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Abstract

We develop a nonparametric and online learning algorithm that estimates the
triggering functions of a multivariate Hawkes process (MHP). The approach we
take approximates the triggering function fi,j(t) by functions in a reproducing
kernel Hilbert space (RKHS), and maximizes a time-discretized version of the
log-likelihood, with Tikhonov regularization. Theoretically, our algorithm achieves
an O(log T ) regret bound. Numerical results show that our algorithm offers a
competing performance to that of the nonparametric batch learning algorithm, with
a run time comparable to parametric online learning algorithms.

1 Introduction
Multivariate Hawkes processes (MHPs) are counting processes where an arrival in one dimension can
affect the arrival rates of other dimensions. They were originally proposed to statistically model the
arrival patterns of earthquakes [16]. However, MHP’s ability to capture mutual excitation between
dimensions of a process also makes it a popular model in many other areas, including high frequency
trading [3], modeling neural spike trains [24], and modeling diffusion in social networks [28], and
capturing causality [12, 18].

For a p-dimensional MHP, the intensity function of the i-th dimension takes the following form:

λi(t) = µi +

p∑
j=1

∫ t

0

fi,j(t− τ)dNj(τ), (1)

where the constant µi is the base intensity of the i-th dimension, Nj(t) counts the number of arrivals
in the j-th dimension within [0, t], and fi,j(t) is the triggering function that embeds the underlying
causal structure of the model. In particular, one arrival in the j-th dimension at time τ will affect the
intensity of the arrivals in the i-th dimension at time t by the amount fi,j(t− τ) for t > τ . Therefore,
learning the triggering function is the key to learning an MHP model. In this work, we consider the
problem of estimating the fi,j(t)s using nonparametric online learning techniques.

1.1 Motivations

Why nonparametric? Most of existing works consider exponential triggering functions:

fi,j(t) = αi,j exp{−βi,jt}1{t > 0}, (2)

where αi,j is unknown while βi,j is given a priori. Under this assumption, learning fi,j(t) is
equivalent to learning a real number, αi,j . However, there are many scenarios where (2) fails to
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describe the correct mutual influence pattern between dimensions. For example, [20] and [11] have
reported delayed and bell-shaped triggering functions when applying the MHP model to neural spike
train datasets. Moreover, when fi,j(t)s are not exponential, or when βi,js are inaccurate, formulation
in (2) is prone to model mismatch [15].

Why online learning? There are many reasons to consider an online framework. (i) Batch learning
algorithms do not scale well due to high computational complexity [15]. (ii) The data can be costly
to observe, and can be streaming in nature, for example, in criminology.

The above concerns motivate us to design an online learning algorithm in the nonparametric regime.

1.2 Related Works

Earlier works on learning the triggering functions can be largely categorized into three classes.

Batch and parametric. The simplest way to learn the triggering functions is to assume that they
possess a parametric form, e.g. (2), and learn the coefficients. The most widely used estimators
include the maximum likelihood estimator [23], and the minimum mean-square error estimator [2].
These estimators can also be generalized to the high dimensional case when the coefficient matrix is
sparse and low-rank [2]. More generally, one can assume that fi,j(t)s lie within the span of a given
set of basis functions S = {e1(t), . . . , e|S|(t)}: fi,j(t) =

∑|S|
i=1 ciei(t), where ei(t)s have a given

parametric form [13, 27]. The state-of-the-art of such algorithms is [27], where |S| is adaptively
chosen, which sometimes requires a significant portion of the data to determine the optimal S.

Batch and nonparametric. A more sophisticated approach towards finding the set S is explored in
[29], where the coefficients and the basis functions are iteratively updated and refined. Unlike [27],
where the basis functions take a predetermined form, [29] updates the basis functions by solving a
set of Euler-Lagrange equations in the nonparametric regime. However, the formulation of [29] is
nonconvex, and therefore the optimality is not guaranteed. The method also requires more than 105

arrivals for each dimension in order to obtain good results, on networks of less than 5 dimensions.

Another way to estimate fi,j(t)s nonparametrically is proposed in [4], which solves a set of p Wiener-
Hopf systems, each of dimension at least p2. The algorithm works well on small dimensions; however,
it requires inverting a p2 × p2 matrix, which is costly, if not all together infeasible, when p is large.

Online and parametric. To the best of our knowledge, learning the triggering functions in an online
setting seems largely unexplored. Under the assumption that fi,j(t)s are exponential, [15] proposes
an online algorithm using gradient descent, exploiting the evolutionary dynamics of the intensity
function. The time axis is discretized into small intervals, and the updates are performed at the end of
each interval. While the authors provide the online solution to the parametric case, their work cannot
readily extend to the nonparametric setting where the triggering functions are not exponential, mainly
because the evolutionary dynamics of the intensity functions no longer hold. Learning triggering
functions nonparametrically remains an open problem.

1.3 Challenges and Our Contributions

Designing an online algorithm in the nonparametric regime is not without its challenges: (i) It is
not clear how to represent fi,j(t)s. In this work, we relate fi,j(t) to an RKHS. (ii) Although online
learning with kernels is a well studied subject in other scenarios [19], a typical choice of loss function
for learning an MHP usually involves the integral of fi,j(t)s, which prevents the direct application of
the representer theorem. (iii) The outputs of the algorithm at each step require a projection step to
ensure positivity of the intensity function. This requires solving a quadratic programming problem,
which can be computationally expensive. How to circumvent this computational complexity issue is
another challenge of this work.

In this paper, we design, to the best of our knowledge, the first online learning algorithm for the
triggering functions in the nonparametric regime. In particular, we tackle the challenges mentioned
above, and the only assumption we make is that the triggering functions fi,j(t)s are positive, have
a decreasing tail, and that they belong to an RKHS. Theoretically, our algorithm achieves a regret
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bound of O(log T ), and numerical experiments show that our approach outperforms the previous
approaches despite the fact that they are tailored to a less general setting. In particular, our algorithm
attains a similar performance to the nonparametric batch learning maximum likelihood estimators
while reducing the run time extensively.

1.4 Notations

Prior to discussing our results, we introduce the basic notations used in the paper. Detailed notations
will be introduced along the way. For a p-dimensional MHP, we denote the intensity function of
the i-th dimension by λi(t). We use λ(t) to denote the vector of intensity functions, and we use
F = [fi,j(t)] to denote the matrix of triggering functions. The i-th row of F is denoted by fi. The
number of arrivals in the i-th dimension up to t is denoted by the counting process Ni(t). We set
N(t) =

∑p
i=1Ni(t). The estimates of these quantities are denoted by their “hatted” versions. The

arrival time of the n-th event in the j-th dimension is denoted by τj,n. Lastly, define bxcy = ybx/yc.

2 Problem Formulation

In this section, we introduce our assumptions and definitions followed by the formulation of the loss
function. We omit the basics on MHPs and instead refer the readers to [22] for details.
Assumption 2.1. We assume that the constant base intensity µi is lower bounded by a given threshold
µmin > 0. We also assume bounded and stationary increments for the MHP [16, 9]: for any t, z > 0,
Ni(t)−Ni(t−z) ≤ κz = O(z). See Appendix A for more details.
Definition 2.1. Suppose that {tk}∞k=0 is an arbitrary time sequence with t0 = 0, and supk≥1(tk −
tk−1) ≤ δ ≤ 1. Let εf : [0,∞) → [0,∞) be a continuous and bounded function such that
limt→∞ εf (t) = 0. Then, f(x) satisfies the decreasing tail property with tail function εf (t) if

∞∑
k=m

(tk − tk−1) sup
x∈(tk−1,tk]

|f(x)| ≤ εf (tm−1), ∀m > 0.

Assumption 2.2. Let H be an RKHS associated with a kernel K(·, ·) that satisfies K(x, x) ≤ 1.
Let L1[0,∞) be the space of functions for which the absolute value is Lebesgue integrable. For
any i, j ∈ {1, . . . , p}, we assume that fi,j(t) ∈ H and fi,j(t) ∈ L1[0,∞), with both fi,j(t) and
dfi,j(t)/dt satisfying the decreasing tail property of Definition 2.1.

Assumption 2.1 is common and has been adopted in existing literature [22]. It ensures that the MHP
is not “explosive” by assuming that N(t)/t is bounded. Assumption 2.2 restricts the tail behaviors
of both fi,j(t) and dfi,j(t)/dt. Complicated as it may seem, functions with exponentially decaying
tails satisfy this assumption, as is illustrated by the following example (See Appendix B for proof):
Example 1. Functions f1(t) = exp{−βt}1{t > 0} and f2(t) = exp{−(t− γ)2}1{t > 0} satisfy
Assumption 2.2 with tail functions β−1 exp{−β(t− δ)} and

√
2π erfc(t/

√
2− γ) exp{δ2/2}.

2.1 A Discretized Loss Function for Online Learning

A common approach for learning the parameters of an MHP is to perform regularized maximum
likelihood estimation. As such, we introduce a loss function comprised of the negative of the log-
likelihood function and a penalty term to enforce desired structural properties, e.g. sparsity of the
triggering matrix F or smoothness of the triggering functions (see, e.g., [2, 29, 27]). The negative of
the log-likelihood function of an MHP over a time interval of [0, t] is given by

Lt(λ) := −
p∑
i=1

(∫ t

0

log λi(τ)dNi(τ)−
∫ t

0

λi(τ)dτ

)
. (3)

Let {τ1, ..., τN(t)} denote the arrival times of all the events within [0, t] and let {t0, . . . , tM(t)} be
a finite partition of the time interval [0, t] such that t0 = 0 and tk+1 := minτi≥tk{btkcδ + δ, τi}.
Using this partitioning, it is straightforward to see that the function in (3) can be written as

Lt(λ) =

p∑
i=1

M(t)∑
k=1

(∫ tk

tk−1

λi(τ)dτ − xi,k log λi(tk)

)
:=

p∑
i=1

Li,t(λi), (4)
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where xi,k := Ni(tk)−Ni(tk−1). By the definition of tk, we know that xi,k ∈ {0, 1}. In order to
learn fi,j(t)s using an online kernel method, we require a similar result as the representer theorem in
[25] that specifies the form of the optimizer. This theorem requires that the regularized version of the
loss in (4) to be a function of only fi,j(t)s. However, due to the integral part, Lt(λ) is a function of
both fi,j(t)s and their integrals, which prevents us from applying the representer theorem directly. To
resolve this issue, several approaches can be applied such as adjusting the Hilbert space as proposed
in [14] in context of Poisson processes, or approximating the log-likelihood function as in [15]. Here,
we adopt a method similar to [15] and approximate (4) by discretizing the integral:

L(δ)
t (λ) :=

p∑
i=1

M(t)∑
k=1

((tk − tk−1)λi(tk)− xi,k log λi(tk)):=

p∑
i=1

L
(δ)
i,t (λi). (5)

Intuitively, if δ is small enough and the triggering functions are bounded, it is reasonable to expect
that Li,t(λ) is close to L(δ)

i,t (λ). Below, we characterize the accuracy of the above discretization and
also truncation of the intensity function. First, we require the following definition.

Definition 2.2. We define the truncated intensity function as follows

λ
(z)
i (t) := µi +

p∑
j=1

∫ t

0

1{t− τ < z}fi,j(t− τ)dNj(τ). (6)

Proposition 1. Under Assumptions 2.1 and 2.2, for any i ∈ {1, . . . , p}, we have∣∣∣L(δ)
i,t (λ

(z)
i )− Li,t(λi)

∣∣∣ ≤ (1 + κ1µ
−1
min)N(t− z)ε(z) + δN(t)ε′(0),

where µmin is the lower bound for µi, κ1 is the upper bound for Ni(t)−Ni(t− 1) from Definition
2.1, while ε and ε′ are two tail functions that uniformly capture the decreasing tail property of all
fi,j(t)s and all dfi,j(t)/dts, respectively.

The first term in the bound characterizes the approximation error when one truncates λi(t) with
λ
(z)
i (t). The second term describes the approximation error caused by the discretization. When
z =∞, λi(t) = λ

(z)
i (t), and the approximation error is contributed solely by discretization. Note

that, in many cases, a small enough truncation error can be obtained by setting a relatively small z.
For example, for fi,j(t) = exp{−3t}1{t > 0}, setting z = 10 would result in a truncation error less
than 10−13. Meanwhile, truncating λi(t) greatly simplifies the procedure of computing its value.
Hence, in our algorithm, we focus on λ(z)i instead of λi.

In the following, we consider the regularized instantaneous loss function with the Tikhonov regular-
ization for fi,j(t)s and µi:

li,k(λi) := (tk − tk−1)λi(tk)− xi,k log λi(tk) +
1

2
ωiµ

2
i +

p∑
j=1

ζi,j
2
‖fi,j‖2H, (7)

and aim at producing a sequence of estimates {λ̂i(tk)}M(t)
k=1 of λi(t) with minimal regret:

M(t)∑
k=1

li,k(λ̂i(tk))− min
µi≥µmin,fi,j(t)≥0

M(t)∑
k=1

li,k(λi(tk)). (8)

Each regularized instantaneous loss function in (7) is jointly strongly convex with respect to fi,js and
µi. Combining with the representer theorem in [25], the minimizer to (8) is a linear combination of
a finite set of kernels. In addition, by setting ζi,j = O(1), our algorithm achieves β-stability with
β = O((ζi,jt)

−1), which is typical for a learning algorithm in RKHS (Theorem 22 of [8]).

3 Online Learning for MHPs

We introduce our NonParametric OnLine Estimation for MHP (NPOLE-MHP) in Algorithm 1. The
most important components of the algorithm are (i) the computation of the gradients and (ii) the
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Algorithm 1 NonParametric OnLine Estimation for MHP (NPOLE-MHP)

1: input: a sequence of step sizes {ηk}∞k=1 and a set of regularization coefficients ζi,js, along with
positive values of µmin, z and σ. output: µ̂(M(t)) and F̂ (M(t)).

2: Initialize f̂ (0)i,j and µ̂(0)
i for all i, j.

3: for k = 0, ...,M(t)− 1 do
4: Observe the interval [tk, tk+1), and compute xi,k for i ∈ {1, . . . , p}.
5: for i = 1, . . . , p do
6: Set µ̂(k+1)

i ← max
{
µ̂
(k)
i − ηk+1∂µi li,k

(
λ
(z)
i (µ̂

(k)
i , f̂

(k)
i )

)
, µmin

}
.

7: for j = 1, . . . , p do
8: Set f̂ (k+

1
2 )

i,j ←
[
f̂
(k)
i,j − ηk+1∂fi,j li,k

(
λ
(z)
i (µ̂

(k)
i , f̂

(k)
i )

)]
, and f̂ (k+1)

i,j ← Π
[
f̂
(k+ 1

2 )
i,j

]
.

9: end for
10: end for
11: end for

projections in lines 6 and 8. For the partial derivative with respect to µi, recall the definition of li,k in
(7) and λ(z)i in (6). Since λ(z)i is a linear function of µi, we have

∂µi li,k

(
λ
(z)
i (µ̂

(k)
i , f̂

(k)
i )

)
= (tk − tk−1)− xi,k

[
λ
(z)
i

(
µ̂
(k)
i , f̂

(k)
i

)]−1
+ ωiµ̂

(k)
i , ρk + ωiµ̂

(k)
i ,

where ρk is the simplified notation for the first two terms. Upon performing gradient descent, the
algorithm makes sure that µ̂(k+1)

i ≥ µmin, which further ensures that λ̂(z)i (µ̂
(k+1)
i , f̂

(k+1)
i ) ≥ λmin.

For the update step of f̂ (k)i,j (t), notice that the li,k is also a linear function with respect to fi,j . Since
∂fi,jfi,j(x) = K(x, ·), which holds true due to the reproducing property of the kernel, we thus have

∂fi,j li,k

(
λ
(z)
i (µ̂

(k)
i , f̂

(k)
i )

)
= ρk

∑
τj,n∈[tk−z,tk)

K(tk − τj,n, ·) + ζi,j f̂
(k)
i,j (·). (9)

Once again, a projection Π[·] is necessary to ensure that the estimated triggering functions are positive.

3.1 Projection of the Triggering Functions

For any kernel, the projection step for a triggering function can be executed by solving a quadratic
programming problem: min ‖f − f̂ (k+

1
2 )

i,j ‖2H subject to f ∈ H and f(t) ≥ 0. Ideally, the positivity
constraint has to hold for every t > 0, but in order to simplify computation, one can approximate the
solution by relaxing the constraint such that f(t) ≥ 0 holds for only a finite set of ts within [0, z].

Semi-Definite Programming (SDP). When the reproducing kernel is polynomial, the problem is
much simpler. The projection step can be formulated as an SDP problem [26] as follows:

Proposition 2. Let S = ∪r≤k{tr − τj,n : tr − z ≤ τj,n < tr} be the set of tr − τj,ns. Let
K(x, y) = (1+xy)2d andK ′(x, y) = (1+xy)d be two polynomial kernels with d ≥ 1. Furthermore,
let K and G denote the Gramian matrices where the i, j-th element correspond to K(s, s′), with s
and s′ being the i-th and j-th element in S. Suppose that a ∈ R|S| is the coefficient vector such
that f̂ (k+

1
2 )

i,j (·) =
∑
s∈S asK(s, ·), and that the projection step returns f̂ (k+1)

i,j (·) =
∑
s∈S b

∗
sK(s, ·).

Then the coefficient vector b∗ can be obtained by

b∗ = argmin
b∈R|S|

−2a>Kb + b>Kb, s.t. G · diag(b) + diag(b) ·G � 0. (10)

Non-convex approach. Alternatively, we can assume that fi,j(t) = g2i,j(t) where gi,j(t) ∈ H. By
minimizing the loss with respect to gi,j(t), one can naturally guarantee that fi,j(t) ≥ 0. This method
was adopted in [14] for estimating the intensity function of non-homogeneous Poisson processes.
While this approach breaks the convexity of the loss function, it works relatively well when the
initialization is close to the global minimum. It is also interestingly related to a line of recent works
in non-convex SDP [6], as well as phase retrieval with Wirtinger flow [10]. Deriving guarantees on
regret bound and convergence performances is a future direction implied by the result of this work.
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4 Theoretical Properties

We now discuss the theoretical properties of NPOLE-MHP. We start with defining the regret.
Definition 4.1. The regret of Algorithm 1 at time t is given by

R
(δ)
t (λ

(z)
i (µi,fi)) :=

M(t)∑
k=1

(
li,k(λ

(z)
i (µ̂

(k)
i , f̂

(k)
i ))− li,k(λ

(z)
i (µi,fi))

)
,

where µ̂(k)
i and f̂ (k)

i denote the estimated base intensity and the triggering functions, respectively.
Theorem 1. Suppose that the observations are generated from a p-dimensional MHP that satisfies
Assumptions 2.1 and 2.2. Let ζ = mini,j{ζi,j , ωi}, and ηk = 1/(ζk+ b) for some positive constants
b. Then

R
(δ)
t (λ

(z)
i (µi,fi)) ≤ C1(1 + logM(t)),

where C1 = 2(1 + pκ2z)ζ
−1|δ − µ−1min|2.

The regret bound of Theorem 1 resembles the regret bound for a typical online learning algorithm
with strongly convex loss function (see for example, Theorem 3.3 of [17]). When δ, ζ and µ−1min

are fixed, C1 = O(p), which is intuitive as one needs to update p functions at a time. Note that
the regret in Definition 4.1, encodes the performance of Algorithm 1 by comparing its loss with the
approximated loss. Below, we compare the loss of Algorithm 1 with the original loss in (4).
Corollary 1. Under the same assumptions as Theorem 1, we have

M(t)∑
k=1

(
li,k(λ

(z)
i (µ̂i, f̂

(k)
i ))− li,k(λi(µi,fi))

)
≤ C1[1 + logM(t)] + C2N(t), (11)

where C1 is defined in Theorem 1 and C2 = (1 + κ1µ
−1
min)ε(z) + δε′(0).

Note that C3N(t) is due to discretization and truncation steps and it can be made arbitrary small for
given t and setting small δ and large enough z.

Computational Complexity. Since f̂is can be estimated in parallel, we restrict our analysis to the
case of a fixed i ∈ {1, . . . , p} in a single iteration. For each iteration, the computational complexity
comes from evaluating the intensity function and projection. Since the number of arrivals within
the interval [tk − z, tk) is bounded by pκz and κz = O(1), evaluating the intensity costs O(p2)
operations. For the projection in each step, one can truncate the number of kernels used to represent
fi,j(t) to be O(1) with controllable error (Proposition 1 of [19]), and therefore the computation
cost is O(1). Hence, the per iteration computation cost of NPOLE-MHP is O(p2). By comparison,
parametric online algorithms (DMD, OGD of [15]) also require O(p2) operations for each iteration,
while the batch learning algorithms (MLE-SGLP, MLE of [27]) require O(p2t3) operations.

5 Numerical Experiments

We evaluate the performance of NPOLE-MHP on both synthetic and real data, from multiple aspects:
(i) visual assessment of the goodness-of-fit comparing to the ground truth; (ii) the “average L1 error”
defined as the average of

∑p
i=1

∑p
j=1 ‖fi,j − f̂i,j‖L1[0,z] over multiple trials; (iii) scalability over

both dimension p and time horizon T . For benchmarks, we compare NPOLE-MHP’s performance
to that of online parametric algorithms (DMD, OGD of [15]) and nonparametric batch learning
algorithms (MLE-SGLP, MLE of [27]).

5.1 Synthetic Data

Consider a 5-dimensional MHP with µi = 0.05 for all dimensions. We set the triggering functions as

F =


e−2.5t 0 0 e−10(t−1)2 0
2−5t (1 + cos(πt))e−t/2 e−5t 0 0
0 2e−3t 0 0 0

0 0 0 0.6e−3t2 + 0.4e−3(t−1)2 e−4t

0 0 te−5(t−1)2 0 e−3t

 .
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Figure 1: Performances of different algorithms for estimating F . Complete set of result can be found
in Appendix F. For each subplot, the horizontal axis covers [0, z] and the vertical axis covers [0, 1].
The performances are similar between DMD and OGD, and between MLE and MLE-SGLP.

The design of F allows us to test NPOLE-MHP’s ability of detecting (i) exponential triggering
functions with various decaying rate; (ii) zero functions; (iii) functions with delayed peaks and tail
behaviors different from an exponential function.

Goodness-of-fit. We run NPOLE-MHP over a set of data with T = 105 and around 4× 104 events
for each dimension. The parameters are chosen by grid search over a small portion of data, and the
parameters of the benchmark algorithms are fine-tuned (see Appendix F for details). In particular, we
set the discretization level δ = 0.05, the window size z = 3, the step size ηk = (kδ/20+100)−1, and
the regularization coefficient ζi,j ≡ ζ = 10−8. The performances of NPOLE-MHP and benchmarks
are shown in Figure 1. We see that NPOLE-MHP captures the shape of the function much better than
the DMD and OGD algorithms with mismatched forms of the triggering functions. It is especially
visible for f1,4(t) and f2,2(t). In fact, our algorithm scores a similar performance to the batch
learning MLE estimator, which is optimal for any given set of data. We next plot the average loss
per iteration for this dataset in Figure 2. In the left-hand side, the loss is high due to initialization.
However, the effect of initialization quickly diminishes as the number of events increases.

Run time comparison. The simulation of the DMD and OGD algorithms took 2 minutes combined
on a Macintosh with two 6-core Intel Xeon processor at 2.4 GHz, while NPOLE-MHP took 3 minutes.
The batch learning algorithms MLE-SGLP and MLE in [27] each took about 1.5 hours. Therefore,
our algorithm achieves the performance similar to batch learning algorithms with a run time close to
that of parametric online learning algorithms.

Effects of the hyperparameters: δ, ζi,j , and ηk. We investigate the sensitivity of NPOLE-MHP
with respect to the hyperparameters, measuring the “averaged L1 error” defined at the beginning
of this section. We independently generate 100 sets of data with the same parameters, and a
smaller T = 104 for faster data generation. The result is shown in Table 1. For NPOLE-MHP,
we fix ηk = 1/(k/2000 + 10). MLE and MLE-SGLP score around 1.949 with 5/5 inner/outer
rounds of iterations. NPOLE-MHP’s performance is robust when the regularization coefficient and
discretization level are sufficiently small. It surpasses MLE and MLE-SGLP on large datasets, in
which case the iterations of MLE and MLE-SGLP are limited due to computational considerations. As
ζ increases, the error decreases first before rising drastically, a phenomenon caused by the mismatch
between the loss functions. For the step size, the error varies under different choice of ηk, which can
be selected via grid-search on a small portion of the data like most other online algorithms.

5.2 Real Data: Inferencing Impact Between News Agencies with Memetracker Data

We test the performance of NPOLE-MHP on the memetracker data [21], which collects from the
internet a set of popular phrases, including their content, the time they were posted, and the url
address of the articles that included them. We study the relationship between different news agencies,
modeling the data with a p-dimensional MHP where each dimension corresponds to a news website.
Unlike [15], which conducted a similar experiment where all the data was used, we focus on only 20
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Regularization log10 ζ
−8 −6 −4 −2 0

δ

0.01 1.83 1.83 1.84 4.15 4.64
0.05 1.86 1.86 1.86 3.10 4.64
0.1 1.92 1.92 1.88 2.73 4.64
0.5 4.80 4.80 4.64 2.19 4.62
1 5.73 5.73 5.58 2.38 4.59

Table 1: Effect of hyperparameters ζ and δ,
measured by the “average L1 error”.

Horizon T (days)
1.8 3.6 5.4

Dimension
p

20 3.9 9.1 15.3
40 4.6 10.4 17.0
60 4.6 10.2 16.7
80 4.5 10.0 16.4
100 4.5 9.7 15.9

Table 2: Average CPU-time for estimating
one triggering function (seconds).
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Figure 2: Effect of discretization in NPOLE-
MHP.
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Figure 3: Cumulative loss on memetracker data
of 20 dimensions.

websites that are most active, using 18 days of data. We plot the cumulative losses in Figure 3, using
a window size of 3 hours, an update interval δ = 0.2 seconds, and a step size ηk = 1/(kζ + 800)
with ζ = 10−10 for NPOLE-MHP. For DMD and OGD, we set ηk = 5/

√
T/δ. The result shows

that NPOLE-MHP accumulates a smaller loss per step compared to OGD and DMD.

Scalability and generalization error. Finally, we evaluate the scalability of NPOLE-MHP using
the average CPU-time for estimating one triggering function. The result in Table 2 shows that the
computation cost of NPOLE-MHP scales almost linearly with the dimension and data size. When
scaling the data to 100 dimensions and 2× 105 events, NPOLE-MHP scores an average 0.01 loss per
iteration on both training and test data, while OGD and DMD scored 0.005 on training data and 0.14
on test data. This shows a much better generalization performance of NPOLE-MHP.

6 Conclusion

We developed a nonparametric method for learning the triggering functions of a multivariate Hawkes
process (MHP) given time series observations. To formulate the instantaneous loss function, we
adopted the method of discretizing the time axis into small intervals of lengths at most δ, and we
derived the corresponding upper bound for approximation error. From this point, we proposed an
online learning algorithm, NPOLE-MHP, based on the framework of online kernel learning and
exploits the interarrival time statistics under the MHP setup. Theoretically, we derived the regret
bound for NPOLE-MHP, which is O(log T ) when the time horizon T is known a priori, and we
showed that the per iteration cost of NPOLE-MHP is O(p2). Numerically, we compared NPOLE-
MHP’s performance with parametric online learning algorithms and nonparametric batch learning
algorithms. Results on both synthetic and real data showed that we are able to achieve similar
performance to that of the nonparametric batch learning algorithms with a run time comparable to the
parametric online learning algorithms.
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