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Abstract

Early stopping of iterative algorithms is a widely-used form of regularization
in statistics, commonly used in conjunction with boosting and related gradient-
type algorithms. Although consistency results have been established in some
settings, such estimators are less well-understood than their analogues based on
penalized regularization. In this paper, for a relatively broad class of loss functions
and boosting algorithms (including L2-boost, LogitBoost and AdaBoost, among
others), we exhibit a direct connection between the performance of a stopped
iterate and the localized Gaussian complexity of the associated function class.
This connection allows us to show that local fixed point analysis of Gaussian or
Rademacher complexities, now standard in the analysis of penalized estimators,
can be used to derive optimal stopping rules. We derive such stopping rules in
detail for various kernel classes, and illustrate the correspondence of our theory
with practice for Sobolev kernel classes.

1 Introduction

While non-parametric models offer great flexibility, they can also lead to overfitting, and thus poor
generalization performance. For this reason, procedures for fitting non-parametric models must
involve some form of regularization, most commonly done by adding some type of penalty to the
objective function. An alternative form of regularization is based on the principle of early stopping, in
which an iterative algorithm is terminated after a pre-specified number of steps prior to convergence.

While the idea of early stopping is fairly old (e.g., [31}[1,135]), recent years have witnessed renewed
interests in its properties, especially in the context of boosting algorithms and neural network training
(e.g., [250[12]). Over the past decade, a line of work has yielded some theoretical insight into early
stopping, including works on classification error for boosting algorithms [3} [13} [18, 23} 139 |40],
L?-boosting algorithms for regression [8l[7]], and similar gradient algorithms in reproducing kernel
Hilbert spaces (e.g. [11} 10,134,139, 26]). A number of these papers establish consistency results for
particular forms of early stopping, guaranteeing that the procedure outputs a function with statistical
error that converges to zero as the sample size increases. On the other hand, there are relatively
few results that actually establish rate optimality of an early stopping procedure, meaning that the
achieved error matches known statistical minimax lower bounds. To the best of our knowledge,
Biihlmann and Yu [8] were the first to prove optimality for early stopping of L2-boosting as applied
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to spline classes, albeit with a rule that was not computable from the data. Subsequent work by
Raskautti et al. [26]] refined this analysis of L2-boosting for kernel classes and first established an
important connection to the localized Rademacher complexity; see also the related work [39} 27, 9]]
with rates for particular kernel classes.

More broadly, relative to our rich and detailed understanding of regularization via penalization
(e.g., see the books [17} 33} 132] 37]] and papers [2, [20] for details), the theory for early stopping
regularization is still not as well developed. In particular, for penalized estimators, it is now well-
understood that complexity measures such as the localized Gaussian width, or its Rademacher
analogue, can be used to characterize their achievable rates [2} 20,132,|37]]. Is such a general and sharp
characterization also possible in the context of early stopping? The main contribution of this paper
is to answer this question in the affirmative for boosting algorithms in regression and classification
problems involving functions in reproducing kernel Hilbert spaces (RKHS).

The remainder of this paper is organized as follows. In Section [2] we provide background on
boosting methods and reproducing kernel Hilbert spaces, and then introduce the updates studied in
this paper. Section [3]is devoted to statements of our main results, followed by a discussion of their
consequences for particular function classes in Section[d We provide simulations that confirm the
practical effectiveness of our stopping rules and show close agreement with our theoretical predictions.
The proofs for all of our results can be found in the supplemental material.

2 Background and problem formulation

The goal of prediction is to learn a function that maps covariates x € X to responses y € Y. Ina
regression problem, the responses are typically real-valued, whereas in a classification problem, the
responses take values in a finite set. In this paper, we study both regression () = R) and classification
problems (e.g., ¥ = {—1,+1} in the binary case) where we observe a collection of n pairs of the
form {(x;,Y;)}? ,, with fixed covariates x; € X and corresponding random responses Y; € ) drawn
independently from a distribution Py, . In this section, we provide some necessary background on a
gradient-type algorithm which is often referred to as boosting algorithm.

2.1 Boosting and early stopping

Consider a cost function ¢ : R x R — [0, 00), where the non-negative scalar ¢(y, ) denotes the cost
associated with predicting # when the true response is y. Some common examples of loss functions
¢ that we consider in later sections include:

o the least-squares loss ¢(y,0) : = %(y — 0)? that underlies L?-boosting [8]),

o the logistic regression loss ¢(y,0) = In(1 + e~¥%) that underlies the LogitBoost algo-
rithm [[14,[15]], and

o the exponential loss ¢(y,0) = exp(—y#) that underlies the AdaBoost algorithm [13].

The least-squares loss is typically used for regression problems (e.g., [I8} 111, [10,134,|39, 26]), whereas
the latter two losses are frequently used in the setting of binary classification (e.g., [13} 23} [15]).

Given some loss function ¢ and function space .#, we define the population cost functional f — L(f)
and the corresponding optimal (minimizing) functimﬂ via

LU =By [ YooV f @) f = argmin £(5) 1)
i=1

Note that with the covariates {z;}_; fixed, the functional £ is a non-random object. As a standard
example, when we adopt the least-squares loss ¢(y,0) = 1(y — 0)?, the population minimizer
f* corresponds to the conditional expectation x — E[Y|x]. Since we do not have access to the
population distribution of the responses however, the computation of f* is impossible. Given our
samples {Y;}"_;, we consider instead some procedure applied to the empirical loss

Lall) i= 3 6 f (@), @

T As clarified in the sequel, our assumptions guarantee uniqueness of f*.



where the population expectation has been replaced by an empirical expectation. For example, when
L, corresponds to the log likelihood of the samples with ¢(Y;, f(x;)) = log[P(Yi; f(x;))], direct
unconstrained minimization of £,, would yield the maximum likelihood estimator.

It is well-known that direct minimization of £,, over a rich function class .# may lead to overfitting.
A classical method to mitigate this phenomenon is to minimize the sum of the empirical loss with a
penalty term. Adjusting the weight on the regularization term allows for trade-off between fit to the
data, and some form of regularity or smoothness of the fit. The behavior of such penalized estimation
methods is quite well understood (see e.g. the books [17, 33} 132137 and papers [12,20] for details).

In this paper, we study a form of algorithmic regularization, based on applying a gradient-type
algorithm to £,,. In particular, we consider boosting algorithms (see survey paper [7]) which involve
“boosting” or improve the fit of a function via a sequence of additive updates (see e.g. [28L113}16}15,29])
and can be understood as forms of functional gradient methods [23| [15]. Instead of running until
convergence, we then stop it “early”’—that is, after some fixed number of steps. The way in which
the number of steps is chosen is referred to as a stopping rule, and the overall procedure is referred to
as early stopping of a boosting algorithm.

Early stopping for LogitBoost: MSE vs iteration Early stopping for AdaBoost: MSE vs iteration

I
—
N
<}
wn

z
n

4

N

o
o
IS

o
w

o
N

Squared error |f*—f"|
o o
o o
o [e<]

Squared error |ff —f*|2

o

o

=
e
A

Minimum error

0 50 100 150 200 250 0 50 100 150 200 250
Iteration Iteration

(a) (b)

Figure 1: Plots of the squared error || f* — f*||2 = L 3" (f*(2;) — f*(x;))? versus the iteration
number ¢ for (a) LogitBoost using a first-order Sobolev kernel (b) AdaBoost using the same first-order
Sobolev kernel K(z, z") = 1 + min(z, «") which generates a class of Lipschitz functions (splines of
order one). Both plots correspond to a sample size n = 100.

In more detail, a broad class of boosting algorithms [23] generate a sequence { f}$°, via updates of
the form

FU= - algt with g o argmax (VL (fY), d(2}), 3)
ldll#<1

where the scalar {a}9° is a sequence of step sizes chosen by the user, the constraint ||d|| s < 1
defines the unit ball in a given function class %, VL, (f) € R™ denotes the gradient taken at
the vector (f(z1),..., f(zy)), and (h, g) is the usual inner product between vectors h,g € R™.
For non-decaying step sizes and a convex objective L£,,, running this procedure for an infinite
number of iterations will lead to a minimizer of the empirical loss, thus causing overfitting. In
order to illustrate this phenomenon, Figure provides plots of the squared error || f! — f*[|2 : =

LS (ff ) = () ? versus the iteration number, for LogitBoost in panel (a) and AdaBoost
in panel (b). (See Section for more details on how these experiments were set up.)

In these plots, the dotted line indicates the minimum mean-squared error p2 over all iterates of that
particular run of the algorithm. Both plots are qualitatively similar, illustrating the existence of a
“good” number of iterations to take, after which the MSE greatly increases. Hence a natural problem
is to decide at what iteration 7" to stop such that the iterate f7 satisfies bounds of the form

LFT) = L(F) Zpn and |fT =I5 200 )

with high probability. The main results of this paper provide a stopping rule 7" for which bounds of
the form (4) do in fact hold with high probability over the randomness in the observed responses.



Moreover, as shown by our later results, under suitable regularity conditions, the expec-
tation of the minimum squared error p? is proportional to the statistical minimax risk

inf zsup ¢ +E[L(F) — L(f)], where the infimum is taken over all possible estimators f. Cou-

pled with our stopping time guarantee (4) this implies that our estimate achieves the minimax risk up
to constant factors. As a result, our bounds are unimprovable in general (see Corollary|[I)).

2.2 Reproducing Kernel Hilbert Spaces

The analysis of this paper focuses on algorithms with the update (3) when the function class .7 is
a reproducing kernel Hilbert space .7# (RKHS, see standard sources [36[16,[30,4]), consisting of
functions mapping a domain X to the real line R. Any RKHS is defined by a bivariate symmetric
kernel function K : X x X — R which is required to be positive semidefinite, i.e. for any integer
N > 1 and a collection of points {x; }é\le in X, the matrix [K(z;,;)];; € RV*N is positive
semidefinite. The associated RKHS is the closure of linear span of the form f(-) = >_ -, w;K(-, z;),
where {z;}32, is some collection of points in X, and {w;}?2; is a real-valued sequence. For

two functions f1, fo € . which can be expressed as a finite sum f;(-) = Zflzl o;K(+, x;) and

fa() = Zfil B;K(-,2;), the inner product is defined as (f1, f2) » = Zf;l Efil a; B K(z;, )

with induced norm | f1 %, = Zflzl a?K(z;, ;). For each x € X, the function K(-, z) belongs to

A, and satisfies the reproducing relation (f, K(-,x)),» = f(x) forall f € 2.

Throughout this paper, we assume that the kernel function is uniformly bounded, meaning that there
is a constant L such that sup, ¢ » K(x,z) < L. Such a boundedness condition holds for many kernels
used in practice, including the Gaussian, Laplacian, Sobolev, other types of spline kernels, as well
as any trace class kernel with trignometric eigenfunctions. By rescaling the kernel as necessary, we
may assume without loss of generality that L. = 1. As a consequence, for any function f such that
|| f1l 2 < r, we have by the reproducing relation that

1 lloe = sup(f, KC, @)y < [[flle sup [KC, 2l <

Given samples {(x;,y;)}7_;, by the representer theorem [19], it is sufficient to restrict ourselves to
the linear subspace ¢, = span{K(-, z;)}"_,, for which all f € ¢, can be expressed as

1 n
f= 7 ;wiK(.,xi) (5)

for some coefficient vector w € R™. Among those functions which achieve the infimum in expression
(II]), let us define f* as the one with the minimum Hilbert norm. This definition is equivalent to
restricting f* to be in the linear subspace J%,.

2.3 Boosting in kernel spaces

For a finite number of covariates x; from 7 = 1...n, let us define the normalized kernel matrix
K € R™ " with entries K;; = K(z;,x;)/n. Since we can restrict the minimization of £,, and £
from 7 to the subspace .77, w.l.o.g., using expression (3) we can then write the function value
vectors f(z7) := (f(x1),..., f(x,)) as f(2]) = \/nKw. As there is a one-to-one correspondence
between the n-dimensional vectors f(x}) € R™ and the corresponding function f € 77, in J by
the representer theorem, minimization of an empirical loss in the subspace 7%, essentially becomes
the n-dimensional problem of fitting a response vector y over the set range(X ). In the sequel, all
updates will thus be performed on the function value vectors f(z7).

With a change of variable d(x}) = v/nV/K z we then have d*(x7) : = arg max (VL,,(f*), d(z})) =
lldll o<1
VKV L, (f)
VVLL(FORVLL(fY)
study ¢ = (VL,(f"), d'(«7))d" in the boosting update (3)), so that the function value iterates take
the form

, where the maximum is taken over vectors d € range(K). In this paper we

FHat) = f(@) — anK VL (f), (6)



where o > 0 is a constant stepsize choice. Choosing f°(z7) = 0 ensures that all iterates f*(x7)
remain in the range space of K. Our goal is to propose a stopping time 7' such that the averaged
function f = % Zle [ satisfies bounds of the type (@). Importantly, we exhibit such bounds with a
statistical error term d,, that is specified by the localized Gaussian complexity of the kernel class.

3 Main results

We now turn to the statement of our main results, beginning with the introduction of some regularity
assumptions.

3.1 Assumptions

Recall from our earlier set-up that we differentiate between the empirical loss function £,, in
expression (2), and the population loss £ in expression (I). Apart from assuming differentiability of
both functions, all of our remaining conditions are imposed on the population loss. Such conditions
at the population level are weaker than their analogues at the empirical level.

For a given radius r > 0, let us define the Hilbert ball around the optimal function f* as

Bow (f*r):={f € AN = f*llow <7} @)
Our analysis makes particular use of this ball defined for the radius C2, : = 2 max{|| f*||%,, 32,02},
where o is the effective noise level defined as
{mln {t | max E[e((Yif"@))*/1)] < oo} for least squares
g .=

i=1,...,n

4(2M +1)(1+2C) for ¢’-bounded losses.

We assume that the population loss is m-strongly convex and M-smooth over B (f*,2C ),
meaning that the sandwich inequality

m-M-condition |7 ~ g2 < £(f) ~ £(g) ~ (VE(g), f(F) —g(a1)) < T~ ol

holds for all f,g € Bz (f*,2C ). On top of that we assume ¢ to be M-Lipschitz in the second
argument. To be clear, here VL(g) denotes the vector in R™ obtained by taking the gradient of £
with respect to the vector g(z7). It can be verified by a straightforward computation that when L is
induced by the least-squares cost ¢(y,0) = 1(y — 0)?, the m-M-condition holds for m = M = 1.
The logistic and exponential loss satisfy this condition (see supp. material), where it is key that we
have imposed the condition only locally on the ball B » (f*,2C ).

®)

In addition to the least-squares cost, our theory also applies to losses £ induced by scalar functions ¢
that satisfy the following condition:

1o} 0
99(y.6) <B  forall f € By (f*,2C)andy € V.

00 e

G—f(iz)

This condition holds with B = 1 for the logistic loss for all V), and B = exp(2.5C ) for the
exponential loss for binary classification with ) = {—1, 1}, using our kernel boundedness condition.
Note that whenever this condition holds with some finite B, we can always rescale the scalar loss ¢
by 1/B so that it holds with B = 1, and we do so in order to simplify the statement of our results.

¢’-boundedness  max

i=1,..., n

3.2 Upper bound in terms of localized Gaussian width

Our upper bounds involve a complexity measure known as the localized Gaussian width. In general,
Gaussian widths are widely used to obtain risk bounds for least-squares and other types of M-
estimators. In our case, we consider Gaussian complexities for “localized” sets of the form

The Gaussian complexity localized at scale § is given by

Gn(€n(8,1)) := [ sup szg Z; } (10)

geEL(5 ) Vi



where (wy, ..., w,) denotes an i.i.d. sequence of standard Gaussian variables.

An essential quantity in our theory is specified by a certain fixed point equation that is now standard
in empirical process theory [32, 2,20, [26]]. The critical radius 6., is the smallest positive scalar such
that

En(d,1 )
1) o
We note that past work on localized Rademacher and Gaussian complexity [24} 2] guarantee that
there exists a unique §,, > 0 that satisfies this condition, so that our definition is sensible.

3.2.1 Upper bounds on excess risk and empirical L?(PP,, )-error

With this set-up, we are now equipped to state our main theorem. It provides high-probability bounds

on the excess risk and L2(IP,, )-error of the estimator f7 : = % Z?:l f* defined by averaging the T
iterates of the algorithm.

Theorem 1. Consider any loss function satisfying the m-M-condition and the ¢'-boundedness
condition (if not least squares), for which we generate function iterates { f*}3°, of the form (@) with
step size a € (0, min{ 45, M}, initialized at f° = 0. Then, if n is large enough such that 6,, < %,

for all iterations T' = 0,1, . .. Lﬁj, the averaged function estimate " satisfies the bounds
L) L) <M (— 53) d (122)
— —+ = an
- amT ~ m2/)’
7= 12 < O+ 22) (12b)
'~ “NamT  m2/’
where both inequalities hold with probability at least 1 — ¢; exp(—Co m?;éi )

In our statements, constants of the form c; are universal, whereas capital C; may depend on parameters

of the joint distribution and population loss £. In the previous theorem, Cy = {2"—22, 1} and C' depends
on the squared radius C%, : = 2max{||f*||%,, 32,02}. In order to gain intuition for the claims in
the theorem, note that (disregarding factors depending on (m, M)), for all iterations T < 1/42, the

2
first term ﬁ dominates the second term %, so that taking further iterations reduces the upper
bound on the error until 7' ~ 1/§2, at which point the upper bound on the error is of the order §2.

Furthermore, note that similar bounds as in Theoremﬂ]can be obtained for the expected loss (over the
response y;, with the design fixed) by a simple integration argument. Hence if we perform updates

with step size o = ﬁ after 7 : = m iterations, the mean squared error is bounded as
_ 52
|7 = f*lh < C" 5, (13)
m

where we use M > m and where C' is another constant depending on C . It is worth noting that
guarantee (I3) matches the best known upper bounds for kernel ridge regression (KRR)—indeed, this
must be the case, since a sharp analysis of KRR is based on the same notion of localized Gaussian
complexity. Thus, our results establish a strong parallel between the algorithmic regularization of
early stopping, and the penalized regularization of kernel ridge regression. Moreover, as discussed in
Section under suitable regularity conditions on the RKHS, the critical squared radius 62 also acts
as a lower bound for the expected risk, i.e. our upper bounds are not improvable in general.

Compared with the work of Raskutti et al. [26], which also analyzes the kernel boosting iterates of
the form (6), our theory more directly analyzes the effective function class that is explored in the
boosting process by taking 7' steps, with the localized Gaussian width appearing more naturally.
In addition, our analysis applies to a broader class of loss functions beyond least-squares.

In the case of reproducing kernel Hilbert spaces, it is possible to sandwich the localized Gaussian
complexity by a function of the eigenvalues of the kernel matrix. Mendelson [24] provides this
argument in the case of the localized Rademacher complexity, but similar arguments apply to the



localized Gaussian complexity. Letting 1 > po > - -+ > pp, > 0 denote the ordered eigenvalues of
the normalized kernel matrix /', define the function

(14)

Up to a universal constant, this function is an upper bound on the Gaussian width G,, (Sn(cS, 1)) for
all 6 > 0, and up to another universal constant, it is also a lower bound for all § > ﬁ

Note that the critical radius §2 only depends on our observations {(x;,y;)}?; through the solution
of inequality (IT). In many cases, with examples given in Section ] it is possible to compute or
upper bound this critical radius, so that a concrete stopping rule can indeed by calculated in advance.

3.3 Achieving minimax lower bounds

We claim that when the noise Y — f(x) is Gaussian, for a broad class of kernels, upper bound
matches the known minimax lower bound, thus is unimprovable in general. In particular, Yang et
al. [38]] define the class of regular kernels, which includes the Gaussian and Sobolev kernels as
particular cases. For such kernels, the authors provide a minimax lower bound over the unit ball of
the Hilbert space involving §,,, which implies that any estimator f has prediction risk lower bounded
as

sup  E[f - f*]2 > erd2. (15)
[[f*] e <1

Comparing the lower bound (T5) with upper bound (T3)) for our estimator f7 stopped after O(1/52)
many steps, it follows that the bounds proven in Theorem|I]are unimprovable apart from constant
factors. We summarize our findings in the following corollary:

Corollary 1. For the class of regular kernels and any function f* with || f*||.» < 1, running

T:= LWJ iterations with step size o = 3 and f° = 0 yields an estimate f* such that
E[lf7 = /I =< inf sup  E|f = f*|I5, (16)
Il lle<t

where the infimum is taken over all measurable functions of the input data and the expectation is
taken over the randomness of the response variables {Y;}1_;.

On a high level, the statement in Corollary |I|implies that stopping early essentially prevents us from
overfitting to the data and automatically finds the optimal balance between low training error (i.e.
fitting the data well) and low model complexity (i.e. generalizing well).

4 Consequences for various kernel classes

In this section, we apply Theorem [I]to derive some concrete rates for different kernel spaces and
then illustrate them with some numerical experiments. It is known that the complexity of a RKHS in
association with fixed covariates {x;}?_; can be characterized by the decay rate of the eigenvalues
{w;}7_; of the normalized kernel matrix K. The representation power of a kernel class is directly
correlated with the eigen-decay: the faster the decay, the smaller the function class.

4.1 Theoretical predictions as a function of decay

In this section, let us consider two broad types of eigen-decay:

e ~-exponential decay: For some v > 0, the kernel matrix eigenvalues satisfy a decay condition
of the form p1; < ¢; exp(—caj”), where ¢y, ¢ are universal constants. Examples of kernels in
this class include the Gaussian kernel, which for the Lebesgue measure satisfies such a bound
with v = 2 (real line) or v = 1 (compact domain).

e (-polynomial decay: For some 5 > 1/2, the kernel matrix eigenvalues satisfy a decay condition
of the form p; < ¢; j 28, where c; is a universal constant. Examples of kernels in this class



include the k*"-order Sobolev spaces for some fixed integer & > 1 with Lebesgue measure on
a bounded domain. We consider Sobolev spaces that consist of functions that have k*"-order
weak derivatives f(*) being Lebesgue integrable and f(0) = f(V(0) = --- = f+=1(0) = 0.
For such classes, the 8-polynomial decay condition holds with 8 = k.

Given eigendecay conditions of these types, it is possible to compute an upper bound on the critical
radius d,,. In particular, using the fact that the function R from equation (I4) is an upper bound
on the function G, (5 (9, 1)) we can show that for ~y-exponentially decaying kernels, we have

)1/ . 28 .
52 = %, whereas for 3-polynomial kernels, we have 62 < n™ 25+1 up to universal constants.
Combining with our Theorem|l| we obtain the following result:

Corollary 2 (Bounds based on eigendecay). Suppose we apply boosting with stepsize o = §} and

initialization f° = 0 on the empirical loss function L,, which satisfies the m-M-condition and
¢'-boundedness conditions, and is defined on covariate-response pairs {(x;,Y;)}_, with Y; drawn
Jfrom the distribution Py |,,. Then, the error of the averaged iterate fT satisfies the following upper
bounds with high probability, “<” neglecting dependence on problem parameters such as (m, M):

(a) For kernels with y-exponential eigen-decay with respect to {x; }1_;:
o /
IfF— 12 < logl# when stopped after T < ;

ﬁ steps.
(b) For kernels with B-polynomial eigen-decay with respect to {x;}1_;:
17 = £*112 < n=28/CBD) \vhen stopped after T < n?P/(28+1) steps.

In particular, these bounds hold for LogitBoost and AdaBoost.

To the best of our knowledge, this result is the first to show non-asymptotic and optimal statistical rates
for the || - ||2-error when using early stopping LogitBoost or AdaBoost with an explicit dependence
of the stopping rule on n. Our results also yield similar guarantees for L2-boosting, as has been
established in past work [26]. Note that we can observe a similar trade-off between computational
efficiency and statistical accuracy as in the case of kernel least-squares regression [39,[26]: although
larger kernel classes (e.g. Sobolev classes) yield higher estimation errors, boosting updates reach the
optimum faster than for a smaller kernel class (e.g. Gaussian kernels).

4.2 Numerical experiments

We now describe some numerical experiments that provide illustrative confirmations of our theoretical
predictions using the first-order Sobolev kernel as a typical example for kernel classes with polynomial
eigen-decay. In particular, we consider the first-order Sobolev space of Lipschitz functions on the
unit interval [0, 1], defined by the kernel K(z,2z’) = 1 + min(x, '), and with the design points
{z;} set equidistantly over [0, 1]. Note that the equidistant design yields 3-polynomial decay
of the eigenvalues of K with 3 = 1 so that 62 =< n~2/3. Accordingly, our theory predicts that the
stopping time T’ = (cn)?/? should lead to an estimate f7 such that || f7 — f*||2 < n=2/3,

n ~v

In our experiments for L2-Boost, we sampled Y; according to Y; = f*(z;) +w; with w; ~ N(0,0.5),
which corresponds to the probability distribution P(Y | ;) = N(f*(2;);0.5), where f*(x) =
|z — 4| — 1 is defined on the unit interval [0, 1]. By construction, the function f* belongs to the
first-order Sobolev space with || f*|| » = 1. For LogitBoost, we sampled Y; according to Bern(p(z;))

%}{f(?)) with the same f*. We chose f° = 0 in all cases, and ran the updates (6)

for L2-Boost and LogitBoost with the constant step size o« = 0.75. We compared various stopping
rules to the oracle gold standard G, which chooses the stopping time G' = arg min;>1 || f* — f*||2
that yields the minimum prediction error among all iterates {f'}. Although this procedure is
unimplementable in practice, but it serves as a convenient lower bound with which to compare.
Figure shows plots of the mean-squared error || f7 — £*||2 over the sample size n averaged over 40
trials, for the gold standard 7' = G and stopping rules based on T' = (7n)" for different choices of
. Error bars correspond to the standard errors computed from our simulations. Panel (a) shows the
behavior for L2-boosting, whereas panel (b) shows the behavior for LogitBoost.

where p(z) =

Note that both plots are qualitatively similar and that the theoretically derived stopping rule ' = (7n)"
with k* = 2/3 = 0.67, while slightly worse than the Gold standard, tracks its performance closely.
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Figure 2: The mean-squared errors for the stopped iterates f7 at the Gold standard, i.e. iterate with
the minimum error among all unstopped updates (blue) and at 7' = (7n)" (with the theoretically
optimal £ = 0.67 in red, x = 0.33 in black and x = 1 in green) for (a) L?-Boost and (b) LogitBoost.

We also performed simulations for some “bad” stopping rules, in particular for an exponent s not
equal to k* = 2/3, indicated by the green and black curves. In the log scale plots in Figure [3| we
can clearly see that for x € {0.33,1} the performance is indeed much worse, with the difference in
slope even suggesting a different scaling of the error with the number of observations n. Recalling
our discussion for Figure[I] this phenomenon likely occurs due to underfitting and overfitting effects.

Good versus bad rules: LogitBoost Good versus bad rules: LogitBoost
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Figure 3: Logarithmic plots of the mean-squared errors at the Gold standard in blue and at T = (7n)"
(with the theoretically optimal rule for k = 0.67 in red, x = 0.33 in black and x = 1 in green) for (a)
L?-Boost and (b) LogitBoost.

5 Discussion

In this paper, we have proven non-asymptotic bounds for early stopping of kernel boosting for a
relatively broad class of loss functions. These bounds allowed us to propose simple stopping rules
which, for the class of regular kernel functions [38]], yield minimax optimal rates of estimation.
Although the connection between early stopping and regularization has long been studied and
explored in the literature, to the best of our knowledge, this paper is the first one to establish a
general relationship between the statistical optimality of stopped iterates and the localized Gaussian
complexity, a quantity well-understood to play a central role in controlling the behavior of regularized
estimators based on penalization [32} 2| 20} 37].

There are various open questions suggested by our results. Can fast approximation techniques for
kernels be used to approximately compute optimal stopping rules without having to calculate all
eigenvalues of the kernel matrix? Furthermore, we suspect that similar guarantees can be shown for
the stopped estimator f7" which we observed to behave similarly to the averaged estimator f7 in our
simulations. It would be of interest to establish results on f7 directly.
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