution to (C.12) for each s 2 Zn turns out to be
the Gibbs algorithm [21] as described in (27), which does not depend on µ.

D Proof of Corollary 2

We can bound the expected empirical risk of the Gibbs algorithm P ⇤
W |S as

E[LS(W )]  E[LS(W )] +

1

�
D(P ⇤

W |SkQ|PS) (D.13)

 E[LS(w)] +
1

�
D(�wkQ) for all w 2 W, (D.14)

where �w is the point mass at w. The second inequality is due to Theorem 5, as �w can be viewed
as a learning algorithm that ignores the dataset and always outputs w. Taking w = w

o

, noting that
E[LS(wo

)] = Lµ(wo

), and combining with the upper bound on the expected generalization error
(28), we obtain

E[Lµ(W )]  inf

w2W
Lµ(w) +

1

�
D(�w

o

kQ) +

�

2n
. (D.15)

This leads to (29), as D(�w
o

kQ) = � logQ(w
o

) when W is countable.

E Proof of Corollary 3

Similar to the proof of Corollary 2, we first bound the expected empirical risk of the Gibbs algorithm
P ⇤
W |S . For any a > 0, N (w

o

, a2Id) can be viewed as a learning algorithm that ignores the dataset
and always draws a hypothesis from this distribution. The nonnegativity of relative entropy and
Theorem 5 imply that

E[LS(W )]  E[LS(W )] +

1

�
D(P ⇤

W |SkQ|PS) (E.16)


Z

W
E[LS(w)]N (w;w

o

, a2Id)dw +

1

�
D
�
N (w

o

, a2Id)kQ
�

(E.17)

=

Z

W
Lµ(w)N (w;w

o

, a2Id)dw +

1

�
D
�
N (w

o

, a2Id)kQ
�
. (E.18)

Combining with the upper bound on the expected generalization error (28), we obtain

E[Lµ(W )]  inf

a>0

✓Z

W
Lµ(w)N (w;w

o

, a2Id)dw +

1

�
D
�
N (w

o

, a2Id)kQ
�◆

+

�

2n
. (E.19)

Since `(·, z) is ⇢-Lipschitz for all z 2 Z, we have that for any w 2 W,

|Lµ(w)� Lµ(wo

)|  E[|`(w,Z)� `(w
o

, Z)|]  ⇢kw � w
o

k. (E.20)
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Then Z

W
Lµ(w)N (w;w

o

, a2Id)dw 
Z

W

�
Lµ(wo

) + ⇢kw � w
o

k
�
N (w;w

o

, a2Id)dw (E.21)

 Lµ(wo

) + ⇢a
p
d. (E.22)

Substituting this into (E.19), we obtain (31).

F Proof of Corollary 4

We prove the result assuming |W| = k. When W is countably infinite, the proof carries over by
replacing k with 1.

First, we upper-bound the expected generalization error via I(S;W ). We have the following chain of
inequalities:

I(S;W )  I
�
(LS(wi))i2[k]; (LS(wi) +Ni)i2[k]

�
(F.23)


kX

i=1

I(LS(wi);LS(wi) +Ni) (F.24)


kX

i=1

log

✓
1 +

E[LS(wi)]

bi

◆
(F.25)

=

kX

i=1

log

✓
1 +

Lµ(wi)

bi

◆
, (F.26)

where we have used the data processing inequality for mutual information; the fact that for product
channels, the mutual information between the overall input and output is upper-bounded by the sum
of the input-output mutual information of individual channels [22]; the formula for the capacity
of the additive exponential noise channel under an input mean constraint [23]; and the fact that
E[LS(wi)] = Lµ(wi). The assumption that ` takes values in [0, 1] implies that `(w,Z) is 1/2-
subgaussian for all w 2 W, and as a consequence of (F.26),

gen(µ, PW |S) 

vuut 1

2n

kX

i=1

log

✓
1 +

Lµ(wi)

bi

◆
. (F.27)

Then, we upper-bound the expected empirical risk. From the definition of the algorithm, we have that
with probability one,

LS(W ) = LS(W ) +NW �NW (F.28)
 LS(wi

o

) +Ni
o

�NW (F.29)
 LS(wi

o

) +Ni
o

�min{Ni, i 2 [k]}. (F.30)

Taking expectation on both sides, we get

E[LS(W )]  Lµ(wi
o

) + bi
o

�
 

kX

i=1

1

bi

!�1

. (F.31)

Combining (F.27) and (F.31), we have

E[Lµ(W )]  min

i2[k]
Lµ(wi) +

vuut 1

2n

kX

i=1

log

✓
1 +

Lµ(wi)

bi

◆
+ bi

o

�
 

kX

i=1

1

bi

!�1

, (F.32)

which leads to (34) with the fact that log(1 + x)  x.

When bi = i1.1/n1/3, using the fact that
kX

i=1

1

i1.1
 11� 10k�1/10 (F.33)
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and upper-bounding Lµ(wi)’s by 1, we get

E[Lµ(W )]  min

i2[k]
Lµ(wi) +

1

n1/3

 r
1

2

�
11� 10k�1/10

�
+ i1.1

o

� 1

11� 10k�1/10

!
(F.34)

 min

i2[k]
Lµ(wi) +

3 + i1.1
o

n1/3
, (F.35)

which proves (35).
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