
Supplemental Information

This supplement contains proofs, additional derivations and experimental results that complement
the material in the Main Text.

A Proof of Theorem

Denote by p0 the true distribution that gives rise to the observations in X . Consider inference for p0

under the DPM model forX . Let µ0(x) = p0(k(·, x)) ∈ H denote the exact kernel mean. Let ‖ ·‖H
and 〈·, ·〉H denote the norm and inner product associated with H. An important bound is derived
from Cauchy-Schwarz:∣∣∣∣∣p0(f0)−

n∑
i=1

wif0(xi)

∣∣∣∣∣ ≤ ‖f0‖H

∥∥∥∥∥µ0 −
n∑
i=1

wik(·, xi)

∥∥∥∥∥
H

This motivates us to study approximation of the kernel mean µ0 in a Hilbert space context. Let
µ(x) = p(k(·, x)) ∈ H be the generic unknown kernel mean in the case where p is an uncertain
distribution. The reproducing property inH can be used to bound kernel mean approximation error:

‖µ0 − µ‖2H = 〈µ0 − µ, µ0 − µ〉H

=

〈∫
k(·, x)(p0(x)− p(x))dx,∫

k(·, x′)(p0(x′)− p(x′))dx′
〉
H

=

∫∫
〈k(·, x), k(·, x′)〉H(p0(x)− p(x))(p0(x′)− p(x′)) dxdx′

≤ sup
x,x′∈Ω

|k(x, x′)| × ‖p0 − p‖21

≤ 4 sup
x,x′∈Ω

|k(x, x′)| × dHell(p0, p)
2.

The DPM model provides a posterior distribution over p(dx); in turn this implies a posterior
distribution over the kernel mean µ(x). Denote the Hellinger distance dHell(p0, p) and recall
that, for two densities p0, p, we have ‖p0 − p‖1 ≤ 2dHell(p0, p). Under assumptions (A2-
5) of the theorem, [8, Thm. 6.2] established that the DP location-scale mixture model satisfies
dHell(p0, p) = OP (n−1/2+ε), where ε > 0 denotes a generic positive constant that can be arbitrarily
small. Thus, in the posterior, ‖µ0 − µ‖2H = OP (n−1+ε).

Let µ0,n(·) = µ0(X)k(X,X)−1k(X, ·) ∈ H. The idealised BQ posterior, where p(dx) is known,
takes the form

[p(f) | p0, X, f0(X)] = N(〈f0, µ0,n〉H, ‖µ0 − µ0,n‖2H),

as shown in [3]. Let µn(·) = µ(X)k(X,X)−1k(X, ·) ∈ H. For the DPMBQ posterior, where
p(dx) is unknown, we have the conditional distribution

[p(f) | p,X, f0(X)] = N(〈f0, µn〉H, ‖µ− µn‖2H).

Our aim is to relate the DPMBQ posterior to the idealised BQ posterior. To this end, it is claimed
that:

‖µ0 − µn‖2H ≤ ‖µ0 − µ0,n‖2H + n1/2‖µ0 − µ‖2H. (1)
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Here we have decomposed the estimation error µ0 − µn into a term µ0 − µ0,n, that represents the
error of the idealised BQ method, and a term µ0−µ that captures the fact that the true mean element
µ0 is unknown.

To prove the claim, we follow Lemma 2 in [3]: Write ε(X) = µ(X)− µ0(X) and deduce that

‖µ0 − µn‖2H

=

∥∥∥∥∫ k(x, ·)p0(dx)− µ(X)>k(X,X)−1k(X, ·)
∥∥∥∥2

H

= p0 ⊗ p0(k)− 2µ(X)>k(X,X)−1µ0(X) + µ(X)>k(X,X)−1µ(X)

= p0 ⊗ p0(k)− 2(ε(X) + µ0(X))>k(X,X)−1µ0(X)

+(ε(X) + µ0(X))>k(X,X)−1(ε(X) + µ0(X))

= p0 ⊗ p0(k)− 2µ0(X)>k(X,X)−1µ0(X) + µ0(X)>k(X,X)−1µ0(X)

+ε(X)>k(X,X)−1ε(X)

= ‖µ0 − µ0,n‖2H + ε(X)>k(X,X)−1ε(X). (2)

LetH⊗H denote the tensor product of Hilbert spaces [1, Sec. 1.4.6]. Then the second term in Eqn.
2 is non-negative and can be bounded using the reproducing properties of bothH andH⊗H:

ε(X)>k(X,X)−1ε(X) =

n∑
i,i′=1

[k(X,X)−1]i,i′〈µ− µ0, k(·, xi)〉H〈µ− µ0, k(·, xi′)〉H

=

〈
(µ− µ0)⊗ (µ− µ0),

n∑
i,i′=1

[k(X,X)−1]i,i′
×k(·, xi)⊗ k(·, xi′)

〉
H⊗H

≤ ‖µ0 − µ‖2H

∥∥∥∥∥∥
n∑

i,i′=1

[k(X,X)−1]i,i′k(·, xi)⊗ k(·, xi′)

∥∥∥∥∥∥
H⊗H

,

where the final inequality is Cauchy-Schwarz. The latter factor evaluates to n1/2, again using the
reproducing property forH⊗H:∥∥∥∥∥

n∑
i=1

n∑
i′=1

[k(X,X)−1]i,i′k(·, xi)⊗ k(·, xi′)

∥∥∥∥∥
2

H⊗H

=
∑

i,i′,j,j′

[k(X,X)−1]i,i′ [k(X,X)−1]j,j′
×〈k(·, xi)⊗ k(·, xi′), k(·, xj)⊗ k(·, xj′)〉H⊗H

=
∑

i,i′,j,j′

[k(X,X)−1]i,i′ [k(X,X)−1]j,j′ [k(X,X)]i,j [k(X,X)]i′,j′

= tr[k(X,X)k(X,X)−1k(X,X)k(X,X)−1]

= n.

This establishes that the claim holds.

From Lemmas 1 and 3 in [3], we have that the idealised BQ estimate based on the bounded kernel k
satisfies ‖µ0 − µ0,n‖H = OP (n−1/2). Indeed, ‖µ0 − µ0,n‖H ≤ ‖µ0 − µ̂0,n‖H, where

µ̂0,n =
1

n

n∑
i=1

k(·, xi)

is the Monte Carlo estimate for the kernel mean [Lemma 3 of 3]. As k is bounded, the norm
‖µ0 − µ̂0,n‖H vanishes as OP (n−1/2) [Lemma 1 of 3]. Combining the above results in Eqn. 1, we
obtain

‖µ0 − µn‖2H = OP (n−1) + n1/2 ×OP (n−1+ε)

= OP (n−1/2+ε).
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To finish, recall that for DPMBQ we have the random variable representation

p(f) = 〈f0, µn〉H + ‖µ− µn‖H ξ,

where ξ ∼ N(0, 1) is independent of X . Thus, from the triangle inequality followed by Cauchy-
Schwarz:

|p0(f0)− p(f)| = |〈f0, µ0〉H − 〈f0, µn〉H − ‖µ− µn‖H ξ|
≤ |〈f0, µ0 − µn〉H|+ ‖µ− µn‖H |ξ|
≤ |〈f0, µ0 − µn〉H|+ [‖µ− µ0‖H + ‖µ0 − µn‖H] |ξ|
≤ ‖f0‖H‖µ0 − µn‖H +OP (n−1/2+ε) +OP (n−1/4+ε)

= OP (n−1/4+ε).

Denote the DPMBQ posterior distribution with Pn = [p(f) | X, f(X)]. Then for δ > 0 fixed, the
posterior mass Pn[(∞, p0(f0)− δ) ∪ (p0(f0) + δ,∞)] = OP (n−1/4+ε). This completes the proof.

B Computational Details

This section describes the computation for DPMBQ. The model admits the following straight-
forward sampler:

1. draw θ from the hyper-prior [θ]

2. draw φ1:n from [φ1:n | X, θ] (via a Gibbs sampler)

3. draw p from [dp | φ1:n] (via stick-breaking)

4. draw p(f) from [p(f) | X, f(X), p, θ] (via BQ)

For step (2), it is convenient (but not essential) to use a conjugate base distribution Pb. In the
case of a Gaussian model ψ, the normal inverse-gamma distribution, parametrised with µ0 ∈ R,
λ0, α0, β0 ∈ (0,∞), permits closed-form conditionals and facilitates an efficient Gibbs sampler.
Full details are provided in supplemental Sec. B.1. (Note that the conjugate base distribution does
not fall within the scope of the theorem; however the use of a more general Metropolis-within-
Gibbs scheme enables computation from such models with trivial modification.) In all experiments
below we fixed hyper-parameters to default values λ0 = α0 = β0 = 1, µ0 = 0; there was no
noticeable dependence of inferences on these choices, which are several levels removed from p(f),
the unknown of interest.

This direct scheme admits several improvements: e.g. (a) stratified or QMC sampling of θ in step
(1); (b) Rao-Blackwellisation of the additional randomisation in p(f), to collapse steps (3) and (4)
[2]; (c) the Gibbs sampler of [5] can be replaced by more sophisticated alternatives, such as [11].
Indeed, one need not sample from the prior [θ] and instead target the hyper-parameter posterior
with MCMC. In experiments, the straight-forward scheme outlined here was more than adequate to
obtain samples from the DPMBQ model. Thus we implemented this basic sampler and leave the
above extensions as possible future work.

B.1 Gibbs Sampler

This section derives the conditional distributions that are needed for an efficient Gibbs sampler that
targets [φ | X, θ]. The main result is presented in the proposition below:

Proposition. Consider the multivariate Gaussian model ψ(dx;φ) = N(dx|φ1, diag(φ2)), with
mean vector φ1 ∈ Rd and marginal variance vector φ2 ∈ Rd. Consider the base distribution
Pb(dφ) composed of independent normal inverse-gamma NIG(φ1,k, φ2,k|µ0, λ0, α0, β0) compo-
nents with µ0 ∈ R, λ0, α0, β0 ∈ (0,∞) for k = 1, . . . , d. Denote φi = (φi,1, φi,2) and
φ(−i) = (φ1, . . . , φi−1, φi+1, . . . , φn). For this conjugate choice, we have the closed-form pos-
terior conditional

[φi | φ(−i), X, θ] = ω0Qi +
∑
j 6=i

ωjδφj
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where Qi is composed of independent NIG(φi,1,k, φi,2,k|µi,k, λi,k, αi,k, βi,k) components and[
ω0

ωj

]
∝

[
α
∏d
k=1

1
2π1/2

λ
1/2
0

λ
1/2
i,k

β
α0
0

β
αi,k
i,k

Γ(αi,k)
Γ(α0)

N(xi|φj,1, diag(φj,2))

]

µi,k =
λ0µ0 + xi,k
λ0 + 1

λi,k = λ0 + 1

αi,k = α0 +
1

2

βi,k = β0 +
1

2
(λ0µ

2
0 + x2

i,k − λi,kµ2
i,k).

Proof. From Theorem 1 of [6], also known as “Bayes’ theorem for DPs”, we have that the prior
P ∼ DP(α, Pb) and the likelihood φi ∼ P (independent) lead to a posterior

P | φ(−i) ∼ DP

α+ n− 1,
1

α+ n− 1

αPb +
∑
j 6=i

δφj

 .

It follows that, for a measurable set A,

Prob[φi ∈ A | φ(−i)] = E[P (A) | φ(−i)]

=
1

α+ n− 1

αPb(A) +
∑
j 6=i

δφj (A)

 .

From (standard) Bayes’ theorem,

[φi | φ(−i)] =
[X | φ1:n] [φi | φ(−i)]

[X | φ(−i)]

∝ [X | φ1:n] [φi | φ(−i)] ∝ [xi | φi] [φi | φ(−i)]

and combining the two above results, in the case of a Gaussian model ψ(dxi;φi) with mean vector
φi,1 and marginal variance vector φi,2, leads to

[φi | φ(−i)] ∝ N(xi|φi,1, diag(φi,2))×

αPb(φi) +
∑
j 6=i

δφj (φi)


= αN(xi|φi,1, diag(φi,2))Pb(φi) +

∑
j 6=i

N(xi|φj,1, diag(φj,2))δφj (φi),

where φi = (φi,1, φi,2) with φi,1 ∈ Rd and φi,2 ∈ (0,∞)d.

For closed-form expressions, Pb must be taken conjugate to the Gaussian model:

Pb(φi) =

d∏
k=1

NIG(φi,1,k, φi,2,k|µ0, λ0, α0, β0)

=

d∏
k=1

N(φi,1,k|µ0, λ
−1
0 φi,2,k)IG(φi,2,k|α0, β0),

in the obvious notation φi,j = (φi,j,1, . . . , φi,j,d). Thus

N(xi|φi,1, diag(φi,2))Pb(φi) = N(xi|φi,1, diag(φi,2))

×
d∏
k=1

NIG(φi,1,k, φi,2,k|µ0, λ0, α0, β0)

= ω0 ×
d∏
k=1

NIG(φi,1,k, φi,2,k|µi,k, λi,k, αi,k, βi,k),
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where

ω0 =

d∏
k=1

1

2π1/2

λ
1/2
0

λ
1/2
i,k

βα0
0

β
αi,k
i,k

Γ(αi,j)

Γ(α0)

µi,k =
λ0µ0 + xi,k
λ0 + 1

λi,k = λ0 + 1

αi,k = α0 +
1

2

βi,k = β0 +
1

2
(λ0µ

2
0 + x2

i,k − λi,kµ2
i,k).

This completes the proof.

In all experiments the Gibbs sampler was initialised at φi,1,k = xi,k and φi,2,k = 1 and run until a
convergence criteria was satisfied. In this way we produced samples from [φ1:n | X, θ] for the direct
sampling scheme outlined in the main text.

B.2 Tensor Structure for Multi-Dimensional Integrals

This section describes how multi-dimensional integration problems on a tensor-structured domain
Ω = Ω1 ⊗ · · · ⊗ Ωd can be decomposed into a tensor product of univariate integration problems.
This construction was used to produce the results in the Main Text, as well as in Sec. C.2 of the
Supplement.

Assume a tensor product kernel

k(x, x′) = k1(x1, x
′
1)× · · · × kd(xd, x′d)

on Ω× Ω, together with a product model

ψ(dx;φ) = ψ1(dx1;φ1)× · · · × ψd(dxd;φd).
Then a generic draw from [p | φ1:n] has the form

p(dx) =

∞∑
j=1

wjψ1(dx1;ϕj,1)× · · · × ψd(dxd;ϕj,d),

where ϕj ∼ P are independent with ϕj = (ϕj,1, . . . , ϕj,d), and the corresponding kernel mean is

µ(x) =

∞∑
j=1

wj

d∏
i=1

(∫
Ωi

ki(xi, x
′
i)ψi(x

′
i;ϕj,i)dx

′
i

)
.

The initial error p⊗ p(k) is derived as

p⊗ p(k) =

∞∑
j,j′=1

wjwj′
d∏
i=1∫

Ωi

ki(xi, x
′
i)ψi(xi;ϕj,i)ψi(x

′
i;ϕj,i)dxidx

′
i.

For an efficient Gibbs sampler, as in Sec. B.1, the prior model on the mixing distribution P (dφ) was
taken as a tensor product of DP(α, Pb,i) priors where Pb,i(dxi) is a base distribution on Ωi. The
experiments of Sec. C.2 were performed as explained above, where the individual components ki,
ψi and Pb,i were taken to be the same as used for the simulation examples in Sec. C.

C Experimental Set-Up and Results

Two simulation studies were undertaken, based on polynomial test functions where the true integral
is known in closed-form (Sec. C.1) and based on differential equations where the true integral must
be estimated with brute-force computation (Sec. C.2).
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C.1 Flexible Polynomial Test Bed

To assess the performance of the DPMBQ method, we considered independent data x1, . . . , xn
generated from a known distribution p(dx). In addition, the function f(x) was fixed and known, so
that overall the exact value of the integral p(f) provided a known benchmark.

For illustration, we focused on the generic class of one-dimensional test problems obtained when
p(dx) is a Gaussian mixture distribution

p(dx) =

m∑
i=1

riN(dx; ci, s
2
i )

defined on Ω = R, where ci ∈ R, ri, si ∈ [0,∞),
∑m
i=1 ri = 1, and the function f(x) is a

polynomial

f(x) =

q∑
i=1

aix
bi

where ai ∈ R and bi ∈ N0. For this problem class, the integral p(f) is computable in closed-form
and the generic approximation properties of Gaussian mixtures and polynomials provide an expres-
sive test-bed. In addition, the GP prior with mean function mθ(x) = 0 and Gaussian covariance
function

kθ(x, x
′) = ζ exp(−(x− x′)2/2λ2)

was employed with ζ = 1 fixed. This choice provides a closed-form kernel mean for assessment
purposes, with standard Gaussian calculations analogous to those performed in the Main Text.

Illustration Consider the toy problem where f(x) = 1 + x − 0.1x3, p(dx) = N(dx; 0, 1), such
that the true integral p(f) = 1 is known in closed-form. For the kernel kθ we initially fixed the
hyper-parameter λ at a default value λ = 1. The concentration hyper-parameter α was initially
fixed to α = 1 (the unit information DP prior). For all experiments, the stick breaking construction
described in the Main Text was truncated after the first N = 500 terms; at this level results were
invariant to further increases in N . In Fig. 1 we present realisations of the posterior distributions
[µ | X] and [p(f) | X, f(X)] at two sample sizes, (a) n = 10 and (b) n = 100. In this case each
posterior contains the true value p0(f0) of the integral in its effective support region. The posterior
variance is greatly inflated with respect to the idealised case in which p(dx), and hence the kernel
mean µ, is known. This is intuitively correct and reflects the increased difficulty of the problem in
which both f(x) and p(dx) are a priori unknown.

Detailed Results To explore estimator convergence in detail, we considered the general simulation
set-up above and measured estimator performance with the Wasserstein (or earth movers’) distance:

W =

∫
|p(f)− p0(f0)| d[p(f) | X, f(X)].

Consistent estimation, as defined in the Main Text, is implied by convergence in Wasserstein dis-
tance. It should be noted that consistent estimation does not imply correct coverage of posterior
credible intervals [7]; this aspect is left for future work.

There are three main questions that we address below; these concern dependence of the approxima-
tion properties of the posterior [p(f) | X, f(X)] on (i) the number n of data, (ii) the complexity of
the distribution p(dx), and (iii) the complexity of the function f(x). Our results can be summarised
as follows:

• Effect of the number n of data: As n increases, we expect contraction of the posterior
measure over [µ | X] onto the true kernel mean. Hence, in the limit of infinite data, the re-
sultant integral estimates will coincide with those of BQ. However, the rate of convergence
of the proposed method could be much slower compared to the idealised case in which
p(dx), and hence µ(x), is a priori known.
The problem of Fig. 1 was considered in a more general setting where the hyper-parameters
θ are assigned prior distributions and are subsequently marginalised out. For these results,
the kernel parameter λ was assigned a Gam(2, 1) hyper-prior and the concentration param-
eter α was assigned a Exp(1) hyper-prior; these were employed for the remainder.
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Figure 1: Illustration; computation of p(f) where both f(x) and p(dx) are a priori unknown. Partial
information on p(dx) is provided as n draws xi ∼ p(dx). Partial information on f(x) is provided
by the values f(xi) at each of the n locations. Left: Bayesian estimation of the kernel mean µ,
that characterises the unknown distribution p(dx). Right: Posterior distribution over the value of the
integral p(f) (dashed line); for reference, the truth (red line) and the posterior that would be obtained
if p(dx) was known (dotted line) are also shown. Two sample sizes, (top) n = 10, (bottom) n = 100,
are presented.

Results in Fig. 3 showed that the posterior [p(f) | X, f(X)] appears to converge to the true
value of the integrand (in the Wasserstein sense) as the number n of data are increased. The
slope of the trend line was ≈ −1/4, in close agreement with the theoretical analysis. This
does not resemble the rapid posterior contraction results established in BQ when p(dx) is a
priori known, which can be exponential for the Gaussian kernel [3]. This reflects the more
challenging nature of the estimation problem when p(dx) is unavailable in closed-form.

• Effect of the complexity of p(dx): It is anticipated that a more challenging inference
problem for p(dx) entails poorer estimation performance for p(f). To investigate, the
complexity of p(dx) was measured as the number m of mixture components. For this
experiment, the number m of mixture components was fixed, with weights (r1, . . . , rm)
drawn from Dir(2). The location parameters ci were independent draws from N(0, 1) and
the scale parameters si were independent draws from Exp(1).

Results in Fig. 2 (left), which were based on n = 20, did not demonstrate a clear effect.
This was interesting and can perhaps be explained by the fact that µ(x) is a kernel-smoothed
version of p(dx) and thus is somewhat robust to fluctuations in p(dx).
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Figure 2: Empirical investigation. The Wasserstein distance, W , between the posterior
[p(f) | X, f(X)] and the true value of the integral is presented as a function of (left) the number
m of mixture components that constitute p(dx), and (right) the degree q of the polynomial function
f(x) whose integral is to be determined. [Circles represent independent realisations of W , while in
(right) a linear trend line (red) is shown.]
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Figure 3: Empirical investigation. The example of Fig. 1 was again considered, this time
marginalising over hyper-parameters λ and α. The Wasserstein distance, W , between the poste-
rior [p(f) | X, f(X)] and the true value of the integral, is presented as a function of the number n
of data points. [Circles represent independent realisations, while a linear trend line (red) is shown.]

• Effect of the complexity of f(x): A more challenging inference problem for f(x) ought
to also entails poorer estimation. To investigate, the complexity of f(x) was measured as
the degree q of this polynomial. For each experiment, q was fixed and the coefficients ai
were independent draws from N(0, 1).
Results in Fig. 2 (right), based on n = 20, showed that the posterior was more accurate for
larger q, this time in agreement with intuition.

C.2 Goodwin Oscillator

Our second simulation experiment considered the computation of Bayesian forecasts based on a
5-dimensional computer model.

For a manageable benchmark we took a computer model that is well-understood; the Goodwin os-
cillator, which is prototypical for larger models of complex chemical systems [9]. The oscillator
considers a competitive molecular dynamic, expressed as a system of ordinary differential equations
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Figure 4: Application to Bayesian forecasting. Left: Data on two species, S1 and S2, generated
from the Goodwin oscillator, a system of differential equations that contain five unknown param-
eters. The forecast p(f) under consideration is the posterior expected concentration of species S1

at the later time point t = 50. Right: The Wasserstein distance, W , from the proposed posterior
[p(f) | X, f(X)] to the true integral is shown. Here n represents the number of samples xi that
were obtained from the posterior [x | y] over the unknown parameters.

(ODEs), that induces oscillation between the concentration zi(t;x) of two species Si (i = 1, 2).
Parameters, denoted x and a priori unknown, included two synthesis rate constants, two degrada-
tion rate constants and one exponent parameter. Full details, that include the prior distributions over
parameters used in the experiment below, can be found in [12]. From an experimental perspec-
tive, we suppose that concentrations of both species are observed at 41 discrete time points tj with
uniform spacing in [0, 40]. Observation occurred through an independent Gaussian noise process
yi,j = zi(tj ;x) + εi,j where εi,j ∼ N(0, 0.12). Data-generating parameters were identical to [12]
with model dimension g = 3. Fig. 4 (left) shows the full data y = (yi,j).

The forecast that we consider here is for the concentration of S1 at the later time t = 50. In particular
we defined f(x) to be equal to z1(50) and obtained n samples xi from the posterior [x | y] using
tempered population Markov chain Monte Carlo (MCMC), in all aspects identical to [12]. Then,
f(xi) was evaluated and stored for each xi; the locations X = (xi) and function evaluations f(X)
are the starting point for the DPMBQ method.

This prototypical model is small enough for numerical error to be driven to zero via repeated nu-
merical simulation of the ODEs, providing us with a benchmark. Nevertheless, the key features that
motivate our work are present here: (i) The forecast function f(x) is expensive and black-box, being
a long-range solution of a system of ODEs and requiring that the global solution error is carefully
controlled. (ii) The task of obtaining samples xi is costly, as each evaluation of the likelihood [y | x],
and hence the posterior [x | y], requires the solution of a system of ODEs.

Performance was examined through the Wasserstein distance to the true forecast p0(f0), the latter
obtained through brute-force simulation. The multi-dimensional integral was modelled as a tensor
product of one-dimensional integrals, as described in Sec. B.2 in the supplement. This allowed the
uni-variate model from Sec. C to be re-used at minimal effort. Results, in Fig. 4 (right), indicated
that the posterior was consistent. Note that the Wasserstein distances are large for this problem,
reflecting the greater uncertainties that are associated with a 5-dimensional integration problem with
only n < 102 draws from p(dx).

An extension of this framework, not considered here, would use a probabilistic ODE solver in tan-
dem with DPMBQ to model the approximate nature of numerical solution to the ODEs in the re-
ported forecasts [13, 10].
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C.3 Cardiac Model Experiment

Test Functionals gj Used in the Cardiac Model Experiment The 10 functionals gj , that are the
basis for clinical data on the cardiac model in the main text, are defined in the next paragraph:

The left ventricle pressure curve during baseline activation is characterised by the peak value (Peak
Pressure), the time of the peak value (Time to Peak) and the time for pressure to rise (Upstroke
Time) from 5% of the pressure change to the peak value and then fall back down (Down Stroke
Time). The volume transient is described by the ratio of the left ventricle volume of blood ejected
over the maximal left ventricle volume (Ejection Fraction), the time that the ventricle volume has
decreased by 5% of the maximal volume (Start Ejection Time) and the time taken between the
start of ejection and the point where the heart reaches its smallest left ventricle volume (Ejection
Duration). The effect of pacing the heart is measured by the percentage change in the maximum rate
of pressure development at baseline (Ref dPdt) and during pacing (Peak dPdt), defined as the acute
haemodynamic response (Response).

Brute-Force Computation for a Benchmark The samples {xi}ni=1 from p(dx) can in principle
be obtained via any sophisticated Markov chain Monte Carlo (MCMC) methods, such as [14, 4].
Recall that each evaluation of p(dx) requires ≈ 103 hours, so that the MCMC method must be
efficient. To reduce the computational overhead required for this project, we circumvented MCMC
and instead exploited an existing, detailed empirical approximation to p(dx) that had been pre-
computed by a subset of the authors. This consisted of a collection of m ≈ 103 weighted states
(xi, pi), where the xi were selected via an ad-hoc adaptive Latin hypercube method, and such that
the weights pi ∝ p(xi). Then, in this work, an (approximate) sample of size n � m was obtained
by sampling with replacement from the empirical distribution defined by this weighted point set. For
our assessment of DPMBQ, benchmark values for each integral were computed as Σmi=1pif(xi) for
m ≈ 103; note that this required a total of ≈ 105 CPU hours and would not be routinely practical.
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