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Appendix

A. Simple example where one should not adjust for proxy variables

Let Z, X, t,y all be binary variables following the graphical model in Figure 1(a). Assume the
following model:

2. pX=1Z=1)=p(X=0]Z=0) = p,.
3.p(t=1Z=1)=p(t =0Z=0) = p;.
4. y =t @ Z (y is deterministic)

We will look at the quantity p(y|do(t = 1) and show that one should not simply adjust for X when
computing it. We have the following identities:

p(y = 1lldo(t = 1)) =
> ply =1|do(t =1),Z = 2)p(Z = z|do(t = 1)) =

Zp(y: It=1Z=z)p(Z=2zt=1)=

Y oply=1t=1,Z=2)p(Z=12) =

p(z =0)=0.5.
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The covariate adjustment formula if we treated X as if it’s the only confounder:
Py = 1do(t = 1)) =
doply=1t=1,X=x)pX=x) =

05-(ply =1t=1,x=0)+py=1t =1,x=1)) =
. p(t = 1]z = 0)p(x = 0]z = 0)p(z = 0)
pt=1,x=01z=0)p(z=0)+p(t=1,x=0]z=1)p(z=1)
. p(t =1|z = 0)p(x = 1]z = 0)p(z = 0)
pt=1,x=1z=0)p(z=0)+pt=1,x=1z=1)p(z=1)
05 < (L= po)pe (L= p)(1—ps) )
(L=pt)pz+pt(L—pz) (1= p)(1 = pz) + pepa
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A short inspection shows that we obtain the correct answer, p*™"¢(y = 1|do(t = 1)) = 0.5, exactly
under one of the following two conditions:

1. p, = 0.5, i.e. treatment is assigned randomly.

2. pp =0o0rp,; = 1,ie. Xisexactly equal to Z or 1 — Z, and thus is a perfect proxy for Z.
The crucial misstep in p"™"¢ above is the fact that p(y = 1|do(t = 1),x) # p(y = 1|t = 1,x),
while on the other hand p(y = 1|do(t = 1),z) = p(y = 1|t = 1, 2).

We note that because of the symmetry in the conditional distributions p(X|Z = 1) and p(X|Z = 0),
we will actually have that:

pY(y = Ldo(t = 1)) —p™™®(y = 1|do(t = 0)) = p(y = 1|do(t = 1)) —p(y = 1|do(t = 0)).

It is straightforward to show that this situation does not happen once we set different values for
the two conditional distributions of p(X|Z = 1) and p(X|Z = 0), in which case both p*™"¢(y =
1ldo(t)) # p(y = 1|do(t)) for t = 0, 1, and:

pY(y = Ldo(t = 1)) —p™™®(y = 1|do(t = 0)) # p(y = 1|do(t = 1)) —p(y = 1|do(t = 0)).



