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Abstract

Compressive image recovery is a challenging problem that requires fast and accu-
rate algorithms. Recently, neural networks have been applied to this problem with
promising results. By exploiting massively parallel GPU processing architectures
and oodles of training data, they can run orders of magnitude faster than existing
techniques. However, these methods are largely unprincipled black boxes that are
difficult to train and often-times specific to a single measurement matrix.

It was recently demonstrated that iterative sparse-signal-recovery algorithms can
be “unrolled” to form interpretable deep networks. Taking inspiration from this
work, we develop a novel neural network architecture that mimics the behavior of
the denoising-based approximate message passing (D-AMP) algorithm. We call
this new network Learned D-AMP (LDAMP).

The LDAMP network is easy to train, can be applied to a variety of different
measurement matrices, and comes with a state-evolution heuristic that accurately
predicts its performance. Most importantly, it outperforms the state-of-the-art
BM3D-AMP and NLR-CS algorithms in terms of both accuracy and run time. At
high resolutions, and when used with sensing matrices that have fast implemen-
tations, LDAMP runs over 50× faster than BM3D-AMP and hundreds of times
faster than NLR-CS.

1 Introduction

Over the last few decades computational imaging systems have proliferated in a host of different
imaging domains, from synthetic aperture radar to functional MRI and CT scanners. The majority of
these systems capture linear measurements y ∈ Rm of the signal of interest x ∈ Rn via y = Ax+ ε,
where A ∈ Rm×n is a measurement matrix and ε ∈ Rm is noise.

Given the measurements y and the measurement matrix A, a computational imaging system seeks to
recover x. When m < n this problem is underdetermined, and prior knowledge about x must be used
to recovery the signal. This problem is broadly referred to as compressive sampling (CS) [1; 2].

There are myriad ways to use priors to recover an image x from compressive measurements. In the
following, we briefly describe some of these methods. Note that the ways in which these algorithms
use priors span a spectrum; from simple hand-designed models to completely data-driven methods
(see Figure 1).
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Figure 1: The spectrum of compressive signal recovery algorithms.

1.1 Hand-designed recovery methods

The vast majority of CS recovery algorithms can be considered “hand-designed” in the sense that they
use some sort of expert knowledge, i.e., prior, about the structure of x. The most common signal prior
is that x is sparse in some basis. Algorithms using sparsity priors include CoSaMP [3], ISTA [4],
approximate message passing (AMP) [5], and VAMP [6], among many others. Researchers have also
developed priors and algorithms that more accurately describe the structure of natural images, such as
minimal total variation, e.g., TVAL3 [7], markov-tree models on the wavelet coefficients, e.g., Model-
CoSaMP [8], and nonlocal self-similarity, e.g., NLR-CS [9]. Off-the-shelf denoising and compression
algorithms have also been used to impose priors on the reconstruction, e.g., Denoising-based AMP
(D-AMP) [10], D-VAMP [11], and C-GD [12]. When applied to natural images, algorithms using
advanced priors outperform simple priors, like wavelet sparsity, by a large margin [10].

The appeal of hand-designed methods is that they are based on interpretable priors and often have
well understood behavior. Moreover, when they are set up as convex optimization problems they often
have theoretical convergence guarantees. Unfortunately, among the algorithms that use accurate priors
on the signal, even the fastest is too slow for many real-time applications [10]. More importantly,
these algorithms do not take advantage of potentially available training data. As we will see, this
leaves much room for improvement.

1.2 Data-driven recovery methods

At the other end of the spectrum are data-driven (often deep learning-based) methods that use no
hand-designed models whatsoever. Instead, researchers provide neural networks (NNs) vast amounts
of training data, and the networks learn how to best use the structure within the data [13–16].

The first paper to apply this approach was [13], where the authors used stacked denoising autoen-
coders (SDA) [17] to recover signals from their undersampled measurements. Other papers in this
line of work have used either pure convolutional layers (DeepInverse [15]) or a combination of
convolutional and fully connected layers (DR2-Net [16] and ReconNet [14]) to build deep learning
frameworks capable of solving the CS recovery problem. As demonstrated in [13], these methods can
compete with state-of-the-art methods in terms of accuracy while running thousands of times faster.
Unfortunately, these methods are held back by the fact that there exists almost no theory governing
their performance and that, so far, they must be trained for specific measurement matrices and noise
levels.

1.3 Mixing hand-designed and data-driven methods for recovery

The third class of recovery algorithms blends data-driven models with hand-designed algorithms.
These methods first use expert knowledge to set up a recovery algorithm and then use training
data to learn priors within this algorithm. Such methods benefit from the ability to learn more
realistic signal priors from the training data, while still maintaining the interpretability and guarantees
that made hand-designed methods so appealing. Algorithms of this class can be divided into two
subcategories. The first subcategory uses a black box neural network that performs some function
within the algorithm, such as the proximal mapping. The second subcategory explicitly unrolls and
iterative algorithm and turns it into a deep NN. Following this unrolling, the network can be tuned
with training data. Our LDAMP algorithm uses ideas from both these camps.

Black box neural nets. The simplest way to use a NN in a principled way to solve the CS problem
is to treat it as a black box that performs some function; such as computing a posterior probability.
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(a) D-IT Iterations (b) D-AMP Iterations

Figure 2: Reconstruction behavior of D-IT (left) and D-AMP (right) with an idealized denoiser.
Because D-IT allows bias to build up over iterations of the algorithm, its denoiser becomes ineffective
at projecting onto the set C of all natural images. The Onsager correction term enables D-AMP to
avoid this issue. Figure adapted from [10].

Examples of this approach include RBM-AMP and its generalizations [18–20], which use Restricted
Boltzmann Machines to learn non-i.i.d. priors; RIDE-CS [21], which uses the RIDE [22] generative
model to compute the probability of a given estimate of the image; and OneNet [23], which uses a
NN as a proximal mapping/denoiser.

Unrolled algorithms. The second way to use a NN in a principled way to solve the CS problem is
to simply take a well-understood iterative recovery algorithm and unroll/unfold it. This method is
best illustrated by the the LISTA [24; 25] and LAMP [26] NNs. In these works, the authors simply
unroll the iterative ISTA [4] and AMP [5] algorithms, respectively, and then treat parameters of
the algorithm as weights to be learned. Following the unrolling, training data can be fed through
the network, and stochastic gradient descent can be used to update and optimize its parameters.
Unrolling was recently applied to the ADMM algorithm to solve the CS-MRI problem [27]. The
resulting network, ADMM-Net, uses training data to learn filters, penalties, simple nonlinearities,
and multipliers. Moving beyond CS, the unrolling principle has been applied successfully in speech
enhancement [28], non-negative matrix factorization applied to music transcription [29], and beyond.
In these applications, unrolling and training significantly improve both the quality and speed of signal
reconstruction.

2 Learned D-AMP

2.1 D-IT and D-AMP

Learned D-AMP (LDAMP), is a mixed hand-designed/data-driven compressive signal recovery
framework that is builds on the D-AMP algorithm [10]. We describe D-AMP now, as well as the
simpler denoising-based iterative thresholding (D-IT) algorithm. For concreteness, but without loss
of generality, we focus on image recovery.

A compressive image recovery algorithm solves the ill-posed inverse problem of finding the image x
given the low-dimensional measurements y = Ax by exploiting prior information on x, such as fact
that x ∈ C, where C is the set of all natural images. A natural optimization formulation reads

argminx‖y −Ax‖22 subject to x ∈ C. (1)

When no measurement noise ε is present, a compressive image recovery algorithm should return the
(hopefully unique) image xo at the intersection of the set C and the affine subspace {x|y = Ax} (see
Figure 2).

The premise of D-IT and D-AMP is that high-performance image denoisers Dσ, such as BM3D
[30], are high-quality approximate projections onto the set C of natural images.1,2 That is, suppose

1The notation Dσ indicates that the denoiser can be parameterized by the standard deviation of the noise σ.
2Denoisers can also be thought of as a proximal mapping with respect to the negative log likelihood of natural

images [31] or as taking a gradient step with respect to the data generating function of natural images [32; 33].
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xo + σz is a noisy observation of a natural image, with xo ∈ C and z ∼ N(0, I). An ideal denoiser
Dσ would simply find the point in the set C that is closest to the observation xo + σz

Dσ(x) = argminx‖xo + σz − x‖22 subject to x ∈ C. (2)

Combining (1) and (2) leads naturally to the D-IT algorithm, presented in (3) and illustrated in Figure
2(a). Starting from x0 = 0, D-IT takes a gradient step towards the {x|y = Ax} affine subspace and
then applies the denoiser Dσ to move to x1 in the set C of natural images . Gradient stepping and
denoising is repeated for t = 1, 2, . . . until convergence.

D-IT Algorithm zt = y −Axt,

xt+1 = Dσ̂t(xt +AHzt). (3)

Let νt = xt +AHzt − xo denote the difference between xt +AHzt and the true signal xo at each
iteration. νt is known as the effective noise. At each iteration, D-IT denoises xt +AHzt = xo + νt,
i.e., the true signal plus the effective noise. Most denoisers are designed to work with νt as additive
white Gaussian noise (AWGN). Unfortunately, as D-IT iterates, the denoiser biases the intermediate
solutions, and νt soon deviates from AWGN. Consequently, the denoising iterations become less
effective [5; 10; 26], and convergence slows.

D-AMP differs from D-IT in that it corrects for the bias in the effective noise at each iteration
t = 0, 1, . . . using an Onsager correction term bt.

D-AMP Algorithm
bt =

zt−1divDσ̂t−1(xt−1 +AHzt−1)

m
,

zt = y −Axt + bt,

σ̂t =
‖zt‖2√
m
,

xt+1 = Dσ̂t(xt +AHzt). (4)

The Onsager correction term removes the bias from the intermediate solutions so that the effective
noise νt follows the AWGN model expected by typical image denoisers. For more information on the
Onsager correction, its origins, and its connection to the Thouless-Anderson-Palmer equations [34],
see [5] and [35]. Note that ‖z

t‖2√
m

serves as a useful and accurate estimate of the standard deviation of
νt [36]. Typically, D-AMP algorithms use a Monte-Carlo approximation for the divergence divD(·),
which was first introduced in [37; 10].

2.2 Denoising convolutional neural network

NNs have a long history in signal denoising; see, for instance [38]. However, only recently have they
begun to significantly outperform established methods like BM3D [30]. In this section we review the
recently developed Denoising Convolutional Neural Network (DnCNN) image denoiser [39], which
is both more accurate and far faster than competing techniques.

The DnCNN neural network consists of 16 to 20 convolutional layers, organized as follows. The first
convolutional layer uses 64 different 3× 3× c filters (where c denotes the number of color channels)
and is followed by a rectified linear unit (ReLU) [40]. The next 14 to 18 convolutional layers each use
64 different 3× 3× 64 filters which are each followed by batch-normalization [41] and a ReLU. The
final convolutional layer uses c separate 3× 3× 64 filters to reconstruct the signal. The parameters
are learned via residual learning [42].

2.3 Unrolling D-IT and D-AMP into networks

The central contribution of this work is to apply the unrolling ideas described in Section 1.3 to D-IT
and D-AMP to form the LDIT and LDAMP neural networks. The LDAMP network, presented in (5)
and illustrated in Figure 3, consists of 10 AMP layers where each AMP layer contains two denoisers
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Figure 3: Two layers of the LDAMP neural network. When used with the DnCNN denoiser, each
denoiser block is a 16 to 20 convolutional-layer neural network. The forward and backward operators
are represented as the matrices A and AH ; however function handles work as well.

with tied weights. One denoiser is used to update xl, and the other is used to estimate the divergence
using the Monte-Carlo approximation from [37; 10]. The LDIT network is nearly identical but does
not compute an Onsager correction term and hence, only applies one denoiser per layer. One of the
few challenges to unrolling D-IT and D-AMP is that, to enable training, we must use a denoiser
that easily propagates gradients; a black box denoiser like BM3D will not work. This restricts us to
denoisers such as DnCNN, which, fortunately, offers improved performance.

LDAMP Neural Network

bl =
zl−1divDl

wl−1(σ̂l−1)(x
l−1 +AHzl−1)

m
,

zl = y −Axl + bl,

σ̂l =
‖zl‖2√
m
,

xl+1 = Dl
wl(σ̂l)(x

l +AHzl). (5)

Within (5), we use the slightly cumbersome notation Dl
wl(σ̂l) to indicate that layer l of the network

uses denoiser Dl, that this denoiser depends on its weights/biases wl, and that these weights may be a
function of the estimated standard deviation of the noise σ̂l. During training, the only free parameters
we learn are the denoiser weights w1, ...wL. This is distinct from the LISTA and LAMP networks,
where the authors decouple and learn the A and AH matrices used in the network [24; 26].

3 Training the LDIT and LDAMP networks

We experimented with three different methods to train the LDIT and LDAMP networks. Here we
describe and compare these training methods at a high level; the details are described in Section 5.

• End-to-end training: We train all the weights of the network simultaneously. This is the
standard method of training a neural network.

• Layer-by-layer training: We train a 1 AMP layer network (which itself contains a 16-20
layer denoiser) to recover the signal, fix these weights, add an AMP layer, train the second
layer of the resulting 2 layer network to recover the signal, fix these weights, and repeat
until we have trained a 10 layer network.

• Denoiser-by-denoiser training: We decouple the denoisers from the rest of the network
and train each on AWGN denoising problems at different noise levels. During inference,
the network uses its estimate of the standard deviation of the noise to select which set of
denoiser weights to use. Note that, in selecting which denoiser weights to use, we must
discretize the expected range of noise levels; e.g., if σ̂ = 35, then we use the denoiser for
noise standard deviations between 20 and 40.
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LDIT LDAMP
End-to-end 32.1 33.1
Layer-by-layer 26.1 33.1
Denoiser-by-denoiser 28.0 31.6

(a)

LDIT LDAMP
End-to-end 8.0 18.7
Layer-by-layer -2.6 18.7
Denoiser-by-denoiser 22.1 25.9

(b)

Figure 4: Average PSNRs4 of 100 40× 40 image reconstructions with i.i.d. Gaussian measurements
trained at a sampling rate of mn = 0.20 and tested at sampling rates of mn = 0.20 (a) and m

n = 0.05
(b).

Comparing Training Methods. Stochastic gradient descent theory suggests that layer-by-layer
and denoiser-by-denoiser training should sacrifice performance as compared to end-to-end training
[43]. In Section 4.2 we will prove that this is not the case for LDAMP. For LDAMP, layer-by-layer and
denoiser-by-denoiser training are minimum-mean-squared-error (MMSE) optimal. These theoretical
results are born out experimentally in Tables 4(a) and 4(b). Each of the networks tested in this section
consists of 10 unrolled DAMP/DIT layers that each contain a 16 layer DnCNN denoiser.

Table 4(a) demonstrates that, as suggested by theory, layer-by-layer training of LDAMP is optimal;
additional end-to-end training does not improve the performance of the network. In contrast, the table
demonstrates that layer-by-layer training of LDIT, which represents the behavior of a typical neural
network, is suboptimal; additional end-to-end training dramatically improves its performance.

Despite the theoretical result the denoiser-by-denoiser training is optimal, Table 4(a) shows that
LDAMP trained denoiser-by-denoiser performs slightly worse than the end-to-end and layer-by-layer
trained networks. This gap in performance is likely due to the discretization of the noise levels, which
is not modeled in our theory. This gap can be reduced by using a finer discretization of the noise
levels or by using deeper denoiser networks that can better handle a range of noise levels [39].

In Table 4(b) we report on the performance of the two networks when trained at a one sampling
rate and tested at another. LDIT and LDAMP networks trained end-to-end and layer-by-layer at a
sampling rate of mn = 0.2 perform poorly when tested at a sampling rate of mn = 0.05. In contrast, the
denoiser-by-denoiser trained networks, which were not trained at a specific sampling rate, generalize
well to different sampling rates.

4 Theoretical analysis of LDAMP

This section makes two theoretical contributions. First, we show that the state-evolution (S.E.), a
framework that predicts the performance of AMP/D-AMP, holds for LDAMP as well.5 Second, we
use the S.E. to prove that layer-by-layer and denoiser-by-denoiser training of LDAMP are MMSE
optimal.

4.1 State-evolution

In the context of LAMP and LDAMP, the S.E. equations predict the intermediate mean squared error
(MSE) of the network over each of its layers [26]. Starting from θ0 =

‖xo‖22
n the S.E. generates a

sequence of numbers through the following iterations:

θl+1(xo, δ, σ
2
ε ) =

1

n
Eε‖Dl

wl(σ)(xo + σlε)− xo‖22, (6)

where (σl)2 = 1
δ θ
l(xo, δ, σ

2
ε ) + σ2

ε , the scalar σε is the standard deviation of the measurement noise
ε, and the expectation is with respect to ε ∼ N(0, I). Note that the notation θl+1(xo, δ, σ

2
ε ) is used to

emphasize that θl may depend on the signal xo, the under-determinacy δ, and the measurement noise.

Let xl denote the estimate at layer l of LDAMP. Our empirical findings, illustrated in Figure 5, show
that the MSE of LDAMP is predicted accurately by the S.E. We formally state our finding.

4PSNR = 10 log10(
2552

mean((x̂−xo)2)
) when the pixel range is 0 to 255.

5For D-AMP and LDAMP, the S.E. is entirely observational; no rigorous theory exists. For AMP, the S.E. has
been proven asymptotically accurate for i.i.d. Gaussian measurements [44].
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Figure 5: The MSE of intermediate reconstructions of the Boat test image across different layers for
the DnCNN variants of LDAMP and LDIT alongside their predicted S.E. The image was sampled
with Gaussian measurements at a rate of mn = 0.1. Note that LDAMP is well predicted by the S.E.,
whereas LDIT is not.

Finding 1. If the LDAMP network starts from x0 = 0, then for large values of m and n, the
S.E. predicts the mean square error of LDAMP at each layer, i.e., θl(xo, δ, σ2

ε ) ≈ 1
n

∥∥xl − xo∥∥22 , if
the following conditions hold: (i) The elements of the matrix A are i.i.d. Gaussian (or subgaussian)
with mean zero and standard deviation 1/m. (ii) The noise w is also i.i.d. Gaussian. (iii) The
denoisers Dl at each layer are Lipschitz continuous.6

4.2 Layer-by-layer and denoiser-by-denoiser training is optimal

The S.E. framework enables us to prove the following results: Layer-by-layer and denoiser-by-
denoiser training of LDAMP are MMSE optimal. Both these results rely upon the following lemma.
Lemma 1. Suppose that D1, D2, ...DL are monotone denoisers in the sense that for l = 1, 2, ...L
infwl E‖Dl

wl(σ)(xo + σε)− xo‖22 is a non-decreasing function of σ. If the weights w1 of D1 are set
to minimize Ex0 [θ

1] and fixed; and then the weights w2 of D2 are set to minimize Ex0 [θ
2] and fixed,

. . . and then the weights wL of DL are set to minimize Ex0
[θL], then together they minimize Ex0

[θL].

Lemma 1 can be derived using the proof technique for Lemma 3 of [10], but with θl replaced by
Ex0 [θ

l] throughout. It leads to the following two results.
Corollary 1. Under the conditions in Lemma 1, layer-by-layer training of LDAMP is MMSE optimal.

This result follows from Lemma 1 and the equivalence between Ex0
[θl] and Ex0

[ 1n‖x
l − xo‖22].

Corollary 2. Under the conditions in Lemma 1, denoiser-by-denoiser training of LDAMP is MMSE
optimal.

This result follows from Lemma 1 and the equivalence between Ex0
[θl] and Ex0

[ 1nEε‖D
l
wl(σ)(xo +

σlε)− xo‖22].

5 Experiments

Datasets Training images were pulled from Berkeley’s BSD-500 dataset [46]. From this dataset,
we used 400 images for training, 50 for validation, and 50 for testing. For the results presented in
Section 3, the training images were cropped, rescaled, flipped, and rotated to form a set of 204,800
overlapping 40× 40 patches. The validation images were cropped to form 1,000 non-overlapping
40× 40 patches. We used 256 non-overlapping 40× 40 patches for test. For the results presented in
this section, we used 382,464 50× 50 patches for training, 6,528 50× 50 patches for validation, and
seven standard test images, illustrated in Figure 6 and rescaled to various resolutions, for test.

Implementation. We implemented LDAMP and LDIT, using the DnCNN denoiser [39], in both
TensorFlow and MatConvnet [47], which is a toolbox for Matlab. Public implementations of both
versions of the algorithm are available at https://github.com/ricedsp/D-AMP_Toolbox.

6A denoiser is said to be L-Lipschitz continuous if for every x1, x2 ∈ C we have ‖D(x1)−D(x2)‖22 ≤
L‖x1 − x2‖22. While we did not find it necessary in practice, weight clipping and gradient norm penalization
can be used to ensure Lipschitz continuity of the convolutional denoiser [45].
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(a) Barbara (b) Boat (c) Couple (d) Peppers (e) Fingerprint (f) Mandrill (g) Bridge

Figure 6: The seven test images.

Training parameters. We trained all the networks using the Adam optimizer [48] with a training
rate of 0.001, which we dropped to 0.0001 and then 0.00001 when the validation error stopped
improving. We used mini-batches of 32 to 256 patches, depending on network size and memory
usage. For layer-by-layer and denoiser-by-denoiser training, we used a different randomly generated
measurement matrix for each mini-batch. Training generally took between 3 and 5 hours per denoiser
on an Nvidia Pascal Titan X. Results in this section are for denoiser-by-denoiser trained networks
which consists of 10 unrolled DAMP/DIT layers that each contain a 20 layer DnCNN denoiser.

Competition. We compared the performance of LDAMP to three state-of-the-art image recovery
algorithms; TVAL3 [7], NLR-CS [9], and BM3D-AMP [10]. We also include a comparison with LDIT
to demonstrate the benefits of the Onsager correction term. Our results do not include comparisons
with any other NN-based techniques. While many NN-based methods are very specialized and only
work for fixed matrices [13–16; 27], the recently proposed OneNet [23] and RIDE-CS [21] methods
can be applied more generally. Unfortunately, we were unable to train and test the OneNet code
in time for this submission. While RIDE-CS code was available, the implementation requires the
measurement matrices to have orthonormalized rows. When tested on matrices without orthonormal
rows, RIDE-CS performed significantly worse than the other methods.

Algorithm parameters. All algorithms used their default parameters. However, NLR-CS was
initialized using 8 iterations of BM3D-AMP, as described in [10]. BM3D-AMP was run for 10
iterations. LDIT and LDAMP used 10 layers. LDIT had its per layer noise standard deviation estimate
σ̂ parameter set to 2‖zl‖2/

√
m, as was done with D-IT in [10].

Testing setup. We tested the algorithms with i.i.d. Gaussian measurements and with measurements
from a randomly sampled coded diffraction pattern [49]. The coded diffraction pattern forward
operator was formed as a composition of three steps; randomly (uniformly) change the phase, take a
2D FFT, and then randomly (uniformly) subsample. Except for the results in Figure 7, we tested the
algorithms with 128× 128 images (n = 1282). We report recovery accuracy in terms of PSNR. We
report run times in seconds. Results broken down by image are provided in the supplement.

Gaussian measurements. With noise-free Gaussian measurements, the LDAMP network produces
the best reconstructions at every sampling rate on every image except Fingerprints, which looks very
unlike the natural images the network was trained on. With noise-free Gaussian measurements, LDIT
and LDAMP produce reconstructions significantly faster than the competing methods. Note that,
despite having to perform twice as many denoising operations, at a sampling rate of mn = 0.25 the
LDAMP network is only about 25% slower than LDIT. This indicates that matrix multiplies, not
denoising operations, are the dominant source of computation. Average recovery PSNRs and run
times are reported in Table 1. With noisy Gaussian measurements, LDAMP uniformly outperformed
the other methods; these results can be found in the supplement.

Coded diffraction measurements. With noise-free coded diffraction measurements, the LDAMP
network again produces the best reconstructions on every image except Fingerprints. With coded
diffraction measurements, LDIT and LDAMP produce reconstructions significantly faster than com-
peting methods. Note that because the coded diffraction measurement forward and backward operator
can be applied in O(n log n) operations, denoising becomes the dominant source of computations:
LDAMP, which has twice as many denoising operations as LDIT, takes roughly 2× longer to com-
plete. Average recovery PSNRs and run times are reported in Table 2. We end this section with a
visual comparison of 512× 512 reconstructions from TVAL3, BM3D-AMP, and LDAMP, presented
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Table 1: PSNRs and run times (sec) of 128× 128 reconstructions with i.i.d. Gaussian measurements
and no measurement noise at various sampling rates.

Method
m
n = 0.10 m

n = 0.15 m
n = 0.20 m

n = 0.25

PSNR Time PSNR Time PSNR Time PSNR Time

TVAL3 21.5 2.2 22.8 2.9 24.0 3.6 25.0 4.3
BM3D-AMP 23.1 4.8 25.1 4.4 26.6 4.2 27.9 4.1
LDIT 20.1 0.3 20.7 0.4 21.1 0.4 21.7 0.5
LDAMP 23.7 0.4 25.7 0.5 27.2 0.5 28.5 0.6
NLR-CS 23.2 85.9 25.2 104.0 26.8 124.4 28.2 146.3

Table 2: PSNRs and run times (sec) of 128×128 reconstructions with coded diffraction measurements
and no measurement noise at various sampling rates.

Method
m
n = 0.10 m

n = 0.15 m
n = 0.20 m

n = 0.25

PSNR Time PSNR Time PSNR Time PSNR Time

TVAL3 24.0 0.52 26.0 0.46 27.9 0.43 29.7 0.41
BM3D-AMP 23.8 4.55 25.7 4.29 27.5 3.67 29.1 3.40
LDIT 22.9 0.14 25.6 0.14 27.4 0.14 28.9 0.14
LDAMP 25.3 0.26 27.4 0.26 28.9 0.27 30.5 0.26
NLR-CS 21.6 87.82 22.8 87.43 25.1 87.18 26.4 86.87

in Figure 7. At high resolutions, the LDAMP reconstructions are incrementally better than those of
BM3D-AMP yet computed over 60× faster.

(a) Original Image (b) TVAL3 (26.4 dB, 6.85
sec)

(c) BM3D-AMP (27.2 dB,
75.04 sec)

(d) LDAMP (28.1 dB,
1.22 sec)

Figure 7: Reconstructions of 512 × 512 Boat test image sampled at a rate of m
n = 0.05 using

coded diffraction pattern measurements and no measurement noise. LDAMP’s reconstructions are
noticeably cleaner and far faster than the competing methods.

6 Conclusions

In this paper, we have developed, analyzed, and validated a novel neural network architecture that
mimics the behavior of the powerful D-AMP signal recovery algorithm. The LDAMP network is
easy to train, can be applied to a variety of different measurement matrices, and comes with a state-
evolution heuristic that accurately predicts its performance. Most importantly, LDAMP outperforms
the state-of-the-art BM3D-AMP and NLR-CS algorithms in terms of both accuracy and run time.

LDAMP represents the latest example in a trend towards using training data (and lots of offline
computations) to improve the performance of iterative algorithms. The key idea behind this paper
is that, rather than training a fairly arbitrary black box to learn to recover signals, we can unroll
a conventional iterative algorithm and treat the result as a NN, which produces a network with
well-understood behavior, performance guarantees, and predictable shortcomings. It is our hope this
paper highlights the benefits of this approach and encourages future research in this direction.
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