
A Concrete distribution with a Bernoulli random variable

(a) Relation between z ⇠ Concrete(p) and
u ⇠ Uniform[0, 1], given by a sigmoid func-
tion.

(b) Derivative of z w.r.t. the dropout parame-
ter p.

Figure 10: Concrete distribution with a two-dimensional discrete distribution (Bernoulli) and temperature 0.1.

B Choice or prior

We use the discrete quantised Gaussian prior suggested in [7]. With this prior the KL divergence
between the variational distribution and the prior (last term of eq. (1)) can be evaluated analytically.

With this prior choice our dropout variant can follow two different interpretations. In the first we
consider the Concrete distribution as an approximation to the Bernoulli distribution only in the
expected log likelihood term (first term in eq. (1)) in order to get derivatives w.r.t. the parameter p.

In a second, more interesting, interpretation we regard the Concrete distribution noise itself as a new
stochastic regularisation technique (SRT). In this case the expected log likelihood term is not viewed
as an approximation, but instead the KL divergence between the variational distribution and the
prior is seen as being approximated now. This is because under this view we discretise the Concrete
distribution and approximate it as a Bernoulli distribution, in order to evaluate the KL analytically.
This holds true as long as the Concrete distribution’s temperature is low. However, this temperature
parameter can be tuned as well under our variational setting. With larger temperature values the KL
approximation would not hold any more. This interesting extension would require us to develop new
approximations to the KL for the Concrete distribution, and we leave this as future research.

C Python code snippet for Concrete Dropout

This Keras wrapper allows learning the dropout probability for any given input layer. Usage:
as the first layer in a model
model = Sequential ()
model.add(ConcreteDropout(Dense (8), input_shape =(16)))
now model.output_shape == (None , 8)
subsequent layers: no need for input_shape
model.add(ConcreteDropout(Dense (32)))
now model.output_shape == (None , 32)

ConcreteDropout can be used with arbitrary layers, not just Dense, for instance with a Conv2D layer:
model = Sequential ()
model.add(ConcreteDropout(Conv2D (64, (3, 3)),
input_shape =(299, 299, 3)))

although current implementation supports 2D inputs only.

Arguments:

• layer: a layer instance.
• weight_regularizer: A positive number which satisfies

weight_regularizer = l2/(⌧N)

11

with prior lengthscale l, model precision ⌧ (inverse observation noise), and N the number
of instances in the dataset. Note that kernel_regularizer is not needed.

• dropout_regularizer: A positive number which satisfies

dropout_regularizer = 2/(⌧N)

with model precision ⌧ (inverse observation noise) and N the number of instances in the
dataset.
Note the relation between dropout_regularizer and weight_regularizer:

weight_regularizer/dropout_regularizer = l2/2

with prior lengthscale l. Note also that the factor of two should be ignored for cross-entropy
loss, and used only for the Euclidean loss.

Code:

import keras.backend as K
from keras import initializers
from keras.engine import InputSpec
from keras.layers import Dense , Lambda , Wrapper
class ConcreteDropout(Wrapper):

def __init__(self , layer , weight_regularizer =1e-6,
dropout_regularizer =1e-5, ** kwargs):

assert ’kernel_regularizer ’ not in kwargs
super(ConcreteDropout , self).__init__(layer , ** kwargs)
self.weight_regularizer = K.cast_to_floatx(weight_regularizer)
self.dropout_regularizer = K.cast_to_floatx(

dropout_regularizer)
self.mc_test_time = mc_test_time
self.losses = []
self.supports_masking = True

def build(self , input_shape=None):
assert len(input_shape) == 2 # TODO: test with more than two

dims
self.input_spec = InputSpec(shape=input_shape)
if not self.layer.built:

self.layer.build(input_shape)
self.layer.built = True

super(ConcreteDropout , self).build () # this is very weird..
we must call super before we add new losses

initialise p
self.p_logit = self.add_weight ((1,),

initializers.RandomUniform (-2.,
0.), # ~0.1 to ~0.5 in

logit space.
name=’p_logit ’,
trainable=True)

self.p = K.sigmoid(self.p_logit [0])

initialise regulariser / prior KL term
input_dim = input_shape [-1] # we drop only last dim
weight = self.layer.kernel
Note: we divide by (1 - p) because we scaled layer output by

(1 - p)
kernel_regularizer = self.weight_regularizer * K.sum(K.square(

weight)) / (1. - self.p)
dropout_regularizer = self.p * K.log(self.p)
dropout_regularizer += (1. - self.p) * K.log(1. - self.p)
dropout_regularizer *= self.dropout_regularizer * input_dim
regularizer = K.sum(kernel_regularizer + dropout_regularizer)
self.add_loss(regularizer)

12

def compute_output_shape(self , input_shape):
return self.layer.compute_output_shape(input_shape)

def concrete_dropout(self , x):
eps = K.cast_to_floatx(K.epsilon ())
temp = 1.0 / 10.0
unif_noise = K.random_uniform(shape=K.shape(x))
drop_prob = (

K.log(self.p + eps)
- K.log(1. - self.p + eps)
+ K.log(unif_noise + eps)
- K.log(1. - unif_noise + eps)

)
drop_prob = K.sigmoid(drop_prob / temp)
random_tensor = 1. - drop_prob

retain_prob = 1. - self.p
x *= random_tensor
x /= retain_prob
return x

def call(self , inputs , training=None):
return self.layer.call(self.concrete_dropout(inputs))

D More Results

In the UCI experiments we used length scale l ·pKin where Kin is the number of rows of a par-
ticular weight matrix; the constant l was determined manually for each dataset using validation
set performance. The reported accuracy and predictive log likelihood were approximated by MC
integration using 104 samples, whilst the training time gradients were estimated using a single sample.
The training time varied from 103 to 104 to ensure convergence.

The output precision parameter ⌧ was determined using a variational (MAP-)EM algorithm [3]:
the variational parameters (variational E–step), and ⌧ (M–step) are optimised iteratively by gradient
ascent on (ELBO+ log p(⌧)). The log p(⌧) term only affects the M–step where it replaces the stan-
dard MLE by MAP estimation of ⌧ . The prior distribution was set to p(⌧) = Gamma(0.1, 0.01)
for all datasets. Because the optimisation was taking a very long time, presumably due to the high
variance of our gradient estimator, we were only using partial E and M–steps (i.e. optimising for only
a fixed number of iterations). Empirically, we needed to initialise ⌧ to be low (i.e. high aleatoric
uncertainty) to avoid collapsing into a bad local optima; hence we run the final M–step until conver-
gence which yielded values similar to the ones used by [9]. We report results both prior (CDropout)
and after (CDropoutM) the last M–step. We believe that the optimisation issues might be solved by
careful choice of ⌧ ’s prior, improved initialisation, or by replacing the gradient optimisation of ⌧ by
Bayesian optimisation.

Full results on all UCI datasets are given next.

Dataset N D Dropout CDropout CDropoutM DGP
boston 506 13 -2.34±0.03 -2.72±0.01 -2.35±0.05 -2.17±0.10
concrete 1030 8 -2.82±0.02 -3.51±0.00 -3.12±0.07 -2.61±0.02
energy 768 8 -1.48±0.00 -2.30±0.00 -0.84±0.03 -0.95±0.01
kin8nm 8192 8 1.10±0.00 0.65±0.00 1.24±0.00 1.79±0.02
power 9568 4 -2.67±0.01 -2.75±0.01 -2.75±0.01 -2.58±0.01
protein 45730 9 -2.70±0.00 -2.81±0.00 -2.81±0.00 -2.11±0.04
red wine 1588 11 -0.90±0.01 -1.70±0.00 -0.94±0.02 -0.10±0.03
yacht 308 6 -1.37±0.02 -1.75±0.00 -0.77±0.06 -0.99±0.07
naval 11934 16 4.32±0.00 5.87±0.05 5.89±0.05 4.77±0.32

Average Rank 2.56±0.23 3.56±0.23 2.44±0.39 1.44±0.23
Table 3: Regression experiment: Average test log likelihood/nats

13

Dataset N D Dropout CDropout CDropoutM DGP
boston 506 13 2.80±0.13 2.65±0.17 2.65±0.17 2.38±0.12
concrete 1030 8 4.50±0.18 4.46±0.16 4.46±0.16 4.64±0.11
energy 768 8 0.47±0.01 0.46±0.02 0.46±0.02 0.57±0.02
kin8nm 8192 8 0.08±0.00 0.07±0.00 0.07±0.00 0.05±0.00
power 9568 4 3.63±0.04 3.70±0.04 3.70±0.04 3.60±0.03
protein 45730 9 3.62±0.01 3.85±0.02 3.85±0.02 3.24±0.10
red wine 1588 11 0.60±0.01 0.62±0.00 0.62±0.00 0.50±0.01
yacht 308 6 0.66±0.06 0.57±0.05 0.57±0.05 0.98±0.09
naval 11934 16 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.00

Average Rank 2.67±0.31 2.00±0.27 3.00±0.27 2.33±0.50
Table 4: Regression experiment: Average test RMSE

D.1 MNIST

In the MNIST experiments, the data was split into training, validation and testing sets with 5 · 104,
104 and 104 observations respectively.

We used the l ·pKin formula for prior length scale as in section 4.2. The constant l was determined by
grid search over {10�4, , 10�3, . . . , 100, 2.0}; l = 10�2 attained the best balance between predictive
log likelihood and accuracy. The MC integration schedule was similar to section 4.2 except for using
only 200 samples at test time.

Figure 11: Predictive log likelihood and accuracy on test set for different settings of length scale (3x512 MLP).

The right hand side plot in figure 11 shows that our model attains same results as standard dropout.
ELBO is a good indicator of optimal length scale if we want to pick a model with best predictive log
likelihood. However, we have not observed this correlation for other hyperparameters which concurs
with results reported by [7].

14

	Introduction
	Background
	Concrete Dropout
	Experiments
	Synthetic data
	UCI
	MNIST
	Computer vision
	Model-based reinforcement learning

	Conclusions and Insights
	Concrete distribution with a Bernoulli random variable
	Choice or prior
	Python code snippet for Concrete Dropout
	More Results
	MNIST

