
Supplementary material
1 Illustrations of the algorithms

1.1 Nonbacktracking upper bounds (NB-UB)
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Figure 1: The step-wise illustration of NB-UB algorithm on the example network.

l = 0 l = 1 l = 2 l = 3

Sl {b} {a, c} {d} {a, c, e}
Mcurr UB0 Mcurr UB1 Mcurr UB2 Mcurr UB3

a ∅ 0 {(b, p)} p ∅ 0 {(d, p3)} p3

b {(b, 1)} 1 ∅ 0 ∅ 0 ∅ 0
c ∅ 0 {(b, p)} p ∅ 0 {(d, p3)} p3

d ∅ 0 ∅ 0
{(a, p2),
(c, p2)}

2p2 − p4 ∅ 0

e ∅ 0 ∅ 0 ∅ 0 {(d, 2p3 − p5)} 2p3 − p5

Out
-Prob

UB0(b→a) = p

UB0(b→c) = p

UB1(a→d) = p2

UB1(c→d) = p2

UB2(d→a) = p3

UB2(d→c) = p3

UB2(d→e) = 2p3 − p5

UB3(a→d) = 0

UB3(c→d) = 0

UB3(e→d) = 0

Table 1: The values of the key variables in NB-UB algorithm on the example network in Figure 1.

In Figure 1, we describe how NB-UB algorithm runs on a small independent cascade model
IC(G,P, S0) defined on an undirected graph G = (V,E), where V = {a, b, c, d}, S0 = {b},
and every edge has the same transmission probability p. For each l, Table 1 shows the values of
the key variables, Sl, Mcurr, and UBl, in the algorithm and UBl(u→v) for every pair u, v such that
u ∈ Sl and v ∈ N+(u) \ S0.

For example, at l = 2, since S2 = {d}, node d is processed. Recall that, at l = 1, node a sent the
message (a,UB1(a→d)) to d, and node c sent the message (c,UB1(c→d)) to d. Thus,

Mcurr(d) = {(a,UB1(a→d)), (c,UB1(c→d))} = {(a, p2), (c, p2)} (1)
MSrc(d) = {a, c}, (2)

and node d is processed as follows. First, compute UB2(d) as
UB2(d) = ProcessIncomingMsgUB(Mcurr(d)) (3)

= 1− (1− UB1(a→d))(1− UB1(c→d)) = 2p2 − p4. (4)
Next, set S3 = N+(d)\S0 = {a, c, e} and compute the following messages. Since a, c ∈ MSrc(d)
and e /∈ MSrc(d),

UB2(d→a) = GenerateOutgoingMsgUB(UB1(a→d),UB2(d),Pda) (5)

= Pda(1−
1− UB2(d)

1− UB1(a→d)
) = p3 (6)

UB2(d→c) = GenerateOutgoingMsgUB(UB1(c→d),UB2(d),Pdc) (7)

= Pdc(1−
1− UB2(d)

1− UB1(c→d)
) = p3 (8)

UB2(d→e) = GenerateOutgoingMsgUB(0,UB2(d),Pde) (9)

= Pde(1−
1− UB2(d)

1− 0
) = PdeUB2(d) = 2p3 − p5. (10)

Then, node d send messages (d,UB2(d→a)) to a, (d,UB2(d→c)) to c, and (d,UB2(d→e)) to e,
concluding the process of the l = 2 step.
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1.2 Nonbacktracking lower bounds (NB-LB)
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Figure 2: The step-wise illustration of NB-LB on the example network.

k = 1 k = 2 k = 3 k = 4

vk a b c d

M(vk) {(1, 1)} {(1, p)} {(1, p), (p, p)} {(p+ p2 − p3, p)}
LB(vk) 1 p p+ p2 − p3 p2 + p3 − p4

N+(vk) \ S0 {b, c} {c} {d} ∅
(LB(vk),P ′vkvl) to vl (1, p) to b and c (p, p) to c (p+ p2 − p3, p) to d

σ− 1 1 + p 1 + 2p+ p2 − p3 1 + 2p+ 2p2 − p4
Table 2: The values of the key variables in NB-LB on the example network in Figure 2.

In Figure 2, we show an example for the lower bound computation by NB-LB on a small network
IC(G,P, S0) defined on an undirected graph G = (V,E), where V = {a, b, c, d}, S0 = {a}, and
every edge has the same transmission probability p. For each k, Table 2 shows the values of the key
variables, M(vk), LB(vk), and (LB(vk),P ′vkvl) for the out-neighbors vl ∈ N+(vk) \ S0, and shows
the changes in σ−.

We obtain MDAS from the network as follows. Since d(S0, a) = 0, d(S0, b) = d(S0, c) = 1 and
d(S0, d) = 2, we order the vertices as {v1 = a, v2 = b, v3 = c, v4 = d} to satisfy that d(S0, vi) ≤
d(S0, vj), for every i < j.

NB-LB algorithm processes the nodes {v1=a, v2=b, v3=c, v4=d} sequentially. For example, at
k=3, node c is processed. Recall that at k = 1, node a sent the message (LB(a),P ′ac) to node c, and
at k = 2, node b sent the message (LB(b),P ′bc) to node c. Thus,

M(c) = {(LB(a),P ′ac), (LB(b),P ′bc)} = {(1, p), (p, p)}. (11)

Then, it computes LB(c) with the function ProcessIncomingMsgLB.

LB(c) = ProcessIncomingMsgLB(M(c)) (12)

= P ′acLB(a) + P ′bcLB(b)(1− P ′ac) = p+ p2 − p3. (13)

Recall that σ− = 1 + p, at the end of iteration k = 2. Thus,

σ− = 1 + p+ LB(c) = 1 + 2p+ p2 − p3. (14)

Next, since N+(c) \ S0 = {d}, node c sends the message (LB(c),Pcd) = (p+ p2 − p3, p) to node
d, concluding the process of the k = 3 step.

2 Proofs of the theorems

We start by defining the following events for the independent cascade model IC(G,P, S0), where
G = (V,E) and |V | = n.
Definition 10. For any u, v ∈ V , l ∈ {0, . . . , n−1}, and S ⊆ V , we define

A(v) = {v is influenced} (15)
Al(v) = ∪P∈Pl(S0→v){P is open} (16)

Al(u→v) = ∪P∈Pl(S0→u),P 6 ∈v{P is open and edge (u, v) is open} (17)
Al,S(v) = ∪P∈{P ′∈Pl(S0→v):P ′ 6 ∈w,∀w∈S}{P is open}. (18)

In other words, Al(v) is the event that node v is influenced by open paths of length l, Al(u→v) is
the event that v is influenced by node u with open paths of length l + 1, i.e. there exists an open path
of length l + 1 from a seed to v that ends with edge (u, v), and Al,S(v) is the event that node v is
influenced by length l open paths which do not include any node in S.
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Lemma 1. For any v ∈ V ,

p(v) ≤ 1−
n−1∏
l=0

(1− pl(v)). (19)

For any v ∈ V and l ∈ {0, . . . , n− 1},

pl(v) ≤ 1−
∏

u∈N−(v)

(1− pl(u→v)). (20)

Proof. Recall that p(v) = P(A(v)), pl(v) = P(Al(v)), and pl(u→v) = P(Al(u→v)).

p(v) = P(∪n−1l=0 Al(v)) (21)

= 1− P(∩n−1l=0 Al(v)
C) (22)

≤ 1−
n−1∏
l=0

P(Al(v)
C) (23)

= 1−
n−1∏
l=0

(1− pl(v)). (24)

Equation (23) follows from the positive correlation among the events Al(v)
C for all v ∈ V . Similarly,

pl(v) = P(∪u∈N−(v)Al(u→v)) (25)

= 1− P(∩u∈N−(v)Al(u→v)C) (26)

≤ 1−
∏

u∈N−(v)

P(Al(u→v)C) (27)

= 1−
∏

u∈N−(v)

(1− pl(u→v)). (28)

Theorem 2. For any independent cascade model IC(G,P, S0),

σ(S0) ≤
∑
v∈V

(1−
n−1∏
l=0

(1− UBl(v))) =: σ
+(S0), (29)

where UBl(v) is obtained recursively as in Definition 7.

Proof. We provide a proof by induction. The initial condition, for l = 0, can be easily checked. For
every s∈S0, s+∈N+(s), u∈V \S0, and v∈N+(u),

p0(s) = 1 ≤ UB0(s) = 1 (30)
p0(s→s+) = Pss+ ≤ UB0(s→s+) = Pss+ (31)

p0(u) = 0 ≤ UB0(u) = 0 (32)
p0(u→v) = 0 ≤ UB0(u→v) = 0. (33)

For each l ≤ L, assume that pl(v) ≤ UBl(v) and pl(u→v) ≤ UBl(u→v) for all u, v ∈ V .

Since pl(s) = pl(s→s+) = pl(s
−→s) = 0 for every l ≥ 1, s∈S0, s+∈N+(s), and s−∈N−(s),

it is sufficient to show pL+1(v) ≤ UBL+1(v) and pL+1(u→v) ≤ UBL+1(u→v) for all u∈V \S0,
and v∈N+(u),

For simplicity, for any pair of events (A,B), use the notation AB for A ∩B.

For any v ∈ V \ S0,

pL+1(v) = P(∪u∈N−(v)EuvAL,{v}(u)), (34)
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where Euv denotes the event that edge (u, v) is open, i.e. P(Euv) = Puv . Thus,

pL+1(v) = 1− P(∩u∈N−(v)(EuvAL,{v}(u))
C) (35)

≤ 1−
∏

u∈N−(v)

(1− P(EuvAL,{v}(u))) (36)

= 1−
∏

u∈N−(v)

(1− pL(u→v)) (37)

≤ 1−
∏

u∈N−(v)

(1− UBL(u→v)) = UBL+1(v), (38)

where Equation (36) is obtained by the positive correlation among the events EuvAL,{v}(u), and
Equation (38) comes from the assumption.

For any v ∈ V \ S0 and w ∈ N+(v),

pL+1(v→w) = P(EvwAL+1,{w}(v)). (39)
= PvwP(AL+1,{w}(v)) (40)

Equation (40) follows from the independence between the events Evw and AL+1,{w}(v).
If w ∈ N−(v),

pL+1(v→w) = PvwP(∪u∈N−(v)\{w}EuvAL,{v,w}(u)) (41)

≤ Pvw

1−
∏

u∈N−(v)\{w}

(1− P(EuvAL,{v,w}(u)))

 (42)

≤ Pvw

1−
∏

u∈N−(v)\{w}

(1− pL(u→v))

 (43)

≤ Pvw

1−
∏

u∈N−(v)\{w}

(1− UBL(u→v))

 , (44)

Equation (43) holds, since the two events satisfy EuvAL,{v,w}(u) ⊆ EuvAL,{v}(u).
Recall that, if w ∈ N−(v),

UBL+1(v→w) = Pvw(1−
1− UBL+1(v)

1− UBL(w→v)
) (45)

= Pvw(1−
∏

u∈N−(v)\{w}

(1− UBL(u→v))). (46)

Thus, pL+1(v→w) ≤ UBL+1(v→w), for all w ∈ N+(v) ∩N−(v).
If w /∈ N−(v),

pL+1(v→w) = PvwP(∪u∈N−(v)EuvAL,{v,w}(u)) (47)

≤ Pvw

1−
∏

u∈N−(v)

(1− UBL(u→v))

 (48)

= PvwUBL+1(v) = UBL+1(v→w), (49)

Hence, pL+1(v→w) ≤ UBL+1(v→w), for all w ∈ N+(v), concluding the induction proof.
Finally, by Lemma 1,

σ(S0) ≤
∑
v∈V

(1−
n−1∏
l=0

(1− pl(v))) (50)

≤
∑
v∈V

(1−
n−1∏
l=0

(1− UBl(v))) = σ+(S0). (51)
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Theorem 3. For any independent cascade model IC(G,P, S0) and its directed acyclic subnetwork
IC(G′,P ′, S0),

σ(S0) ≥
∑

vk∈V ′
LB(vk) =: σ−(S0), (52)

where LB(vk) is obtained recursively as in Definition 9.

Proof. We provide a proof by induction. For any vk ∈ V ′, let A(vk) be the event that node vk is
influenced in MDAS IC(G′,P ′, S0), and for every edge (vj , vk), let Evj ,vk

be the event that edge
(vj , vk) is open, i.e. P(Evj ,vk) = P ′vjvk . Recall that p(vk) = P(A(vk)).

The initial condition k = 1 holds, since p(v1) = 1 ≥ LB(v1) = 1 (v1 is a seed).

For every k ≤ K, assume p(vk) ≥ LB(vk).

For the node vK+1,

p(vK+1) = P(∪vj∈N−(vK+1)EvjvK+1
A(vj)). (53)

We re-label vertices in N−(vK+1) = {u1, . . . , um} where m = in-deg(vK+1), and let QiK+1 =
P ′uivK+1

. Then, for any integer m′ ≤ m,

p(vK+1) = P(∪mi=1EuivK+1
A(ui)) (54)

≥ P(∪m
′

i=1EuivK+1
A(ui)) (55)

≥
m′∑
i=1

P(EuivK+1
A(ui))−

m′∑
i=1

i−1∑
j=1

P(EuivK+1
A(ui)EujvK+1

A(uj)) (56)

=

m′∑
i=1

QiK+1P(A(ui))−
m′∑
i=1

i−1∑
j=1

QiK+1QjK+1P(A(ui)A(uj)) (57)

≥
m′∑
i=1

QiK+1P(A(ui))(1−
i−1∑
j=1

QjK+1). (58)

Equation (56) follows from the principle of inclusion and exclusion. Equation (57) results from the
Independence between the event that an edge ending with vK+1 is open and the event that a node vi
is influenced where i < K + 1. Equation (58) holds since P(A(ui)) ≥ P(A(ui)A(uj)).

Now, define m∗ = max{m′ ≤ m :
∑m′−1

j=1 QjK+1 ≤ 1}. Then,

p(vK+1) ≥
m∗∑
i=1

QiK+1P(A(ui))(1−
i−1∑
j=1

QjK+1) (59)

≥
m∗∑
i=1

QiK+1LB(ui)(1−
i−1∑
j=1

QjK+1) (60)

= LB(vK+1). (61)

Equation (60) follows since 1 −
∑i−1

j=1QjK+1 ≥ 0 for all i ≤ m∗ by the definition of m∗. Thus,
p(vi) ≥ LB(vi) for all vi ∈ V ′, concluding the induction proof.
Finally,

σ(S0) ≥
n∑

i=1

p(vi) (62)

≥
n∑

i=1

LB(vi) = σ−(S0). (63)

Equation (62) holds since its right hand side equals to the influence of the MDAS, IC(G′,P ′, S0).
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3 Tunable nonbacktracking bounds

We present here the parametrized algorithms for NB-UB and NB-LB described in Section 3.3.

Tunable nonbacktracking upper bounds (tNB-UB): The algorithm inputs the parameter t, which
indicates the maximum length of the paths that the algorithm considers in order to compute the exact,
rather than the upper bound on, probability of influence. That is, the algorithm computes p≤t(u) that
node u is influenced by an open path whose length is less than or equal to t.

p≤t(u) = P(∪P∈{∪t
i=0Pi(S0→u)}{P is open}). (64)

Then, we start (non-parameterized) NB-UB algorithm from l = t+ 1 with the new initial conditions:
for all u ∈ V and v ∈ N+(u),

UBt(u) = p≤t(u) (65)
UBt(u→v) = pt(u→v) (66)

Finally, the upper bound by tNB-UB is computed as
∑

v∈V (1−
∏n−1

l=t (1− UBl(v))).

Algorithm Tunable NB-UB (tNB-UB)

parameter: non-negative integer t ≤ n− 1
Initialize: UBt(v) = 0 for all t ≤ l ≤ n− 1 and v ∈ V
for u ∈ V do

UBt(u) = p≤t(u)
for v ∈ N+(u) \ S0 do

if pt(u→v) > 0 then
St+1.insert(v)
Mnext(v).insert(u, pt(u→v))

for l = t+ 1 to n− 1 do
for u ∈ Sl do

Mcurr(u) = Mnext(u)
Clear Mnext(u)
UBl(u) = ProcessIncomingMsgUB(Mcurr(u))

for u ∈ Sl do
for v ∈ N+(u) \ S0 do

Sl+1.insert(v)
if v ∈ Mcurr(u) then

UBl(u→v) = GenerateOutgoingMsgUB(Mcurr(u)[v],UBl(u),Puv)
Mnext(v).insert((u,UBl(u→v))).

else
UBl(u→v) = GenerateOutgoingMsgUB(0,UBl(u),Puv)
Mnext(v).insert((u,UBl(u→v))).

Output: UBl(u) for all l = {t, t+ 1, . . . , n− 1}, u ∈ V

Tunable nonbacktracking lower bounds (tNB-LB): We first order the vertex set as V ′ =
{v1, . . . , vn}, which satisfies d(S0, vi) ≤ d(S0, vj), for every i < j. Given a non-negative in-
teger parameter t ≤ n, we obtain a t-size subnetwork IC(G[Vt],P[Vt], S0 ∩ Vt), where G[Vt] is
the vertex-induced subgraph which is induced by the set of nodes Vt = {v1, . . . , vt}, and P[Vt]
is the corresponding transmission probability matrix. For each vi ∈ Vt, we compute the exact
probability pt(vi) that node vi is influenced in the subnetwork IC(G[Vt],P[Vt], S0 ∩ Vt). Then, we
start (non-parameterized) NB-LB algorithm from k = t+ 1 with the new initial condition: for all
k ≤ t,

LB(vk) = pt(vk). (67)

Finally, tNB-LB computes the lower bound as
∑

vk∈V ′ LB(vk).
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Algorithm Tunable NB-LB (tNB-LB)

parameter: non-negative integer t ≤ n
Initialize: σ− = 0
for k = 1 to t do

LB(vk) = pt(vk)
σ− += LB(vk)
for vi ∈ {N+(vk) ∩ {vj : j > t}} do

M(vi).insert((LB(vk),P ′vkvi))
for k = t+ 1 to n do

LB(vk) = ProcessIncomingMsgLB(M(vk))
σ− += LB(vk)
for vi ∈ N+(vk) \ S0 do

M(vi).insert((LB(vk),P ′vkvi))
Output: σ−

Experimental results: In Figure 3a, we show tNB-UB on a sample network. We consider a 3-regular
network with 100 nodes and a single seed. Since the NB-UB gives a tight bound on p < 0.4, we plot
tNB-UB on p ∈ (0.4, 0.5) where it shows some improvements with small t.
In Figure 3b, we present tNB-LB on a scale-free network with 3000 nodes, α = 2.5, and a single
seed. We compare tNB-LB with various choices of t ∈ {1, 12, 100, 300}, and tNB-LB approaches
the MC estimation as t grows.
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Figure 3: (a) NB-UB, tNB-UB with t = 3, and MC estimation with 10000 simulations on a 3-regular network
with 100 nodes.
(b) NB-LB, tNB-LB with various t ∈ {12, 100, 300}, and MC estimation with 3000000 simulations on a
scale-free network with 3000 nodes.
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