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Abstract

With the goal of making high-resolution forecasts of regional rainfall, precipita-
tion nowcasting has become an important and fundamental technology underlying
various public services ranging from rainstorm warnings to flight safety. Recently,
the Convolutional LSTM (ConvLSTM) model has been shown to outperform tradi-
tional optical flow based methods for precipitation nowcasting, suggesting that deep
learning models have a huge potential for solving the problem. However, the con-
volutional recurrence structure in ConvLSTM-based models is location-invariant
while natural motion and transformation (e.g., rotation) are location-variant in gen-
eral. Furthermore, since deep-learning-based precipitation nowcasting is a newly
emerging area, clear evaluation protocols have not yet been established. To address
these problems, we propose both a new model and a benchmark for precipitation
nowcasting. Specifically, we go beyond ConvLSTM and propose the Trajectory
GRU (TrajGRU) model that can actively learn the location-variant structure for
recurrent connections. Besides, we provide a benchmark that includes a real-world
large-scale dataset from the Hong Kong Observatory, a new training loss, and a
comprehensive evaluation protocol to facilitate future research and gauge the state
of the art.

1 Introduction

Precipitation nowcasting refers to the problem of providing very short range (e.g., 0-6 hours) forecast
of the rainfall intensity in a local region based on radar echo maps1, rain gauge and other observation
data as well as the Numerical Weather Prediction (NWP) models. It significantly impacts the daily
lives of many and plays a vital role in many real-world applications. Among other possibilities,
it helps to facilitate drivers by predicting road conditions, enhances flight safety by providing
weather guidance for regional aviation, and avoids casualties by issuing citywide rainfall alerts.
In addition to the inherent complexities of the atmosphere and relevant dynamical processes, the
ever-growing need for real-time, large-scale, and fine-grained precipitation nowcasting poses extra
challenges to the meteorological community and has aroused research interest in the machine learning
community [23, 25].

1The radar echo maps are Constant Altitude Plan Position Indicator (CAPPI) images which can be converted
to rainfall intensity maps using the Marshall-Palmer relationship or Z-R relationship [19].
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The conventional approaches to precipitation nowcasting used by existing operational systems rely
on optical flow [28]. In a modern day nowcasting system, the convective cloud movements are
first estimated from the observed radar echo maps by optical flow and are then used to predict the
future radar echo maps using semi-Lagrangian advection. However, these methods are unsupervised
from the machine learning point of view in that they do not take advantage of the vast amount of
existing radar echo data. Recently, progress has been made by utilizing supervised deep learning [15]
techniques for precipitation nowcasting. Shi et al. [23] formulated precipitation nowcasting as a
spatiotemporal sequence forecasting problem and proposed the Convolutional Long Short-Term
Memory (ConvLSTM) model, which extends the LSTM [7] by having convolutional structures in both
the input-to-state and state-to-state transitions, to solve the problem. Using the radar echo sequences
for model training, the authors showed that ConvLSTM is better at capturing the spatiotemporal
correlations than the fully-connected LSTM and gives more accurate predictions than the Real-time
Optical flow by Variational methods for Echoes of Radar (ROVER) algorithm [28] currently used by
the Hong Kong Observatory (HKO).

However, despite their pioneering effort in this interesting direction, the paper has some deficiencies.
First, the deep learning model is only evaluated on a relatively small dataset containing 97 rainy
days and only the nowcasting skill score at the 0.5mm/h rain-rate threshold is compared. As
real-world precipitation nowcasting systems need to pay additional attention to heavier rainfall
events such as rainstorms which cause more threat to the society, the performance at the 0.5mm/h
threshold (indicating raining or not) alone is not sufficient for demonstrating the algorithm’s overall
performance [28]. In fact, as the area Deep Learning for Precipitation Nowcasting is still in its early
stage, it is not clear how models should be evaluated to meet the need of real-world applications.
Second, although the convolutional recurrence structure used in ConvLSTM is better than the fully-
connected recurrent structure in capturing spatiotemporal correlations, it is not optimal and leaves
room for improvement. For motion patterns like rotation and scaling, the local correlation structure
of consecutive frames will be different for different spatial locations and timestamps. It is thus
inefficient to use convolution which uses a location-invariant filter to represent such location-variant
relationship. Previous attempts have tried to solve the problem by revising the output of a recurrent
neural network (RNN) from the raw prediction to be some location-variant transformation of the
input, like optical flow or dynamic local filter [5, 3]. However, not much research has been conducted
to address the problem by revising the recurrent structure itself.

In this paper, we aim to address these two problems by proposing both a benchmark and a new
model for precipitation nowcasting. For the new benchmark, we build the HKO-7 dataset which
contains radar echo data from 2009 to 2015 near Hong Kong. Since the radar echo maps arrive in
a stream in the real-world scenario, the nowcasting algorithms can adopt online learning to adapt
to the newly emerging patterns dynamically. To take into account this setting, we use two testing
protocols in our benchmark: the offline setting in which the algorithm can only use a fixed window
of the previous radar echo maps and the online setting in which the algorithm is free to use all the
historical data and any online learning algorithm. Another issue for the precipitation nowcasting
task is that the proportions of rainfall events at different rain-rate thresholds are highly imbalanced.
Heavier rainfall occurs less often but has a higher real-world impact. We thus propose the Balanced
Mean Squared Error (B-MSE) and Balanced Mean Absolute Error (B-MAE) measures for training
and evaluation, which assign more weights to heavier rainfalls in the calculation of MSE and MAE.
We empirically find that the balanced variants of the loss functions are more consistent with the
overall nowcasting performance at multiple rain-rate thresholds than the original loss functions.
Moreover, our experiments show that training with the balanced loss functions is essential for deep
learning models to achieve good performance at higher rain-rate thresholds. For the new model, we
propose the Trajectory Gated Recurrent Unit (TrajGRU) model which uses a subnetwork to output the
state-to-state connection structures before state transitions. TrajGRU allows the state to be aggregated
along some learned trajectories and thus is more flexible than the Convolutional GRU (ConvGRU) [2]
whose connection structure is fixed. We show that TrajGRU outperforms ConvGRU, Dynamic Filter
Network (DFN) [3] as well as 2D and 3D Convolutional Neural Networks (CNNs) [20, 27] in both a
synthetic MovingMNIST++ dataset and the HKO-7 dataset.

Using the new dataset, testing protocols, training loss and model, we provide extensive empirical
evaluation of seven models, including a simple baseline model which always predicts the last frame,
two optical flow based models (ROVER and its nonlinear variant), and four representative deep
learning models (TrajGRU, ConvGRU, 2D CNN, and 3D CNN). We also provide a large-scale
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benchmark for precipitation nowcasting. Our experimental validation shows that (1) all the deep
learning models outperform the optical flow based models, (2) TrajGRU attains the best overall
performance among all the deep learning models, and (3) after applying online fine-tuning, the models
tested in the online setting consistently outperform those in the offline setting. To the best of our
knowledge, this is the first comprehensive benchmark of deep learning models for the precipitation
nowcasting problem. Besides, since precipitation nowcasting can be viewed as a video prediction
problem [22, 27], our work is the first to provide evidence and justification that online learning could
potentially be helpful for video prediction in general.

2 Related Work

Deep learning for precipitation nowcasting and video prediction For the precipitation nowcast-
ing problem, the reflectivity factors in radar echo maps are first transformed to grayscale images
before being fed into the prediction algorithm [23]. Thus, precipitation nowcasting can be viewed
as a type of video prediction problem with a fixed “camera”, which is the weather radar. Therefore,
methods proposed for predicting future frames in natural videos are also applicable to precipitation
nowcasting and are related to our paper. There are three types of general architecture for video
prediction: RNN based models, 2D CNN based models, and 3D CNN based models. Ranzato et
al. [22] proposed the first RNN based model for video prediction, which uses a convolutional RNN
with 1× 1 state-state kernel to encode the observed frames. Srivastava et al. [24] proposed the LSTM
encoder-decoder network which uses one LSTM to encode the input frames and another LSTM to
predict multiple frames ahead. The model was generalized in [23] by replacing the fully-connected
LSTM with ConvLSTM to capture the spatiotemporal correlations better. Later, Finn et al. [5] and De
Brabandere et al. [3] extended the model in [23] by making the network predict the transformation of
the input frame instead of directly predicting the raw pixels. Ruben et al. [26] proposed to use both an
RNN that captures the motion and a CNN that captures the content to generate the prediction. Along
with RNN based models, 2D and 3D CNN based models were proposed in [20] and [27] respectively.
Mathieu et al. [20] treated the frame sequence as multiple channels and applied 2D CNN to generate
the prediction while [27] treated them as the depth and applied 3D CNN. Both papers show that
Generative Adversarial Network (GAN) [6] is helpful for generating sharp predictions.

Structured recurrent connection for spatiotemporal modeling From a higher-level perspective,
precipitation nowcasting and video prediction are intrinsically spatiotemporal sequence forecasting
problems in which both the input and output are spatiotemporal sequences [23]. Recently, there is
a trend of replacing the fully-connected structure in the recurrent connections of RNN with other
topologies to enhance the network’s ability to model the spatiotemporal relationship. Other than the
ConvLSTM which replaces the full-connection with convolution and is designed for dense videos, the
SocialLSTM [1] and the Structural-RNN (S-RNN) [11] have been proposed sharing a similar notion.
SocialLSTM defines the topology based on the distance between different people and is designed for
human trajectory prediction while S-RNN defines the structure based on the given spatiotemporal
graph. All these models are different from our TrajGRU in that our model actively learns the recurrent
connection structure. Liang et al. [17] have proposed the Structure-evolving LSTM, which also has the
ability to learn the connection structure of RNNs. However, their model is designed for the semantic
object parsing task and learns how to merge the graph nodes automatically. It is thus different from
TrajGRU which aims at learning the local correlation structure for spatiotemporal data.

Benchmark for video tasks There exist benchmarks for several video tasks like online object
tracking [29] and video object segmentation [21]. However, there is no benchmark for the precipitation
nowcasting problem, which is also a video task but has its unique properties since radar echo map is
a completely different type of data and the data is highly imbalanced (as mentioned in Section 1).
The large-scale benchmark created as part of this work could help fill the gap.

3 Model

In this section, we present our new model for precipitation nowcasting. We first introduce the general
encoding-forecasting structure used in this paper. Then we review the ConvGRU model and present
our new TrajGRU model.
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3.1 Encoding-forecasting Structure

We adopt a similar formulation of the precipitation nowcasting problem as in [23]. Assume that the
radar echo maps form a spatiotemporal sequence 〈I1, I2, . . .〉. At a given timestamp t, our model gen-
erates the most likelyK-step predictions, Ît+1, Ît+2, . . . , Ît+K , based on the previous J observations
including the current one: It−J+1, It−J+2, . . . , It. Our encoding-forecasting network first encodes
the observations into n layers of RNN states: H1

t ,H2
t , . . . ,Hnt = h(It−J+1, It−J+2, . . . , It), and

then uses another n layers of RNNs to generate the predictions based on these encoded states:
Ît+1, Ît+2, . . . , Ît+K = g(H1

t ,H2
t , . . . ,Hnt ). Figure 1 illustrates our encoding-forecasting structure

for n = 3, J = 2,K = 2. We insert downsampling and upsampling layers between the RNNs, which
are implemented by convolution and deconvolution with stride. The reason to reverse the order of the
forecasting network is that the high-level states, which have captured the global spatiotemporal repre-
sentation, could guide the update of the low-level states. Moreover, the low-level states could further
influence the prediction. This structure is more reasonable than the previous structure [23] which does
not reverse the link of the forecasting network because we are free to plug in additional RNN layers
on top and no skip-connection is required to aggregate the low-level information. One can choose any
type of RNNs like ConvGRU or our newly proposed TrajGRU in this general encoding-forecasting
structure as long as their states correspond to tensors.

3.2 Convolutional GRU

The main formulas of the ConvGRU used in this paper are given as follows:
Zt = σ(Wxz ∗ Xt +Whz ∗ Ht−1),
Rt = σ(Wxr ∗ Xt +Whr ∗ Ht−1),
H′t = f(Wxh ∗ Xt +Rt ◦ (Whh ∗ Ht−1)),
Ht = (1−Zt) ◦ H′t + Zt ◦ Ht−1.

(1)

The bias terms are omitted for notational simplicity. ‘∗’ is the convolution operation and ‘◦’ is the
Hadamard product. Here,Ht,Rt,Zt,H′t ∈ RCh×H×W are the memory state, reset gate, update gate,
and new information, respectively. Xt ∈ RCi×H×W is the input and f is the activation, which is
chosen to be leaky ReLU with negative slope equals to 0.2 [18] througout the paper. H,W are the
height and width of the state and input tensors and Ch, Ci are the channel sizes of the state and input
tensors, respectively. Every time a new input arrives, the reset gate will control whether to clear the
previous state and the update gate will control how much the new information will be written to the
state.

3.3 Trajectory GRU

When used for capturing spatiotemporal correlations, the deficiency of ConvGRU and other
ConvRNNs is that the connection structure and weights are fixed for all the locations. The convolution
operation basically applies a location-invariant filter to the input. If the inputs are all zero and the
reset gates are all one, we could rewrite the computation process of the new information at a specific
location (i, j) at timestamp t, i.e,H′t,:,i,j , as follows:

H′t,:,i,j = f(Whhconcat(〈Ht−1,:,p,q | (p, q) ∈ N h
i,j〉)) = f(

|Nh
i,j |∑
l=1

Wl
hhHt−1,:,pl,i,j ,ql,i,j ). (2)

Here, N h
i,j is the ordered neighborhood set at location (i, j) defined by the hyperparameters of the

state-to-state convolution such as kernel size, dilation and padding [30]. (pl,i,j , ql,i,j) is the lth
neighborhood location of position (i, j). The concat(·) function concatenates the inner vectors in the
set and Whh is the matrix representation of the state-to-state convolution weights.

As the hyperparameter of convolution is fixed, the neighborhood set N h
i,j stays the same for all

locations. However, most motion patterns have different neighborhood sets for different locations.
For example, rotation and scaling generate flow fields with different angles pointing to different
directions. It would thus be more reasonable to have a location-variant connection structure as

H′t,:,i,j = f(

L∑
l=1

Wl
hhHt−1,:,pl,i,j(θ),ql,i,j(θ)), (3)
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Figure 1: Example of the encoding-forecasting structure used
in the paper. In the figure, we use three RNNs to predict two
future frames Î3, Î4 given the two input frames I1, I2. The spatial
coordinates G are concatenated to the input frame to ensure the
network knows the observations are from different locations. The
RNNs can be either ConvGRU or TrajGRU. Zeros are fed as input
to the RNN if the input link is missing.

(a) For convolutional RNN, the recurrent
connections are fixed over time.

(b) For trajectory RNN, the recurrent con-
nections are dynamically determined.

Figure 2: Comparison of the connection
structures of convolutional RNN and tra-
jectory RNN. Links with the same color
share the same transition weights. (Best
viewed in color)

where L is the total number of local links, (pl,i,j(θ), ql,i,j(θ)) is the lth neighborhood parameterized
by θ.

Based on this observation, we propose the TrajGRU, which uses the current input and previous
state to generate the local neighborhood set for each location at each timestamp. Since the location
indices are discrete and non-differentiable, we use a set of continuous optical flows to represent these
“indices”. The main formulas of TrajGRU are given as follows:

Ut,Vt = γ(Xt,Ht−1),

Zt = σ(Wxz ∗ Xt +
L∑
l=1

W l
hz ∗ warp(Ht−1,Ut,l,Vt,l)),

Rt = σ(Wxr ∗ Xt +
L∑
l=1

W l
hr ∗ warp(Ht−1,Ut,l,Vt,l)),

H′t = f(Wxh ∗ Xt +Rt ◦ (
L∑
l=1

W l
hh ∗ warp(Ht−1,Ut,l,Vt,l))),

Ht = (1−Zt) ◦ H′t + Zt ◦ Ht−1.

(4)

Here, L is the total number of allowed links. Ut,Vt ∈ RL×H×W are the flow fields that store the
local connection structure generated by the structure generating network γ. TheW l

hz,W l
hr,W l

hh
are the weights for projecting the channels, which are implemented by 1 × 1 convolutions. The
warp(Ht−1,Ut,l,Vt,l) function selects the positions pointed out by Ut,l,Vt,l from Ht−1 via the
bilinear sampling kernel [10, 9]. If we denoteM = warp(I,U,V) whereM, I ∈ RC×H×W and
U,V ∈ RH×W , we have:

Mc,i,j =

H∑
m=1

W∑
n=1

Ic,m,nmax(0, 1− |i+Vi,j −m|)max(0, 1− |j +Ui,j − n|). (5)

The advantage of such a structure is that we could learn the connection topology by learning the
parameters of the subnetwork γ. In our experiments, γ takes the concatenation of Xt and Ht−1 as
the input and is fixed to be a one-hidden-layer convolutional neural network with 5× 5 kernel size
and 32 feature maps. Thus, γ has only a small number of parameters and adds nearly no cost to the
overall computation. Compared to a ConvGRU with K ×K state-to-state convolution, TrajGRU
is able to learn a more efficient connection structure with L < K2. For ConvGRU and TrajGRU,
the number of model parameters is dominated by the size of the state-to-state weights, which is
O(L× C2

h) for TrajGRU and O(K2 × C2
h) for ConvGRU. If L is chosen to be smaller than K2, the
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Table 1: Comparison of TrajGRU and the baseline models in the MovingMNIST++ dataset. ‘Conv-Kα-Dβ’
refers to the ConvGRU with kernel size α× α and dilation β × β. ‘Traj-Lλ’ refers to the TrajGRU with λ links.
We replace the output layer of the ConvGRU-K5-D1 model to get the DFN.

Conv-K3-D2 Conv-K5-D1 Conv-K7-D1 Traj-L5 Traj-L9 Traj-L13 TrajGRU-L17 DFN Conv2D Conv3D

#Parameters 2.84M 4.77M 8.01M 2.60M 3.42M 4.00M 4.77M 4.83M 29.06M 32.52M
Test MSE×10−2 1.495 1.310 1.254 1.351 1.247 1.170 1.138 1.461 1.681 1.637
Standard Deviation×10−2 0.003 0.004 0.006 0.020 0.015 0.022 0.019 0.002 0.001 0.002

number of parameters of TrajGRU can also be smaller than the ConvGRU and the TrajGRU model
is able to use the parameters more efficiently. Illustration of the recurrent connection structures of
ConvGRU and TrajGRU is given in Figure 2. Recently, Jeon & Kim [12] has used similar ideas to
extend the convolution operations in CNN. However, their proposed Active Convolution Unit (ACU)
focuses on the images where the need for location-variant filters is limited. Our TrajGRU focuses on
videos where location-variant filters are crucial for handling motion patterns like rotations. Moreover,
we are revising the structure of the recurrent connection and have tested different number of links
while [12] fixes the link number to 9.

4 Experiments on MovingMNIST++

Before evaluating our model on the more challenging precipitation nowcasting task, we first compare
TrajGRU with ConvGRU, DFN and 2D/3D CNNs on a synthetic video prediction dataset to justify
its effectiveness.

The previous MovingMNIST dataset [24, 23] only moves the digits with a constant speed and is not
suitable for evaluating different models’ ability in capturing more complicated motion patterns. We
thus design the MovingMNIST++ dataset by extending MovingMNIST to allow random rotations,
scale changes, and illumination changes. Each frame is of size 64× 64 and contains three moving
digits. We use 10 frames as input to predict the next 10 frames. As the frames have illumination
changes, we use MSE instead of cross-entropy for training and evaluation 2. We train all models
using the Adam optimizer [14] with learning rate equal to 10−4 and momentum equal to 0.5. For
the RNN models, we use the encoding-forecasting structure introduced previously with three RNN
layers. All RNNs are either ConvGRU or TrajGRU and all use the same set of hyperparameters. For
TrajGRU, we initialize the weight of the output layer of the structure generating network to zero.
The strides of the middle downsampling and upsampling layers are chosen to be 2. The numbers
of filters for the three RNNs are 64, 96, 96 respectively. For the DFN model, we replace the output
layer of ConvGRU with a 11× 11 local filter and transform the previous frame to get the prediction.
For the RNN models, we train them for 200,000 iterations with norm clipping threshold equal to
1 and batch size equal to 4. For the CNN models, we train them for 100,000 iterations with norm
clipping threshold equal to 50 and batch size equal to 32. The detailed experimental configuration of
the models for the MovingMNIST++ experiment can be found in the appendix. We have also tried to
use conditional GAN for the 2D and 3D models but have failed to get reasonable results.

Table 1 gives the results of different models on the same test set that contains 10,000 sequences. We
train all models using three different seeds to report the standard deviation. We can find that TrajGRU
with only 5 links outperforms ConvGRU with state-to-state kernel size 3× 3 and dilation 2× 2 (9
links). Also, the performance of TrajGRU improves as the number of links increases. TrajGRU
with L = 13 outperforms ConvGRU with 7× 7 state-to-state kernel and yet has fewer parameters.
Another observation from the table is that DFN does not perform well in this synthetic dataset. This
is because DFN uses softmax to enhance the sparsity of the learned local filters, which fails to model
illumination change because the maximum value always gets smaller after convolving with a positive
kernel whose weights sum up to 1. For DFN, when the pixel values get smaller, it is impossible for
them to increase again. Figure 3 visualizes the learned structures of TrajGRU. We can see that the
network has learned reasonable local link patterns.

2The MSE for the MovingMNIST++ experiment is averaged by both the frame size and the length of the
predicted sequence.
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Figure 3: Selected links of TrajGRU-L13 at different frames and layers. We choose one of the 13 links and
plot an arrow starting from each pixel to the pixel that is referenced by the link. From left to right we display
the learned structure at the first, second and third layer of the encoder. The links displayed here have learned
behaviour for rotations. We sub-sample the displayed links for the first layer for better readability. We include
animations for all layers and links in the supplementary material. (Best viewed when zoomed in.)

5 Benchmark for Precipitation Nowcasting

5.1 HKO-7 Dataset

The HKO-7 dataset used in the benchmark contains radar echo data from 2009 to 2015 collected by
HKO. The radar CAPPI reflectivity images, which have resolution of 480×480 pixels, are taken from
an altitude of 2km and cover a 512km× 512km area centered in Hong Kong. The data are recorded
every 6 minutes and hence there are 240 frames per day. The raw logarithmic radar reflectivity factors
are linearly transformed to pixel values via pixel = b255 × dBZ+10

70 + 0.5c and are clipped to be
between 0 and 255. The raw radar echo images generated by Doppler weather radar are noisy due to
factors like ground clutter, sea clutter, anomalous propagation and electromagnetic interference [16].
To alleviate the impact of noise in training and evaluation, we filter the noisy pixels in the dataset and
generate the noise masks by a two-stage process described in the appendix.

As rainfall events occur sparsely, we select the rainy days based on the rain barrel information to form
our final dataset, which has 812 days for training, 50 days for validation and 131 days for testing.
Our current treatment is close to the real-life scenario as we are able to train an additional model that
classifies whether or not it will rain on the next day and applies our precipitation nowcasting model if
this coarser-level model predicts that it will be rainy. The radar reflectivity values are converted to
rainfall intensity values (mm/h) using the Z-R relationship: dBZ = 10 log a+ 10b logR where R is
the rain-rate level, a = 58.53 and b = 1.56. The overall statistics and the average monthly rainfall
distribution of the HKO-7 dataset are given in the appendix.

5.2 Evaluation Methodology

As the radar echo maps arrive in a stream, nowcasting algorithms can apply online learning to adapt
to the newly emerging spatiotemporal patterns. We propose two settings in our evaluation protocol:
(1) the offline setting in which the algorithm always receives 5 frames as input and predicts 20 frames
ahead, and (2) the online setting in which the algorithm receives segments of length 5 sequentially and
predicts 20 frames ahead for each new segment received. The evaluation protocol is described more
systematically in the appendix. The testing environment guarantees that the same set of sequences is
tested in both the offline and online settings for fair comparison.

For both settings, we evaluate the skill scores for multiple thresholds that correspond to different
rainfall levels to give an all-round evaluation of the algorithms’ nowcasting performance. Table 2
shows the distribution of different rainfall levels in our dataset. We choose to use the thresholds 0.5,
2, 5, 10, 30 to calculate the CSI and Heidke Skill Score (HSS) [8]. For calculating the skill score at a
specific threshold τ , which is 0.5, 2, 5, 10 or 30, we first convert the pixel values in prediction and
ground-truth to 0/1 by thresholding with τ . We then calculate the TP (prediction=1, truth=1), FN
(prediction=0, truth=1), FP (prediction=1, truth=0), and TN (prediction=0, truth=0). The CSI score is
calculated as TP

TP+FN+FP and the HSS score is calculated as TP×TN−FN×FP
(TP+FN)(FN+TN)+(TP+FP)(FP+TN) . During

the computation, the masked points are ignored.
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Table 2: Rain rate statistics in the HKO-7 benchmark.

Rain Rate (mm/h) Proportion (%) Rainfall Level

0 ≤ x < 0.5 90.25 No / Hardly noticeable
0.5 ≤ x < 2 4.38 Light
2 ≤ x < 5 2.46 Light to moderate
5 ≤ x < 10 1.35 Moderate

10 ≤ x < 30 1.14 Moderate to heavy
30 ≤ x 0.42 Rainstorm warning

As shown in Table 2, the frequencies of different rainfall levels are highly imbalanced. We propose
to use the weighted loss function to help solve this problem. Specifically, we assign a weight

w(x) to each pixel according to its rainfall intensity x: w(x) =



1, x < 2

2, 2 ≤ x < 5

5, 5 ≤ x < 10

10, 10 ≤ x < 30

30, x ≥ 30

. Also, the

masked pixels have weight 0. The resulting B-MSE and B-MAE scores are computed as B-MSE =
1
N

∑N
n=1

∑480
i=1

∑480
j=1 wn,i,j(xn,i,j − x̂n,i,j)2 and B-MAE = 1

N

∑N
n=1

∑480
i=1

∑480
j=1 wn,i,j |xn,i,j −

x̂n,i,j |, where N is the total number of frames and wn,i,j is the weight corresponding to the (i, j)th
pixel in the nth frame. For the conventional MSE and MAE measures, we simply set all the weights
to 1 except the masked points.

5.3 Evaluated Algorithms

We have evaluated seven nowcasting algorithms, including the simplest model which always predicts
the last frame, two optical flow based methods (ROVER and its nonlinear variant), and four deep
learning methods (TrajGRU, ConvGRU, 2D CNN, and 3D CNN). Specifically, we have evaluated
the performance of deep learning models in the online setting by fine-tuning the algorithms using
AdaGrad [4] with learning rate equal to 10−4. We optimize the sum of B-MSE and B-MAE during
offline training and online fine-tuning. During the offline training process, all models are optimized
by the Adam optimizer with learning rate equal to 10−4 and momentum equal to 0.5 and we train
these models with early-stopping on the sum of B-MSE and B-MAE. For RNN models, the training
batch size is set to 4. For the CNN models, the training batch size is set to 8. For TrajGRU and
ConvGRU models, we use a 3-layer encoding-forecasting structure with the number of filters for the
RNNs set to 64, 192, 192. We use kernel size equal to 5× 5, 5× 5, 3× 3 for the ConvGRU models
while the number of links is set to 13, 13, 9 for the TrajGRU model. We also train the ConvGRU
model with the original MSE and MAE loss, which is named “ConvGRU-nobal”, to evaluate the
improvement by training with the B-MSE and B-MAE loss. The other model configurations including
ROVER, ROVER-nonlinear and deep models are included in the appendix.

5.4 Evaluation Results

The overall evaluation results are summarized in Table 3. In order to analyze the confidence interval
of the results, we train 2D CNN, 3D CNN, ConvGRU and TrajGRU models using three different
random seeds and report the standard deviation in Table 4. We find that training with balanced loss
functions is essential for good nowcasting performance of heavier rainfall. The ConvGRU model that
is trained without balanced loss, which best represents the model in [23], has worse nowcasting score
than the optical flow based methods at the 10mm/h and 30mm/h thresholds. Also, we find that all the
deep learning models that are trained with the balanced loss outperform the optical flow based models.
Among the deep learning models, TrajGRU performs the best and 3D CNN outperforms 2D CNN,
which shows that an appropriate network structure is crucial to achieving good performance. The
improvement of TrajGRU over the other models is statistically significant because the differences in
B-MSE and B-MAE are larger than three times their standard deviation. Moreover, the performance
with online fine-tuning enabled is consistently better than that without online fine-tuning, which
verifies the effectiveness of online learning at least for this task.
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Table 3: HKO-7 benchmark result. We mark the best result within a specific setting with bold face and the
second best result by underlining. Each cell contains the mean score of the 20 predicted frames. In the online
setting, all algorithms have used the online learning strategy described in the paper. ‘↑’ means that the score is
higher the better while ‘↓’ means that the score is lower the better. ‘r ≥ τ ’ means the skill score at the τmm/h
rainfall threshold. For 2D CNN, 3D CNN, ConvGRU and TrajGRU models, we train the models with three
different random seeds and report the mean scores.

Algorithms CSI ↑ HSS ↑ B-MSE ↓ B-MAE ↓
r ≥ 0.5 r ≥ 2 r ≥ 5 r ≥ 10 r ≥ 30 r ≥ 0.5 r ≥ 2 r ≥ 5 r ≥ 10 r ≥ 30

Offline Setting
Last Frame 0.4022 0.3266 0.2401 0.1574 0.0692 0.5207 0.4531 0.3582 0.2512 0.1193 15274 28042
ROVER + Linear 0.4762 0.4089 0.3151 0.2146 0.1067 0.6038 0.5473 0.4516 0.3301 0.1762 11651 23437
ROVER + Non-linear 0.4655 0.4074 0.3226 0.2164 0.0951 0.5896 0.5436 0.4590 0.3318 0.1576 10945 22857
2D CNN 0.5095 0.4396 0.3406 0.2392 0.1093 0.6366 0.5809 0.4851 0.3690 0.1885 7332 18091
3D CNN 0.5109 0.4411 0.3415 0.2424 0.1185 0.6334 0.5825 0.4862 0.3734 0.2034 7202 17593
ConvGRU-nobal 0.5476 0.4661 0.3526 0.2138 0.0712 0.6756 0.6094 0.4981 0.3286 0.1160 9087 19642
ConvGRU 0.5489 0.4731 0.3720 0.2789 0.1776 0.6701 0.6104 0.5163 0.4159 0.2893 5951 15000
TrajGRU 0.5528 0.4759 0.3751 0.2835 0.1856 0.6731 0.6126 0.5192 0.4207 0.2996 5816 14675

Online Setting
2D CNN 0.5112 0.4363 0.3364 0.2435 0.1263 0.6365 0.5756 0.4790 0.3744 0.2162 6654 17071
3D CNN 0.5106 0.4344 0.3345 0.2427 0.1299 0.6355 0.5736 0.4766 0.3733 0.2220 6690 16903
ConvGRU 0.5511 0.4737 0.3742 0.2843 0.1837 0.6712 0.6105 0.5183 0.4226 0.2981 5724 14772
TrajGRU 0.5563 0.4798 0.3808 0.2914 0.1933 0.6760 0.6164 0.5253 0.4308 0.3111 5589 14465

Table 4: Confidence intervals of selected deep models in the HKO-7 benchmark. We train 2D CNN, 3D CNN,
ConvGRU and TrajGRU using three different random seeds and report the standard deviation of the test scores.

Algorithms CSI HSS B-MSE B-MAE
r ≥ 0.5 r ≥ 2 r ≥ 5 r ≥ 10 r ≥ 30 r ≥ 0.5 r ≥ 2 r ≥ 5 r ≥ 10 r ≥ 30

Offline Setting
2D CNN 0.0032 0.0023 0.0015 0.0001 0.0025 0.0032 0.0025 0.0018 0.0003 0.0043 90 95
3D CNN 0.0043 0.0027 0.0016 0.0024 0.0024 0.0042 0.0028 0.0018 0.0031 0.0041 44 26
ConvGRU 0.0022 0.0018 0.0031 0.0008 0.0022 0.0022 0.0021 0.0040 0.0010 0.0038 52 81
TrajGRU 0.0020 0.0024 0.0025 0.0031 0.0031 0.0019 0.0024 0.0028 0.0039 0.0045 18 32

Online Setting
2D CNN 0.0002 0.0005 0.0002 0.0002 0.0012 0.0002 0.0005 0.0002 0.0003 0.0019 12 12
3D CNN 0.0004 0.0003 0.0002 0.0003 0.0008 0.0004 0.0004 0.0003 0.0004 0.0001 23 27
ConvGRU 0.0006 0.0012 0.0017 0.0019 0.0024 0.0006 0.0012 0.0019 0.0023 0.0031 30 69
TrajGRU 0.0008 0.0004 0.0002 0.0002 0.0002 0.0007 0.0004 0.0002 0.0002 0.0003 10 20

Table 5: Kendall’s τ coefficients between skill scores. Higher absolute value indicates stronger correlation. The
numbers with the largest absolute values are shown in bold face.

Skill Scores CSI HSS
r ≥ 0.5 r ≥ 2 r ≥ 5 r ≥ 10 r ≥ 30 r ≥ 0.5 r ≥ 2 r ≥ 5 r ≥ 10 r ≥ 30

MSE -0.24 -0.39 -0.39 -0.07 -0.01 -0.33 -0.42 -0.39 -0.06 0.01
MAE -0.41 -0.57 -0.55 -0.25 -0.27 -0.50 -0.60 -0.55 -0.24 -0.26
B-MSE -0.70 -0.57 -0.61 -0.86 -0.84 -0.62 -0.55 -0.61 -0.86 -0.84
B-MAE -0.74 -0.59 -0.58 -0.82 -0.92 -0.67 -0.57 -0.59 -0.83 -0.92

Based on the evaluation results, we also compute the Kendall’s τ coefficients [13] between the MSE,
MAE, B-MSE, B-MAE and the CSI, HSS at different thresholds. As shown in Table 5, B-MSE and
B-MAE have stronger correlation with the CSI and HSS in most cases.

6 Conclusion and Future Work

In this paper, we have provided the first large-scale benchmark for precipitation nowcasting and have
proposed a new TrajGRU model with the ability of learning the recurrent connection structure. We
have shown TrajGRU is more efficient in capturing the spatiotemporal correlations than ConvGRU.
For future work, we plan to test if TrajGRU helps improve other spatiotemporal learning tasks like
visual object tracking and video segmentation. We will also try to build an operational nowcasting
system using the proposed algorithm.
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