A Technical Lemmas

Lemma 2. Let Hy(p) = —plogy p — (1 — p)logy(1 — p), be the binary entropy function. Then,
Hy(p) > 1 —4(p - 1/2)%.

Proof First, note that the first two derivatives of H are
Hy(p) = logy(1 — p) — log, p,
1
HY(p) =~
’ In(2)p(1 — p)
We show that the following function

¢(p) = Hy(p) — (1 —4 (p - ;)2> :

is non-negative on [0, 1] (note that, since ¢ is continuous, it is bounded from below on [0, 1] and its
minimum is attained on some local minimum in [0, 1]). Let us locate all the extrema points of ¢ in

(0,1). We have that,
1—p 1
‘(p)=logy [—L)+8(p-=).
¢'(p) 0g2< ’ >+ (p 2)

Therefore, ¢(1/2) = 0, and since

- -1

- In(2)z(1 - )
it follows that ¢(1/2) > 0, which implies that p = 1/2 is a local minimum of . We claim that

there are exactly two more extrema points of ¢ which are in fact local maximum points. To this end,
note that

¢"(p) + 8,

>0 |p—1/2| <e,
¢"(p) =0 Ip—1/2|=¢,
<0 |p—1/2|>c¢,

where ¢ == /1/4 —1/(81n(2)). Therefore, by Rolle’s Theorem, ¢’ does not vanish in 0 <
|p — 1/2| < ¢, and vanishes exactly once in p > 1/2 + ¢ and exactly once in p < 1/2 — ¢. Since,
" is strictly negative in |p — 1/2| > ¢, it follows that the other two stationary points of ¢’ are local
maxima of ¢. All in all, we have that if p’ € [0, 1] is a local minimum of ¢, then p’ € {0,1/2,1},
which implies that

(p) = min{p(0), p(1/2),¢(1)} =0,
concluding the proof. |

Lemma 3. When applied on problem with oracles (I3)), the coordinates of iterates produced by
oblivious stochastic CLIs form polynomials in p with random coefficients (which do not depend on 1)
and whose degrees do not exceed the iteration number.

Proof Let A be an oblivious stochastic CLI, and suppose we apply A on the class of problems
(T4) parametrized by f, using oracles (I5). We use mathematical induction to show that for any
k = 0,1,..., the coordinates of the k’th iterate produced by such process can be expressed as
distributions over Py, where Pj, denotes the set of all real polynomials with degree < k.

(0)

As the first iterate w, ~ is allowed to depend only on L and n, the base case is trivial. For the inductive

step, assume that any coordinate of wgk) can be expressed as a distribution over Py. Now, for any
wgk), the oracles answers of

Generalized first-order oracle:
O(wgk); A, B,c,i) = A(prl(k) —-q)+ sz(»k) +c

Steepest coordinate-descent oracle:

Ow®M: j,i) = (I = (1/(Qu);5)ei(Qu) ) W — 4;/(Q,)15€5 (17)
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form a distribution over Py 1, as the random quantities involved in the expressions (A, B, j and )

do not depend on p (due to obliviousness) and the rest of the terms are either constant or linear in .

(k+1)

Lastly, w; are computed by simply summing up all the oracle answers, and as such, form again

distributions over Py 1. [ |

Lemma 4. Let s(u) be a real polynomial of degree < k, and let L > 0. Then, there exists 6 > 0
such that for any u € (L — 0, L) it holds that

[s(u)p+1] > (1= p/L)*1.

Proof Assume for the sake of contradiction that for any 6 > 0, there exists u € (L — d, L) such that

s+ 1< (1= )

L
Define
q(p) =s(L(1—p)) L(1 —p) +1 (18)
and denote the corresponding coefficients by ¢(u) = Z;té giiV. We show by induction that
g; = 0forall j = 0,...,k. For j = 0 we have that since for any § > 0 there exists some

€ (0,1 — (L —§)/L) such that

NN
(o] < (1= HEZE) g

it holds, by continuity, that

=|q(0)] = | U < i k+1 _ 0,
o = 1a0) = | Jim_alo)| <t
Now, if g = -+ = gm—1 = 0form < k + 1 then
0
|gm| = ‘Q()‘ = | lim Q(“)’ < lim phti=m =,
A p—0+ pm t—0+

Thus, proving the induction claim. This, in turns, implies that ¢(i) = gz 14", Now, by Equa-

tion , it follows that gz, 1 = q(1) = 1. Hence, q(u) = u***. Lastly, using Equation again

yields
s 1=a1-2) = (1)

which contradicts our assumption, thus concluding the proof. |
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