
A Detailed Theoretical Analysis1

Lemma 3.1. For any fixed C and G, the optimal discriminator D of the game defined by the utility2

function U(C,G,D) is3

D∗C,G(x, y) =
p(x, y)

p(x, y) + pα(x, y)
, (1)

where pα(x, y) := (1− α)pg(x, y) + αpc(x, y) is a mixture distribution for α ∈ (0, 1).4

Proof. Given the classifier and generator, the utility function can be rewritten as5

U(C,G,D) =

∫∫
p(x, y) logD(x, y)dydx+ (1− α)

∫∫
p(y)pz(z) log(1−D(G(z, y), y))dydz

+α

∫∫
p(x)pc(y|x) log(1−D(x, y))dydx

=

∫∫
p(x, y) logD(x, y)dydx+

∫∫
pα(x, y) log(1−D(x, y))dydx = f(D(x, y)).

Note that the function f(D(x, y)) achieves the maximum at p(x,y)
p(x,y)+pα(x,y)

.6

7

Lemma 3.2. The global minimum of V (C,G) is achieved if and only if p(x, y) = pα(x, y).8

Proof. Given D∗C,G, we can reformulate the minimax game with value function U as:9

V (C,G) =

∫∫
p(x, y) log

p(x, y)

p(x, y) + pα(x, y)
dydx+

∫∫
pα(x, y) log

pα(x, y)

p(x, y) + pα(x, y)
dydx.

Following the proof in GAN, the V (C,G) can be rewritten as10

V (C,G) = − log 4 + 2JSD(p(x, y)||pα(x, y)), (2)

where JSD is the Jensen-Shannon divergence, which is always non-negative and the unique optimum11

is achieved if and only if p(x, y) = pα(x, y) = (1− α)pg(x, y) + αpc(x, y).12

Corollary 3.2.1. Given p(x, y) = pα(x, y), the marginal distributions are the same for p, pc and pg ,13

i.e. p(x) = pg(x) = pc(x) and p(y) = pg(y) = pc(y).14

Proof. Remember that pg(x, y) = p(y)pg(x|y) and pc(x, y) = p(x)pc(y|x). Take integral with
respect to x on both sides of p(x, y) = pα(x, y) to get∫

p(x, y)dx = (1− α)
∫
pg(x, y)dx+ α

∫
pc(x, y)dx,

which indicates that

p(y) = (1− α)p(y) + αpc(y), i.e. pc(y) = p(y) = pg(y).

Similarly, it can be shown that pg(x) = p(x) = pc(x) by taking integral with respect to y.15

Theorem 3.3. The equilibrium of Ũ(C,G,D) is achieved if and only if p(x, y) = pg(x, y) =16

pc(x, y).17

Proof. According to the definition, Ũ(C,G,D) = U(C,G,D) +RL, where

RL = Ep[− log pc(y|x)],
which can be rewritten as:

DKL(p(x, y)||pc(x, y)) +Hp(y|x).
Namely, minimizingRL is equivalent to minimizing DKL(p(x, y)||pc(x, y)), which is always non-18

negative and zero if and only if p(x, y) = pc(x, y). Besides, the previous lemmas can also be applied19

to Ũ(C,G,D), which indicates that p(x, y) = pα(x, y) at the global equilibrium, concluding the20

proof.21

1

(a) Feature Matching (b) Triple-GAN (c) Feature Matching (d) Triple-GAN

Figure 1: (a) and (c): Samples generated from Improved-GAN trained with feature matching on
MNIST and CIFAR10 datasets. Strange patterns repeat on CIFAR10. (b) and (d): Samples generated
from Triple-GAN.

Corollary 3.3.1. Adding any divergence (e.g. the KL divergence) between any two of the joint22

distributions or the conditional distributions or the marginal distributions, to Ũ as the additional23

regularization to be minimized, will not change the global equilibrium of Ũ .24

Proof. This conclusion is straightforward derived by the global equilibrium point of Ũ and the25

definition of the divergence between distributions.26

Pseudo discriminative loss We prove the equivalence of the pseudo discriminative loss in the main27

text and KL-divergence DKL(pg(x, y)||pc(x, y)) as follows:28

DKL(pg(x, y)||pc(x, y)) +Hpg (y|x)−DKL(pg(x)||p(x))

=

∫∫
pg(x, y) log

pg(x, y)

pc(x, y)
+ pg(x, y) log

1

pg(y|x)
dxdy −

∫
pg(x) log

pg(x)

p(x)
dx

=

∫∫
pg(x, y) log

pg(x, y)

pc(x, y)pg(y|x)
dxdy −

∫∫
pg(x, y) log

pg(x)

p(x)
dxdy

=

∫∫
pg(x, y) log

pg(x, y)p(x)

pc(x, y)pg(y|x)pg(x)
dxdy

=Epg [− log pc(y|x)].

Note that the last equality holds as pc(x) = p(x) and Hpg (y|x)−DKL(pg(x)||p(x)) is a constant29

with respective to θc. Therefore, if we only optimize C, these two losses are equivalent.30

B Unconditional Generation31

We compare the samples generated from Triple-GAN and Improved-GAN on the MNIST and32

CIFAR10 datasets as in Fig. 1, where Triple-GAN shares the same architecture of generator and33

number of labeled data with the baseline. It can be seen that Triple-GAN outperforms the GANs that34

are trained with the feature matching criterion on generating indistinguishable samples.35

C Class-conditional Generation on CIFAR1036

We show more class-conditional generation results on CIFAR10 in Fig. 2. Again, we can see that37

Triple-GAN can generate meaningful images in specific classes.38

D Disentanglement and Interpolation on the MNIST dataset39

We present the disentanglement of class and style and class-conditional interpolation on the MNIST40

dataset as in Fig. 3. We have the same conclusion as in main text that Triple-GAN is able to transfer41

smoothly on the data level with clear semantics.42

2

(a) Airplane (b) Bird (c) Cat (d) Deer

(e) Dog (f) Frog (g) Ship (h) Truck

Figure 2: Samples from Triple-GAN given certain class on CIFAR10.

(a) Data (b) Samples (c) Linear Interpolation

Figure 3: (a): randomly sampled MNIST data; (b) disentanglement of class and style; (c) class-
conditional interpolation for Triple-GAN on MNIST.

E Convergence Speed43

Though Triple-GAN has one more network, its convergence speed is at least comparable with44

Improved-GAN, as presented in Fig. 4. Both the models are trained on SVHN dataset with default45

settings and Triple-GAN can get good results in tens of epochs. The reason that the learning curve of46

Triple-GAN is oscillatory may be the larger variance of the gradients due to the presence of discrete47

variables. Also note that we apply pseudo discriminative loss at epoch 200 and then the test error is48

reduced significantly in 100 epochs.49

F Detailed Architectures50

We list the detailed architectures of Triple-GAN on MNIST, SVHN and CIFAR10 datasets in Table 1,51

Table 2 and Table 3, respectively.52

3

0 100 200 300 400 500 600 700 800 900

Epoch Number

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

E
rr

o
r

R
a

te
 o

n
 T

e
s
t

D
a

ta

Improved GAN.

Triple GAN.

Figure 4: Convergence speed of Improved GAN and Triple-GAN on SVHN.

Table 1: MNIST

Classifier C Discriminator D Generator G

Input 28×28 Gray Image Input 28×28 Gray Image, Ont-hot Class representation Input Class y, Noise z

5×5 conv. 32 ReLU MLP 1000 units, lReLU, gaussian noise, weight norm MLP 500 units,
2×2 max-pooling, 0.5 dropout MLP 500 units, lReLU, gaussian noise, weight norm softplus, batch norm

3×3 conv. 64 ReLU MLP 250 units, lReLU, gaussian noise, weight norm
3×3 conv. 64 ReLU MLP 250 units, lReLU, gaussian noise, weight norm MLP 500 units,

2×2 max-pooling, 0.5 dropout MLP 250 units, lReLU, gaussian noise, weight norm softplus, batch norm
3×3 conv. 128 ReLU MLP 1 unit, sigmoid, gaussian noise, weight norm
3×3 conv. 128 ReLU MLP 784 units, sigmoid

Global pool
10-class Softmax

Table 2: SVHN

Classifier C Discriminator D Generator G

Input: 32×32 Colored Image Input: 32×32 colored image, class y Input: Class y, Noise z

0.2 dropout 0.2 dropout MP 8192 units,
3×3 conv. 128 lReLU, batch norm 3×3 conv. 32, lReLU, weight norm ReLU, batch norm
3×3 conv. 128 lReLU, batch norm 3×3 conv. 32, lReLU, weight norm, stride 2 Reshape 512×4×4
3×3 conv. 128 lReLU, batch norm 5×5 deconv. 256. stride 2,

2×2 max-pooling, 0.5 dropout 0.2 dropout ReLU, batch norm

3×3 conv. 256 lReLU, batch norm 3×3 conv. 64, lReLU, weight norm
3×3 conv. 256 lReLU, batch norm 3×3 conv. 64, lReLU, weight norm, stride 2
3×3 conv. 256 lReLU, batch norm 5×5 deconv. 128. stride 2,

2×2 max-pooling, 0.5 dropout 0.2 dropout ReLU, batch norm

3×3 conv. 512 lReLU, batch norm 3×3 conv. 128, lReLU, weight norm
NIN, 256 lReLU, batch norm 3×3 conv. 128, lReLU, weight norm
NIN, 128 lReLU, batch norm

Global pool Global pool 5×5 deconv. 3. stride 2,
10-class Softmax, batch norm MLP 1 unit, sigmoid sigmoid, weight norm

Table 3: CIFAR10

Classifier C Discriminator D Generator G

Input: 32×32 Colored Image Input: 32×32 colored image, class y Input: Class y, Noise z

Gaussian noise 0.2 dropout MLP 8192 units,
3×3 conv. 128 lReLU, weight norm 3×3 conv. 32, lReLU, weight norm ReLU, batch norm
3×3 conv. 128 lReLU, weight norm 3×3 conv. 32, lReLU, weight norm, stride 2 Reshape 512×4×4
3×3 conv. 128 lReLU, weight norm 5×5 deconv. 256.stride 2

2×2 max-pooling, 0.5 dropout 0.2 dropout ReLU, batch norm

3×3 conv. 256 lReLU, weight norm 3×3 conv. 64, lReLU, weight norm
3×3 conv. 256 lReLU, weight norm 3×3 conv. 64, lReLU, weight norm, stride 2
3×3 conv. 256 lReLU, weight norm 5×5 deconv. 128. stride 2

2×2 max-pooling, 0.5 dropout 0.2 dropout ReLU, batch norm

3×3 conv. 512 lReLU, weight norm 3,×3 conv. 128 lReLU, weight norm
NIN, 256 lReLU, weight norm 3×3 conv. 128, lReLU, weight norm
NIN, 128 lReLU, weight norm

Global pool Global pool 5×5 deconv. 3. stride 2
10-class Softmax wieh weight norm MLP 1 unit, sigmoid, weight norm tanh, weight norm

4

	Detailed Theoretical Analysis
	Unconditional Generation
	Class-conditional Generation on CIFAR10
	Disentanglement and Interpolation on the MNIST dataset
	Convergence Speed
	Detailed Architectures

