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Abstract

Robots will eventually be part of every household. It is thus critical to enable
algorithms to learn from and be guided by non-expert users. In this paper, we
bring a human in the loop, and enable a human teacher to give feedback to a
learning agent in the form of natural language. We argue that a descriptive sentence
can provide a much stronger learning signal than a numeric reward in that it can
easily point to where the mistakes are and how to correct them. We focus on
the problem of image captioning in which the quality of the output can easily be
judged by non-experts. In particular, we first train a captioning model on a subset
of images paired with human written captions. We then let the model describe new
images and collect human feedback on the generated descriptions. We propose a
hierarchical phrase-based captioning model, and design a feedback network that
provides reward to the learner by conditioning on the human-provided feedback.
We show that by exploiting descriptive feedback on new images our model learns
to perform better than when given human written captions on these images.

1 Introduction

In the era where A.I. is slowly finding its way into everyone’s lives, be in the form of social bots [36, 2],
personal assistants [24, 13, 32], or household robots [1], it becomes critical to allow non-expert users
to teach and guide their robots [37, 18]. For example, if a household robot keeps bringing food served
on an ashtray thinking it’s a plate, one should ideally be able to educate the robot about its mistakes,
possibly without needing to dig into the underlying software.

Reinforcement learning has become a standard way of training artificial agents that interact with an
environment. There have been significant advances in a variety of domains such as games [31, 25],
robotics [17], and even fields like vision and NLP [30, 19]. RL agents optimize their action policies
so as to maximize the expected reward received from the environment. Training typically requires a
large number of episodes, particularly in environments with large action spaces and sparse rewards.

Several works explored the idea of incorporating humans in the learning process, in order to help
the reinforcement learning agent to learn faster [35, 12, 11, 6, 5]. In most cases, a human teacher
observes the agent act in an environment, and is allowed to give additional guidance to the learner.
This feedback typically comes in the form of a simple numerical (or “good”/“bad”) reward which is
used to either shape the MDP reward [35] or directly shape the policy of the learner [5].

In this paper, we aim to exploit natural language as a way to guide an RL agent. We argue that a
sentence provides a much stronger learning signal than a numeric reward in that it can easily point
to where the mistakes occur and suggests how to correct them. Such descriptive feedback can thus
naturally facilitate solving the credit assignment problem as well as to help guide exploration. Despite
its clear benefits, very few approaches aimed at incorporating language in Reinforcement Learning.
In pioneering work, [22] translated natural language advice into a short program which was used to
bias action selection. While this is possible in limited domains such as in navigating a maze [22] or
learning to play a soccer game [15], it can hardly scale to the real scenarios with large action spaces
requiring versatile language feedback.



Machine
( a cat ) ( sitting ) ( on a sidewalk ) ( next to a street . )

Human Teacher
Feedback: There is a dog on a sidewalk, not a cat.

Type of mistake: wrong object
Select the mistake area:
( a cat ) ( sitting ) ( on a sidewalk ) ( next to a street . )
Correct the mistake:
( a dog ) ( sitting ) ( on a sidewalk ) ( next to a street . )

Figure 1: Our model accepts feedback from a human teacher in the form of natural language. We generate
captions using the current snapshot of the model and collect feedback via AMT. The annotators are requested to
focus their feedback on a single word/phrase at a time. Phrases, indicated with brackets in the example, are part
or our captioning model’s output. We also collect information about which word the feedback applies to and its
suggested correction. This information is used to train our feedback network.

Here our goal is to allow a non-expert human teacher to give feedback to an RL agent in the form of
natural language, just as one would to a learning child. We focus on the problem of image captioning
in which the quality of the output can easily be judged by non-experts.

Towards this goal, we make several contributions. We propose a hierarchical phrase-based RNN as
our image captioning model, as it can be naturally integrated with human feedback. We design a web
interface which allows us to collect natural language feedback from human “teachers” for a snapshot of
our model, as in Fig. 1. We show how to incorporate this information in Policy Gradient RL [30], and
show that we can improve over RL that has access to the same amount of ground-truth captions. Our
code and data will be released (http://www.cs.toronto.edu/~linghuan/feedbackImageCaption/)
to facilitate more human-like training of captioning models.

2 Related Work

Several works incorporate human feedback to help an RL agent learn faster. [35] exploits humans
in the loop to teach an agent to cook in a virtual kitchen. The users watch the agent learn and
may intervene at any time to give a scalar reward. Reward shaping [26] is used to incorporate this
information in the MDP. [6] iterates between “practice”, during which the agent interacts with the real
environment, and a critique session where a human labels any subset of the chosen actions as good or
bad. In [12], the authors compare different ways of incorporating human feedback, including reward
shaping, Q augmentation, action biasing, and control sharing. The same authors implement their
TAMER framework on a real robotic platform [11]. [5] proposes policy shaping which incorporates
right/wrong feedback by utilizing it as direct policy labels. These approaches mostly assume that
humans provide a numeric reward, unlike in our work where the feedback is given in natural language.

A few attempts have been made to advise an RL agent using language. [22]’s pioneering work
translated advice to a short program which was then implemented as a neural network. The units in
this network represent Boolean concepts, which recognize whether the observed state satisfies the
constraints given by the program. In such a case, the advice network will encourage the policy to
take the suggested action. [15] incorporated natural language advice for a RoboCup simulated soccer
task. They too translate the advice in a formal language which is then used to bias action selection.
Parallel to our work, [7] exploits textual advice to improve training time of the A3C algorithm in
playing an Atari game. Recently, [37, 18] incorporates human feedback to improve a text-based QA
agent. Our work shares similar ideas, but applies them to the problem of image captioning. In [27],
the authors incorporate human feedback in an active learning scenario, however not in an RL setting.

Captioning represents a natural way of showing that our algorithm understands a photograph to a
non-expert observer. This domain has received significant attention [8, 39, 10], achieving impressive
performance on standard benchmarks. Our phrase model shares the most similarity with [16],
but differs in that exploits attention [39], linguistic information, and RL to train. Several recent
approaches trained the captioning model with policy gradients in order to directly optimize for the
desired performance metrics [21, 30, 3]. We follow this line of work. However, to the best of our
knowledge, our work is the first to incorporate natural language feedback into a captioning model.
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Figure 2: Our hierarchical phrase-based cap-
tioning model, composed of a phrase-RNN at
the top level, and a word-level RNN which out-
puts a sequence of words for each phrase. The
useful property of this model is that it directly
produces an output sentence segmented into
linguistic phrases. We exploit this information
while collecting and incorporating human feed-
back into the model. Our model also exploits
attention, and linguistic information (phrase
labels such as noun, preposition, verb, and con-
junction phrase). Please see text for details.

Related to our efforts is also work on dialogue based visual representation learning [40, 41], however
this work tackles a simpler scenario, and employs a slightly more engineered approach.

We stress that our work differs from the recent efforts in conversation modeling [19] or visual
dialog [4] using Reinforcement Learning. These models aim to mimic human-to-human conversations
while in our work the human converses with and guides an artificial learning agent.

3 Our Approach

Our framework consists of a new phrase-based captioning model trained with Policy Gradients that
incorporates natural language feedback provided by a human teacher. While a number of captioning
methods exist, we design our own which is phrase-based, allowing for natural guidance by a non-
expert. In particular, we argue that the strongest learning signal is provided when the feedback
describes one mistake at a time, e.g. a single wrong word or a phrase in a caption. An example can
be seen in Fig. 1. This is also how one most effectively teaches a learning child. To avoid parsing the
generated sentences at test time, we aim to predict phrases directly with our captioning model. We
first describe our phrase-based captioner, then describe our feedback collection process, and finally
propose how to exploit feedback as a guiding signal in policy gradient optimization.

3.1 Phrase-based Image Captioning

Our captioning model, forming the base of our approach, uses a hierarchical Recurrent Neural
Network, similar to [34, 14]. In [14], the authors use a two-level LSTM to generate paragraphs,
while [34] uses it to generate sentences as a sequence of phrases. The latter model shares a similar
overall structure as ours, however, our model additionally reasons about the type of phrases and
exploits the attention mechanism over the image.

The structure of our model is best explained through Fig. 2. The model receives an image as input and
outputs a caption. It is composed of a phrase RNN at the top level, and a word RNN that generates a
sequence of words for each phrase. One can think of the phrase RNN as providing a “topic” at each
time step, which instructs the word RNN what to talk about.

Following [39], we use a convolutional neural network in order to extract a set of feature vectors
a = (a1, . . . ,an), with aj a feature in location j in the input image. We denote the hidden state of
the phrase RNN at time step t with ht, and ht,i to denote the i-th hidden state of the word RNN for
the t-th phrase. Computation in our model can be expressed with the following equations:

ph
ra

se
-R

N
N

︸
︷︷

︸

w
or

d-
R

N
N

︸︷︷︸

ht = fphrase(ht−1, lt−1, ct−1, et−1)

lt = softmax(fphrase−label(ht))

ct = fatt(ht, lt, a)

ht,0 = fphrase−word(ht, lt, ct)

ht,i = fword(ht,i−1, ct, wt,i)

wt,i = fout(ht,i, ct, wt,i−1)

et = fword−phrase(wt,1, . . . , wt,end)

fphrase LSTM, dim 256

fphrase−label 3-layer MLP

fatt 2-layer MLP with ReLu
fphrase−word 3-layer MLP with ReLu

fword LSTM, dim 256

fout deep decoder [28]
fword−phrase mean+3-lay. MLP with ReLu
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Image Ref. caption Feedback Corr. caption

( a woman ) ( is sit-
ting ) ( on a bench
) ( with a plate ) (
of food . )

What the
woman is
sitting on is
not visible.

( a woman ) ( is
sitting ) ( with a
plate ) ( of food .
)

( a horse ) ( is
standing ) ( in a
barn ) ( in a field
. )

There is no
barn. There
is a fence.

( a horse ) ( is
standing ) ( in
a fence ) ( in a
field . )

Image Ref. caption Feedback Corr. caption

( a man ) ( rid-
ing a motorcy-
cle ) ( on a city
street . )

There is a
man and a
woman.

( a man and a
woman ) ( riding a
motorcycle ) ( on
a city street . )

( a man ) (
is swinging a
baseball bat ) (
on a field . )

The baseball
player is not
swinging a
bate.

( a man ) ( is play-
ing baseball ) ( on
a field . )

Table 1: Examples of collected feedback. Reference caption comes from the MLE model.

Table 2: Statistics for our collected feedback information. The table on the right shows how many times the
feedback sentences mention words to be corrected and suggest correction.

Num. of evaluated examples (annot. round 1) 9000
Evaluated as containing errors 5150

To ask for feedback (annot. round 2) 4174
Avg. num. of feedback rounds per image 2.22

Avg. num. of words in feedback sent. 8.04
Avg. num. of words needing correction 1.52

Avg. num. of modified words 1.46

Something should be replaced 2999
mistake word is in description 2664
correct word is in description 2674

Something is missing 334
missing word is in description 246

Something should be removed 841
removed word is in description 779

feedback round: number of correction rounds for the same example, description: natural language feedback

perfect accecptable grammar minor_errormajor_error
0

500

1000

1500

2000

2500

3000
evaluation after correction

Figure 3: Caption quality evalua-
tion by the human annotators. Plot on
the left shows evaluation for captions
generated with our reference model
(MLE). The right plot shows evalua-
tion of the human-corrected captions
(after completing at least one round
of feedback).

As in [39], ct denotes a context vector obtained by applying the attention mechanism to the image.
This context vector essentially represents the image area that the model “looks at” in order to generate
the t-th phrase. This information is passed to both the word-RNN as well as to the next hidden state
of the phrase-RNN. We found that computing two different context vectors, one passed to the phrase
and one to the word RNN, improves generation by 0.6 points (in weighted metric, see Table 4) mainly
helping the model to avoid repetition of words. Furthermore, we noticed that the quality of attention
significantly improves (1.5 points, Table 4) if we provide it with additional linguistic information. In
particular, at each time step t our phrase RNN also predicts a phrase label lt, following the standard
definition from the Penn Tree Bank. For each phrase, we predict one out of four possible phrase labels,
i.e., a noun (NP), preposition (PP), verb (VP), and a conjunction phrase (CP). We use additional
<EOS> token to indicate the end of the sentence. By conditioning on the NP label, we help the model
look at the objects in the image, while VP may focus on more global image information.

Above, wt,i denotes the i-th word output of the word-RNN in the t-th phrase, encoded with a one-hot
vector. Note that we use an additional <EOP> token in word-RNN’s vocabulary, which signals the
end-of-phrase. Further, et encodes the generated phrase via simple mean-pooling over the words,
which provides additional word-level context to the next phrase. Details about the choices of the
functions are given in the table. Following [39], we use a deep output layer [28] in the LSTM and
double stochastic attention.
Implementation details. To train our hierarchical model, we first process MS-COCO image
caption data [20] using the Stanford Core NLP toolkit [23]. We flatten each parse tree, separate a
sentence into parts, and label each part with a phrase label (<NP>, <PP>, <CP>, <VP>). To simplify
the phrase structure, we merge some NPs to its previous phrase label if it is not another NP.
Pre-training. We pre-train our model using the standard cross-entropy loss. We use the ADAM
optimizer [9] with learning rate 0.001. We discuss Policy Gradient optimization in Subsec. 3.4.

3.2 Crowd-sourcing Human Feedback

We aim to bring a human in the loop when training the captioning model. Towards this, we create a
web interface that allows us to collect feedback information on a larger scale via AMT. Our interface
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Figure 4: The architecture of our feedback network (FBN) that classifies each phrase (bottom left) in a sampled
sentence (top left) as either correct, wrong or not relevant, by conditioning on the feedback sentence.

is akin to that depicted in Fig. 1, and we provide further visualizations in the Appendix. We also
provide it online on our project page. In particular, we take a snapshot of our model and generate
captions for a subset of MS-COCO images [20] using greedy decoding. In our experiments, we take
the model trained with the MLE objective.

We do two rounds of annotation. In the first round, the annotator is shown a captioned image and
is asked to assess the quality of the caption, by choosing between: perfect, acceptable, grammar
mistakes only, minor or major errors. We asked the annotators to choose minor and major error if the
caption contained errors in semantics, i.e., indicating that the “robot” is not understanding the photo
correctly. We advised them to choose minor for small errors such as wrong or missing attributes or
awkward prepositions, and go with major errors whenever any object or action naming is wrong.

For the next (more detailed, and thus more costly) round of annotation, we only select captions which
are not marked as either perfect or acceptable in the first round. Since these captions contain errors,
the new annotator is required to provide detailed feedback about the mistakes. We found that some of
the annotators did not find errors in some of these captions, pointing to the annotator noise in the
process. The annotator is shown the generated caption, delineating different phrases with the “(” and
“)” tokens. We ask the annotator to 1) choose the type of required correction, 2) write feedback in
natural language, 3) mark the type of mistake, 4) highlight the word/phrase that contains the mistake,
5) correct the chosen word/phrase, 6) evaluate the quality of the caption after correction. We allow
the annotator to submit the HIT after one correction even if her/his evaluation still points to errors.
However, we plea to the good will of the annotators to continue in providing feedback. In the latter
case, we reset the webpage, and replace the generated caption with their current correction.

The annotator first chooses the type of error, i.e., something “ should be replaced”, “is missing”, or
“should be deleted”. (S)he then writes a sentence providing feedback about the mistake and how
it should be corrected. We require that the feedback is provided sequentially, describing a single
mistake at a time. We do this by restricting the annotator to only select mistaken words within a single
phrase (in step 4). In 3), the annotator marks further details about the mistake, indicating whether it
corresponds to an error in object, action, attribute, preposition, counting, or grammar. For 4) and 5)
we let the annotator highlight the area of mistake in the caption, and replace it with a correction.

The statistics of the data is provided in Table 2, with examples shown in Table 1. An interesting fact
is that the feedback sentences in most cases mention both the wrong word from the caption, as well
as the correction word. Fig. 3 (left) shows evaluation of the caption quality of the reference (MLE)
model. Out of 9000 captions, 5150 are marked as containing errors (either semantic or grammar),
and we randomly choose 4174 for the second round of annotation (detailed feedback). Fig. 3 (left)
shows the quality of all the captions after correction, i.e. good reference captions as well as 4174
corrected captions as submitted by the annotators. Note that we only paid for one round of feedback,
thus some of the captions still contained errors even after correction. Interestingly, on average the
annotators still did 2.2 rounds of feedback per image (Table 2).

3.3 Feedback Network

Our goal is to incorporate natural language feedback into the learning process. The collected feedback
contains rich information of how the caption can be improved: it conveys the location of the mistake
and typically suggests how to correct it, as seen in Table 2. This provides strong supervisory signal
which we want to exploit in our RL framework. In particular, we design a neural network which will
provide additional reward based on the feedback sentence. We refer to it as the feedback network
(FBN). We first explain our feedback network, and show how to integrate its output in RL.
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Sampled caption Feedback Phrase Prediction

A cat on a sidewalk. A cat wrong
A dog on a sidewalk. There is a dog on a sidewalk not a cat. A dog correct
A cat on a sidewalk. on a sidewalk not relevant

Table 3: Example classif. of each phrase in a newly sampled caption into correct/wrong/not-relevant conditioned
on the feedback sentence. Notice that we do not need the image to judge the correctness/relevance of a phrase.

Note that RL training will require us to generate samples (captions) from the model. Thus, during
training, the sampled captions for each training image will change (will differ from the reference
MLE caption for which we obtained feedback for). The goal of the feedback network is to read a
newly sampled caption, and judge the correctness of each phrase conditioned on the feedback. We
make our FBN to only depend on text (and not on the image), making its learning task easier. In
particular, our FBN performs the following computation:

hcaptiont = fsent(h
caption
t−1 , wct ) (1)

hfeedbackt = fsent(h
feedback
t−1 , wft ) (2)

qi = fphrase(w
c
i,1, . . . , w

c
i,N ) (3)

oi = ffbn(h
c
T , h

f
T ′ , qi,m) (4)

fsent LSTM, dim 256

fphrase linear+mean pool
ffbn 3-layer MLP with dropout

+3-way softmax

Here, wct and wft denote the one-hot encoding of words in the sampled caption and feedback sentence,
respectively. By wci,· we denote words in the i-th phrase of the sampled caption. FBN thus encodes
both the caption and feedback using an LSTM (with shared parameters), performs mean pooling over
the words in a phrase to represent the phrase i, and passes this information through a 3-layer MLP.
The MLP additionally accepts information about the mistake type (e.g., wrong object/action) encoded
as a one hot vector m (denoted as “extra information” in Fig. 4). The output layer of the MLP is a
3-way classification layer that predicts whether the phrase i is correct, wrong, or not relevant (wrt
feedback sentence). An example output from FBN is shown in Table 3.

Implementation details. We train our FBN with the ground-truth data that we collected. In
particular, we use (reference, feedback, marked phrase in reference caption) as an example of a wrong
phrase, (corrected sentence, feedback, marked phrase in corrected caption) as an example of the
correct phrase, and treat the rest as the not relevant label. Reference here means the generated caption
that we collected feedback for, and marked phrase means the phrase that the annotator highlighted
in either the reference or the corrected caption. We use the standard cross-entropy loss to train our
model. We use ADAM [9] with learning rate 0.001, and a batch size of 256. When a reference
caption has several feedback sentences, we treat each one as independent training data.

3.4 Policy Gradient Optimization using Natural Language Feedback

We follow [30, 29] to directly optimize for the desired image captioning metrics using the Policy
Gradient technique. For completeness, we briefly summarize it here [30].

One can think of an caption decoder as an agent following a parameterized policy pθ that selects an
action at each time step. An “action” in our case requires choosing a word from the vocabulary (for
the word RNN), or a phrase label (for the phrase RNN). An “agent” (our captioning model) then
receives the reward after generating the full caption, i.e., the reward can be any of the automatic
metrics, their weighted sum [30, 21], or in our case will also include the reward from feedback.

The objective for learning the parameters of the model is the expected reward received when com-
pleting the caption ws = (ws1, . . . , w

s
T ) (wst is the word sampled from the model at time step t):

L(θ) = −Ews∼pθ [r(ws)] (5)
To optimize this objective, we follow the reinforce algorithm [38], as also used in [30, 29]. The
gradient of (5) can be computed as

∇θL(θ) = −Ews∼pθ [r(ws)∇θ log pθ(ws)], (6)

which is typically estimated by using a single Monte-Carlo sample:
∇θL(θ) ≈ −r(ws)∇θ log pθ(ws) (7)
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We follow [30] to define the baseline b as the reward obtained by performing greedy decoding:
b = r(ŵ), ŵt = argmax p(wt|ht)
∇θL(θ) ≈ −(r(ws)− r(ŵ))∇θ log pθ(ws)

(8)

Note that the baseline does not change the expected gradient but can drastically reduce its variance.

Reward. We define two different rewards, one at the sentence level (optimizing for a performance
metrics), and one at the phrase level. We use human feedback information in both. We first define the
sentence reward wrt to a reference caption as a weighted sum of the BLEU scores:

r(ws) = β
∑
i

λi ·BLEUi(ws, ref) (9)

In particular, we choose λ1 = λ2 = 0.5, λ3 = λ4 = 1, λ5 = 0.3. As reference captions to compute
the reward, we either use the reference captions generated by a snapshot of our model which were
evaluated as not having minor and major errors, or ground-truth captions. The details are given in the
experimental section. We weigh the reward by the caption quality as provided by the annotators. In
particular, β = 1 for perfect (or GT), 0.8 for acceptable, and 0.6 for grammar/fluency issues only.

We further incorporate the reward provided by the feedback network. In particular, our FBN allows
us to define the reward at the phrase level (thus helping with the credit assignment problem). Since
our generated sentence is segmented into phrases, i.e., ws = wp1w

p
2 . . . w

p
P , where wpt denotes the

(sequence of words in the) t-th phrase, we define the combined phrase reward as:
r(wpt ) = r(ws) + λfffbn(w

s, feedback, wpt ) (10)
Note that FBN produces a classification of each phrase. We convert this into reward, by assigning
correct to 1, wrong to −1, and 0 to not relevant. We do not weigh the reward by the confidence of the
network, which might be worth exploring in the future. Our final gradient takes the following form:

∇θL(θ) = −
P∑
p=1

(r(wp)− r(ŵp))∇θ log pθ(wp)
(11)

Implementation details. We use Adam with learning rate 1e−6 and batch size 50. As in [29], we
follow an annealing schedule. We first optimize the cross entropy loss for the first K epochs, then
for the following t = 1, . . . , T epochs, we use cross entropy loss for the first (P − floor(t/m))
phrases (where P denotes the number of phrases), and the policy gradient algorithm for the remaining
floor(t/m) phrases. We choose m = 5. When a caption has multiple feedback sentences, we take
the sum of the FBN’s outputs (converted to rewards) as the reward for each phrase. When a sentence
does not have any feedback, we assign it a zero reward.

4 Experimental Results

To validate our approach we use the MS-COCO dataset [20]. We use 82K images for training, 2K for
validation, and 4K for testing. In particular, we randomly chose 2K val and 4K test images from the
official validation split. To collect feedback, we randomly chose 7K images from the training set, as
well as all 2K images from our validation. In all experiments, we report the performance on our (held
out) test set. For all the models (including baselines) we used a pre-trained VGG [33] network to
extract image features. We use a word vocabulary size of 23,115.

Phrase-based captioning model. We analyze different instantiations of our phrase-based caption-
ing in Table 4, showing the importance of predicting phrase labels. To sanity check our model we
compare it to a flat approach (word-RNN only) [39]. Overall, our model performs slightly worse
than [39] (0.66 points). However, the main strength of our model is that it allows a more natural
integration with feedback. Note that these results are reported for the models trained with MLE.

Feedback network. As reported in Table 2, our dataset which contains detailed feedback (descrip-
tions) contains 4173 images. We randomly select 9/10 of them to serve as a training set for our
feedback network, and use 1/10 of them to be our test set. The classification performance of our FBN
is reported in Table 5. We tried exploiting additional information in the network. The second line
reports the result for FBN which also exploits the reference caption (for which the feedback was
written) as input, represented with a LSTM. The model in the third line uses the type of error, i.e.
the phrase is “missing”, “wrong”, or “redundant”. We found that by using information about what
kind of mistake the reference caption had (e.g., corresponding to misnaming an object, action, etc)
achieves the best performance. We use this model as our FBN used in the following experiments.
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L Weighted metric
flat (word level) with att 65.36 44.03 29.68 20.40 51.04 104.78

phrase with att. 64.69 43.37 28.80 19.31 50.80 102.14
phrase with att +phrase label 65.46 44.59 29.36 19.25 51.40 103.64

phrase with 2 att +phrase label 65.37 44.02 29.51 19.91 50.90 104.12
Table 4: Comparing performance of the flat captioning model [39], and different instantiations of our phrase-
based captioning model. All these models were trained using the cross-entropy loss.

Feedback network Accuracy
no extra information 73.30
use reference caption 73.24

use "missing"/"wrong"/"redundant" 72.92
use "action"/"object"/"preposition"/etc 74.66

Table 5: Classification results of our feedback
network (FBN) on a held-out feedback data. The
FBN predicts correct/wrong/not relevant for each
phrase in a caption. See text for details.

RL with Natural Language Feedback. In Table 6 we report the performance for several instan-
tiations of the RL models. All models have been pre-trained using cross-entropy loss (MLE) on
the full MS-COCO training set. For the next rounds of training, all the models are trained only
on the 9K images that comprise our full evaluation+feedback dataset from Table 2. In particular,
we separate two cases. In the first, standard case, the “agent” has access to 5 captions for each
image. We experiment with different types of captions, e.g. ground-truth captions (provided by
MS-COCO), as well as feedback data. For a fair comparison, we ensure that each model has access
to (roughly) the same amount of data. This means that we count a feedback sentence as one source
of information, and a human-corrected reference caption as yet another source. We also exploit
reference (MLE) captions which were evaluated as correct, as well as corrected captions obtained
from the annotators. In particular, we tried two types of experiments. We define “C” captions as all
captions that were corrected by the annotators and were not evaluated as containing minor or major
error, and ground-truth captions for the rest of the images. For “A”, we use all captions (including
reference MLE captions) that did not have minor or major errors, and GT for the rest. A detailed
break-down of these captions is reported in Table 7.

We first test a model using the standard cross-entropy loss, but which now also has access to the
corrected captions in addition to the 5GT captions. This model (MLEC) is able to improve over the
original MLE model by 1.4 points. We then test the RL model by optimizing the metric wrt the 5GT
captions (as in [30]). This brings an additional point, achieving 2.4 over the MLE model. Our RL
agent with feedback is given access to 3GT captions, the “C" captions and feedback sentences. We
show that this model outperforms the no-feedback baseline by 0.5 points. Interestingly, with “A”
captions we get an additional 0.3 boost. If our RL agent has access to 4GT captions and feedback
descriptions, we achieve a total of 1.1 points over the baseline RL model and 3.5 over the MLE
model. Examples of generated captions are shown in Fig. 6.

We also conducted a human evaluation using AMT. In particular, Turkers are shown an image
captioned by the baseline RL and our method, and are asked to choose the better caption. As shown
in Fig. 5, our RL with feedback is 4.7 percent higher than the RL baseline. We additionally count
how much human interaction is required for either the baseline RL and our approach. In particular,
we count every interaction with the keyboard as 1 click. In evaluation, choosing the quality of the
caption counts as 1 click, and for captions/feedback, every letter counts as a click. The main save
comes from the first evaluation round, in which we only as for the quality of captions. Overall, there
is almost half clicks saved in our setting.

We also test a more realistic scenario, in which the models have access to either a single GT caption,
or in our case “C" (or “A”) and feedback. This mimics a scenario in which the human teacher observes
the agent and either gives feedback about the agent’s mistakes, or, if the agent’s caption is completely
wrong, the teacher writes a new caption. Interestingly, RL when provided with the corrected captions
performs better than when given GT captions. Overall, our model outperforms the base RL (no
feedback) by 1.2 points. We note that our RL agents are trained (not counting pre-training) only on a
small (9K) subset of the full MS-COCO training set. Further improvements are thus possible.

Discussion. These experiments make an important point. Instead of giving the RL agent a com-
pletely new target (caption), a better strategy is to “teach” the agent about the mistakes it is doing
and suggest a correction. Natural language thus offers itself as a rich modality for providing such
guidance not only to humans but also to artificial agents.
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Table 6: Comparison of our RL with feedback information to baseline RL and MLE models.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L Weighted metric
MLE (5 GT) 65.37 44.02 29.51 19.91 50.90 104.12

MLEC (5 GT + C) 66.85 45.19 29.89 19.79 51.20 105.58
MLEC (5 GT + A) 66.14 44.87 30.17 20.27 51.32 105.47

RLB (5 GT) 66.90 45.10 30.10 20.30 51.10 106.55
RLF (3GT+FB+C) 66.52 45.23 30.48 20.66 51.41 107.02
RLF (3GT+FB+A) 66.98 45.54 30.52 20.53 51.54 107.315

se
nt

.

RLF (4GT + FB) 67.10 45.50 30.60 20.30 51.30 107.67
RLB (1 GT) 65.68 44.58 29.81 19.97 51.07 104.93

RLB (C) 65.84 44.64 30.01 20.23 51.06 105.50
RLB (A) 65.81 44.58 29.87 20.24 51.28 105.31

RLF (C + FB) 65.76 44.65 30.20 20.62 51.35 106.03

1
se

nt
.

RLF (A + FB) 66.23 45.00 30.15 20.34 51.58 106.12
GT: ground truth captions; FB: feedback; MLE(A)(C): MLE model using five GT sentences + either C or A
captions (see text and Table 7); RLB: baseline RL (no feedback network); RLF: RL with feedback (here we

also use C or A captions as well as FBN);

ground-truth perfect acceptable grammar error only
A 3107 2661 2790 442
C 6326 1502 1502 234

Table 7: Detailed break-down of what
captions were used as “A” or “C” in Table 6
for computing additional rewards in RL.

(a)

47.7 52.3 
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350000 
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Figure 5: (a) Human preferences: RL baseline vs RL with feedback (our approach), (b) Number of human
“clicks” required for MLE/baseline RL, and ours. A click is counted when an annotator hits the keyboard: in
evaluation, choosing the quality of the caption counts as 1 click, and for captions/feedback, every letter counts as
a click. The main save comes from the first evaluation round, in which we only as for the quality of captions.

MLE: ( a man ) ( walking ) ( in front of a
building ) ( with a cell phone . )
RLB: ( a man ) ( is standing ) ( on a sidewalk )
( with a cell phone . )
RLF: ( a man ) ( wearing a black suit ) ( and
tie ) ( on a sidewalk . )

MLE: ( two giraffes ) ( are standing ) ( in a
field ) ( in a field . )
RLB: ( a giraffe ) ( is standing ) ( in front of a
large building . )
RLF: ( a giraffe ) ( is ) ( in a green field ) ( in a
zoo . )

MLE: ( a clock tower ) ( with a clock ) ( on
top . )
RLB: ( a clock tower ) ( with a clock ) ( on top
of it . )
RLF: ( a clock tower ) ( with a clock ) ( on the
front . )

MLE: ( two birds ) ( are standing ) ( on the
beach ) ( on a beach . )
RLB: ( a group ) ( of birds ) ( are ) ( on the
beach . )
RLF: ( two birds ) ( are standing ) ( on a beach
) ( in front of water . )

Figure 6: Qualitative examples of captions from the MLE and RLB models (baselines), and our RBF model.

5 Conclusion
In this paper, we enable a human teacher to provide feedback to the learning agent in the form of
natural language. We focused on the problem of image captioning. We proposed a hierarchical
phrase-based RNN as our captioning model, which allowed natural integration with human feedback.
We crowd-sourced feedback for a snapshot of our model, and showed how to incorporate it in Policy
Gradient optimization. We showed that by exploiting descriptive feedback our model learns to
perform better than when given independently written captions.
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