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Symbol Description
s observed spectrum of length T'
m(s) observed spectrum precursor mass
c(s) observed spectrum precursor charge
omz Observed peak m/z measurement
om Observed peak intensity measurement
P set of all possible peptides
T peptide string, of length n, comprised of amino acids, z = 21,22, ...,Ty, = T1:n
c(x) charge of peptide x (note the overloaded use of the charge operator)
m(x1.) mass of length-¢ peptide x1.; (note the overloaded use of the mass operator)
D database of peptides to be searched
w mass tolerance threshold, used to filter peptides during search
D(s,D,w) candidate set of peptides to be scored and ranked in order to identify s
¢p and ¢, b-ion and y-ion charge, respectively, such that ¢, = ¢, = 1 for ¢(s) = 1 and

¢y + ¢y = c(s) for ¢(s) > 1.

bz, cp, k), y(z, cy, k)

kth b- and y-ion pair of x

v length-d theoretical spectrum of x
t arbitrary frame value for DRIP
Ot DRIP random variable signifying the number of theoretical peaks to move down in
frame ¢; 0; > 1 corresponds to a deletion event
1t DRIP Bernoulli random variable signifying whether an observed peak is scored as
an insertion or not
K, DRIP random variable signifying the theoretical peak index in frame ¢
amz DRIP m/z insertion penalty
ain DRIP intensity insertion penalty
iz vector of DRIP’s m/z Gaussian means
o2 DRIP’s m/z Gaussian variance
pn DRIP’s intensity Gaussian mean
72 DRIP’s intensity Gaussian variance
0 generative model’s learnable parameters: for DRIP, this corresponds to all Gaussian
means and variances; for Theseus and the modeled XCorr scoring function, this
corresponds to the fragment ion weights
T XCorr vector shift increment
z vector resulting from (XCorr) quantization and preprocessing of s
z final step of XCorr preprocessing, where 2’ = z — 215:_75 Zr
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20 reparameterized observed spectrum vector, such that a linear score may be com-
puted as the product of zy and a boolean theoretical vector u

U boolean theoretical vector with nonzero entries corresponding to the unity charge
b-ions of x
M set of discrete precursor masses, dictated by w, iterated over in Theseus
Xin random peptide modeled in Theseus
B; Theseus accumulated mass up to frame ¢
A set of amino acids
S Theseus virtual evidence child in frame ¢

Table 1: Notation used in the main paper.

2 DRIP Fisher Score Derivation

Following the discussion in Section 3 of [2], a#mLZ(k) log p(s|z,8) = p(s‘z 7 W p(s|z, 8) and

we have (,)um#z(k)p(s\x,@)

0 0
= Z p(ilzT761:T|9): Z 7p(i1;T,61;T|9)
Oumme(k) 17,817 i1.7,01.7: K=k, 1<t<T Opme (k)
Z ik, =k} H (01, K1, 0, 11— 1)(9 T H (61, Ki—1, s, 41-1)
. t: Ky £k ()th k
.. ¢6t7Kt 177’757“ 1) a mz
Z ik,—k} H (61, Ki—1, e, 1-1 ( H ™z H p(O: | K)
17,017 ' 6Ky #k K=k p(O|Kr) Oum=(k) t: Ky =k
1 0 mz
= > I k}H¢ (61, K1,y i 1)< II Tz ) < I »©: |Kt)>
1.0 . K=k (OF[K+) Oz (k) K=k
1 0 mz
Z l{K :k}p(8|x30) ( H mz ) < H p(ot |Kt)> )
PP - ' K=k p(OF|K+) Oum=(k) K=k
where
R |K sy S o plP(OP? Ko i)
7 t) = t
Oum (k) £ K=k ' t: K=k th k p(OF|K)
mz_ mz
= I] » omZ|K p(ic = 0)p(OF*| Ky, i = O)M
= t)
K=k ‘ th k p(O{nZ‘Kt)
OmZ _,,mz k
_< H |Kt > ( Zt = Othinnz)w .
t: K=k t: K=k g
8 o 1 . . mz (O{nz_umz(k))
= oMz (k) log p(s|z, 0) _p(5|:17,9) N TZ& . 1{Kt:k}p(lliT,KliT|9) tj[;:kp(lt =0|K:,0¢ ") o2
T
omz _ ,mz.
e gy 2Pl Kt = H0) (i = 0], 0 =~ ()
T . mz (0?12 —Mmz(k))
Z (ir, K¢ = kls, 0)p(i; = 0| K, O ) 02, 0

where we equivalently write p( |z, 0) = p(ir.T, 61.7|0) = p(ir.T, K1.7]0) due to the deterministic
relationship 6, = K; — K;_1.

3 Theseus Unsupervised Learning using Coordinate Ascent

Using the model’s Fisher scores, Theseus parameters § may be learned via maximum likelihood
estimation. We present an alternate learning algorithm which we compare to maximum likeli-



Algorithm 1 Unsupervised Learning in Theseus using Coordinate Ascent

1: while not converged do

2 fori=1,...,ndo

3: &' + argmax,: p log p(s’, z°|0)
4: end for

5 6 + argmaxy y ., logp(s’, 2'|6)
6: end while

hood learning in [2]. Let st,s2 ... s" be a dataset of spectra and define J(z!,..., 2", 0) =
> log p(s', 2*|#). Optimizing this objective function, Theseus’ coordinate ascent learning algo-
rithm is defined in Algorithm 1 where, rather than relying on training labels, we use max-product
inference to infer the most probable PSM for each spectrum given the current iteration’s parameters,
then maximize the log-likelihood with respect to 6 given the most likely PSMs. We now prove that
Algorithm 1 converges monotonically.

Theorem 1. Algorithm I converges monotonically to a local optimum.

Proof. We need to show that the objective function J is nondecreasing with each iteration of
the algorithm. Denote the learned parameters at iteration k of the algorithm as ¢ and define
&), = argmaxcp log p(s®, 2*|0k_1). O = argmax, J(Z}, ..., 2}, 0). We thus have
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4 Impact of Recalibration over Standard DRIP Search

Table 2: Percent improvement over uncalibrated search results for the DRIP methods plotted in Figure 1, at an
FDR threshold ¢ = 1%. Largest improvement highlighted in bold. Note that at this FDR threshold, Percolator
post-processing using a standard set of features may result in diminished performance (Worm-3).

Dataset DRIP DRIP Heuristic DRIP Fisher

Yeast-1 54 10.7 14.8
Yeast-2 5.2 8.3 16.6
Yeast-3 9.2 10.9 17.7
Yeast-4 34 7.5 15.1
Worm-1 10.1 17.4 20.8
Worm-2 1.1 6.7 11.3
Worm-3  -5.1 7.2 11

Worm-4 0.4 9.9 16

Average 3.7 9.8 154
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Figure 1: Performance increase of DRIP search after recalibration. Methods denoted by ‘“Percolator” are
post-processed using the Percolator SVM classifier [3], otherwise the raw PSM scores of the denoted search
algorithm are used for identification. “DRIP Percolator” uses the standard set of DRIP PSM features described
in [1], “DRIP Percolator, Heuristic” augments the standard set with DRIP-Viterbi-path parsed PSM features
described in [1], and “DRIP Percolator, Fisher”” augments the Heuristic set with the gradient-based DRIP features
to the standard. XCorr p-value and MS-GF+ use their standard set of Percolator features, described in [1]. Search

accuracy plots measured by g-value versus number of spectra identified for yeast (Saccharomyces cerevisiae)
and worm (C. elegans) datasets.
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