
A Technical Lemmas

Lemma 2. Let Hb(p) := −p log2 p− (1− p) log2(1− p), be the binary entropy function. Then,

Hb(p) ≥ 1− 4(p− 1/2)2.

Proof First, note that the first two derivatives of H are
H ′b(p) = log2(1− p)− log2 p,

H ′′b (p) = − 1

ln(2)p(1− p)
.

We show that the following function

ϕ(p) := Hb(p)−

(
1− 4

(
p− 1

2

)2
)
,

is non-negative on [0, 1] (note that, since ϕ is continuous, it is bounded from below on [0, 1] and its
minimum is attained on some local minimum in [0, 1]). Let us locate all the extrema points of ϕ in
(0, 1). We have that,

ϕ′(p) = log2

(
1− p
p

)
+ 8

(
p− 1

2

)
.

Therefore, ϕ(1/2) = 0, and since

ϕ′′(p) =
−1

ln(2)x(1− x)
+ 8,

it follows that ϕ′′(1/2) > 0, which implies that p = 1/2 is a local minimum of ϕ. We claim that
there are exactly two more extrema points of ϕ which are in fact local maximum points. To this end,
note that

ϕ′′(p)


> 0 |p− 1/2| < c,

= 0 |p− 1/2| = c,

< 0 |p− 1/2| > c,

where c :=
√

1/4− 1/(8 ln(2)). Therefore, by Rolle’s Theorem, ϕ′ does not vanish in 0 <
|p − 1/2| ≤ c, and vanishes exactly once in p > 1/2 + c and exactly once in p < 1/2 − c. Since,
ϕ′′ is strictly negative in |p− 1/2| > c, it follows that the other two stationary points of ϕ′ are local
maxima of ϕ. All in all, we have that if p′ ∈ [0, 1] is a local minimum of ϕ, then p′ ∈ {0, 1/2, 1},
which implies that

ϕ(p) ≥ min{ϕ(0), ϕ(1/2), ϕ(1)} = 0,

concluding the proof.

Lemma 3. When applied on problem (14) with oracles (15), the coordinates of iterates produced by
oblivious stochastic CLIs form polynomials in µ with random coefficients (which do not depend on µ)
and whose degrees do not exceed the iteration number.

Proof Let A be an oblivious stochastic CLI, and suppose we apply A on the class of problems
(14) parametrized by µ, using oracles (15). We use mathematical induction to show that for any
k = 0, 1, . . . , the coordinates of the k’th iterate produced by such process can be expressed as
distributions over Pk, where Pk denotes the set of all real polynomials with degree ≤ k.

As the first iterate w(0)
i is allowed to depend only on L and n, the base case is trivial. For the inductive

step, assume that any coordinate of w(k)
i can be expressed as a distribution over Pk. Now, for any

w
(k)
i , the oracles answers of

Generalized first-order oracle:

O(w
(k)
i ;A,B, c, i) = A(Qµw

(k)
i − q) +Bw

(k)
i + c

Steepest coordinate-descent oracle:

O(w
(k)
i ; j, i) = (I − (1/(Qµ)jj)ei(Qµ)j,∗)w

(k)
i − qj/(Qµ)jjej (17)
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form a distribution over Pk+1, as the random quantities involved in the expressions (A,B, j and i)
do not depend on µ (due to obliviousness) and the rest of the terms are either constant or linear in µ.
Lastly, w(k+1)

i are computed by simply summing up all the oracle answers, and as such, form again
distributions over Pk+1.

Lemma 4. Let s(µ) be a real polynomial of degree ≤ k, and let L > 0. Then, there exists δ > 0
such that for any µ ∈ (L− δ, L) it holds that

|s(µ)µ+ 1| ≥ (1− µ/L)k+1.

Proof Assume for the sake of contradiction that for any δ > 0, there exists µ ∈ (L− δ, L) such that

|s(µ)µ+ 1| <
(

1− µ

L

)k+1

.

Define

q(µ) := s (L(1− µ))L(1− µ) + 1 (18)

and denote the corresponding coefficients by q(µ) =
∑k+1
j=0 qiµ

j . We show by induction that
qj = 0 for all j = 0, . . . , k. For j = 0 we have that since for any δ > 0 there exists some
µ̂ ∈ (0, 1− (L− δ)/L) such that

|q(µ̂)| <
(

1− L(1− µ̂)

L

)k+1

= µ̂k+1,

it holds, by continuity, that

|q0| = |q(0)| =
∣∣∣∣ lim
µ→0+

q(µ)

∣∣∣∣ ≤ lim
µ→0+

µk+1 = 0.

Now, if q0 = · · · = qm−1 = 0 for m < k + 1 then

|qm| =
∣∣∣∣q(0)

µm

∣∣∣∣ =

∣∣∣∣ lim
µ→0+

q(µ)

µm

∣∣∣∣ ≤ lim
t→0+

µk+1−m = 0.

Thus, proving the induction claim. This, in turns, implies that q(µ) = qk+1µ
k+1. Now, by Equa-

tion (18), it follows that qk+1 = q(1) = 1. Hence, q(µ) = µk+1. Lastly, using Equation (18) again
yields

s(µ)µ+ 1 = q
(

1− µ

L

)
=
(

1− µ

L

)k+1

,

which contradicts our assumption, thus concluding the proof.
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