
Causal Effect Inference with
Deep Latent-Variable Models

Christos Louizos
University of Amsterdam
TNO Intelligent Imaging
c.louizos@uva.nl

Uri Shalit
New York University

CIMS
uas1@nyu.edu

Joris Mooij
University of Amsterdam
j.m.mooij@uva.nl

David Sontag
Massachusetts Institute of Technology

CSAIL & IMES
dsontag@csail.mit.edu

Richard Zemel
University of Toronto

CIFAR∗

zemel@cs.toronto.edu

Max Welling
University of Amsterdam

CIFAR∗

m.welling@uva.nl

Appendix

A. Simple example where one should not adjust for proxy variables

Let Z,X, t,y all be binary variables following the graphical model in Figure 1(a). Assume the
following model:

1. p(Z = 1) = p(Z = 0) = 0.5.

2. p(X = 1|Z = 1) = p(X = 0|Z = 0) = ρx.

3. p(t = 1|Z = 1) = p(t = 0|Z = 0) = ρt.

4. y = t⊕ Z (y is deterministic)

We will look at the quantity p(y|do(t = 1) and show that one should not simply adjust for X when
computing it. We have the following identities:

p(y = 1|do(t = 1)) =∑
z

p(y = 1|do(t = 1),Z = z)p(Z = z|do(t = 1)) =∑
z

p(y = 1|t = 1,Z = z)p(Z = z|t = 1) =∑
z

p(y = 1|t = 1,Z = z)p(Z = z) =

p(z = 0) = 0.5.
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The covariate adjustment formula if we treated X as if it’s the only confounder:

pwrong(y = 1|do(t = 1)) =∑
x

p(y = 1|t = 1,X = x)p(X = x) =

0.5 · (p(y = 1|t = 1,x = 0) + p(y = 1|t = 1,x = 1)) =

0.5 · p(t = 1|z = 0)p(x = 0|z = 0)p(z = 0)

p(t = 1,x = 0|z = 0)p(z = 0) + p(t = 1,x = 0|z = 1)p(z = 1)
+

0.5 · p(t = 1|z = 0)p(x = 1|z = 0)p(z = 0)

p(t = 1,x = 1|z = 0)p(z = 0) + p(t = 1,x = 1|z = 1)p(z = 1)
=

0.5 ·
(

(1− ρt)ρx
(1− ρt)ρx + ρt(1− ρx)

+
(1− ρt)(1− ρx)

(1− ρt)(1− ρx) + ρtρx

)
.

A short inspection shows that we obtain the correct answer, pwrong(y = 1|do(t = 1)) = 0.5, exactly
under one of the following two conditions:

1. ρt = 0.5, i.e. treatment is assigned randomly.
2. ρx = 0 or ρx = 1, i.e. X is exactly equal to Z or 1− Z, and thus is a perfect proxy for Z.

The crucial misstep in pwrong above is the fact that p(y = 1|do(t = 1),x) 6= p(y = 1|t = 1,x),
while on the other hand p(y = 1|do(t = 1), z) = p(y = 1|t = 1, z).

We note that because of the symmetry in the conditional distributions p(X|Z = 1) and p(X|Z = 0),
we will actually have that:

pwrong(y = 1|do(t = 1))−pwrong(y = 1|do(t = 0)) = p(y = 1|do(t = 1))−p(y = 1|do(t = 0)).

It is straightforward to show that this situation does not happen once we set different values for
the two conditional distributions of p(X|Z = 1) and p(X|Z = 0), in which case both pwrong(y =
1|do(t)) 6= p(y = 1|do(t)) for t = 0, 1, and:

pwrong(y = 1|do(t = 1))−pwrong(y = 1|do(t = 0)) 6= p(y = 1|do(t = 1))−p(y = 1|do(t = 0)).
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